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Microbiome-Transcriptome 
Interactions Related to Severity 
of Respiratory Syncytial Virus 
Infection
Abhijeet R. Sonawane1, Liang Tian1,2,8, Chin-Yi Chu   3, Xing Qiu   4, Lu Wang4, 
Jeanne Holden-Wiltse   4, Alex Grier5, Steven R. Gill5, Mary T. Caserta3, Ann R. Falsey6, 
David J. Topham5, Edward E. Walsh6, Thomas J. Mariani3, Scott T. Weiss1, 
Edwin K. Silverman1, Kimberly Glass1 & Yang-Yu Liu   1,7

Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections and hospital visits 
during infancy and childhood. Although risk factors for RSV infection have been identified, the role of 
microbial species in the respiratory tract is only partially known. We aimed to understand the impact 
of interactions between the nasal microbiome and host transcriptome on the severity and clinical 
outcomes of RSV infection. We used 16 S rRNA sequencing to characterize the nasal microbiome of 
infants with RSV infection. We used RNA sequencing to interrogate the transcriptome of CD4+ T cells 
obtained from the same set of infants. After dimension reduction through principal component (PC) 
analysis, we performed an integrative analysis to identify significant co-variation between microbial 
clade and gene expression PCs. We then employed LIONESS (Linear Interpolation to Obtain Network 
Estimates for Single Samples) to estimate the clade-gene association patterns for each infant. Our 
network-based integrative analysis identified several clade-gene associations significantly related to 
the severity of RSV infection. The microbial taxa with the highest loadings in the implicated clade PCs 
included Moraxella, Corynebacterium, Streptococcus, Haemophilus influenzae, and Staphylococcus. 
Interestingly, many of the genes with the highest loadings in the implicated gene PCs are encoded in 
mitochondrial DNA, while others are involved in the host immune response. This study on microbiome-
transcriptome interactions provides insights into how the host immune system mounts a response 
against RSV and specific infectious agents in nasal microbiota.

Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections and hospital visits during 
infancy and childhood1–3. Almost all children will have been infected with RSV by age two, with about 3% requir-
ing hospitalization. A recent report estimated that in 2015 about 33.1 million children worldwide under age 5 had 
RSV-related acute lower respiratory infection; of those, approximately 10% required hospitalization with 59,000 
in-hospital fatalities1. The incidence and mortality of RSV vary between geographic locations, with children from 
developing countries considered to be at higher risk4. In the United States, 20% of infants require outpatient 
treatment for RSV-related illnesses, with an associated economic burden of $1.9 billion5; around 3% of these cases 
are associated with serious bronchiolitis and viral pneumonia–the most common forms of severe RSV infection. 
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In addition to major risk factors such as congenital or chronic cardiopulmonary disease, meta-analyses have 
identified additional risk factors for RSV, including preterm birth, low birth weight, siblings at home, day-care 
attendance, and maternal smoking6–8. Infants with RSV infection in early childhood are also at a higher risk of 
developing asthma and wheezing9–11. Although prophylactic treatments are available to prevent RSV infection in 
the most at-risk infants, attempts are ongoing to identify an effective and safe vaccine or small molecule drug to 
reduce the health burden of RSV.

Biomarker discovery through expression analysis is an important step in assessing disease severity and in 
distinguishing RSV from other common respiratory viruses12–14. Transcriptional profiles often reflect a host’s 
immune response to the virus, helping to explain disease progression and characterize its severity. Several studies 
have reported that T cell mediated response is crucial in clearing the viral load during RSV infection15,16. Recent 
reports also indicate that RSV infects CD4+ and CD8+ T cells and affects T cell function12,17,18, implicating T cells 
as potential biomarkers for RSV severity.

The microbiome in the respiratory tract is known to influence the course of acute infectious diseases19. The 
succession pattern of the nasal microbial community might influence host responses to RSV, thereby modulating 
inflammation and possibly disease severity. Indeed, several studies indicate that the nasal microbial composition 
affects the overall risk of developing respiratory tract infections20,21 and is associated with the severity of acute 
respiratory symptoms22.

Joint characterization of the nasal microbiome and host transcriptome may provide valuable insights into how 
viral infections influence the host response. However, the impact of the interactions between the nasal micro-
biome and the host transcriptome on the severity and clinical outcomes of RSV infection has not been fully 
understood. Recent studies have reported associations between nasal microbial compositions and whole blood 
gene expression22. In this work, we perform an integrative analysis to study associations between nasal microbial 
compositions and transcriptional profiles of bloodstream CD4+ T cells.

Network approaches provide an important framework for understanding complex relationships that influence 
human health23. In our study, we construct a network model that correlates microbial taxonomic profiles and host 
transcriptomic profiles. Examining this network in the context of RSV severity highlights important patterns of 
transcriptomic response related to immune processes and viral infection. An overview of our analysis approach 
is summarized in Fig. 1.

Results
Baseline characteristics of participants and data source.  We analyzed data for 58 infants with RSV 
infection, each of whom had both CD4 + gene expression and nasal microbiome data. The RSV disease sever-
ity was measured by the Global Respiratory Severity Score (GRSS). This allowed us to divide infants into two 
groups based on severity: mild and severe (see Methods section). We emphasize that GRSS is a composite score 
that reflects the worst values during the entire illness, rather than a single time point, allowing us to address the 
problem of clinical variability among subjects. GRSS also recapitulates more frequently used factors such as viral 
load (which has been associated with RSV disease severity in several studies24,25) and need for hospitalization 
(Supplemental Fig. 1), thus acting as excellent surrogate for disease severity26. Among the infants, 23 had mild 

Figure 1.  An overview of the data and analyses performed in this study.
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illness and 35 had severe illness. There was no difference in any demographic characteristics between mildly and 
severely ill subjects (Table 1). The data collection occurred in three stages (Fig. 2A).

Transcriptome data analysis.  We first characterized the gene expression data for these infants, as meas-
ured by RNA-sequencing (RNA-Seq) of CD4+ T cells collected at two distinct time points, with 46 samples 
collected during the acute visit (Visit 1) and 34 samples collected at follow-up day 12–16 (Visit 2). Out of 22 sub-
jects who had RNA-Seq samples collected at both the acute and follow-up visit, 7 were mild and 15 were severe 
(Fig. 2B).

We used principal component analysis (PCA) to investigate the data structure in light of various measured 
clinical variables (Supplemental Fig. 2). This analysis indicated that enrollment season was a significant contrib-
utor to structure in our expression data. Therefore, we applied batch-correction to remove this signal from the 
data. We then performed differential expression analysis, comparing the expression levels of genes between the 
acute and follow-up visit. We identified 27 genes that were differentially expressed at a Benjamini-Hotchberg 
false discovery rate (FDR) less than 0.05 (Fig. 2C). Many of the genes that had higher expression levels in the 
acute visit are known to be important in mediating host immune response. This included IFITM1 and IFITM2, 
which are known to inhibit the infection and replication of respiratory syncytial virus27,28, IFI27, a known bio-
marker for RSV29, and IRF7, a gene associated with suppression of innate immunity response30. Other genes 
with known associations to RSV and higher expression in the acute visit included SOCS331, MX132, and the 
ISGylation pathway genes USP18 and ISG1533. Our analysis also identified several genes with higher expression 
in the follow-up visit, including MS4A1, which encodes the CD20 protein, and MCOLN1. CD20 + B cells are 
prominent in the lung tissue of infants with fatal RSV infection34,35 and MS4A1 is upregulated in infants after the 
administration of live attenuated influenza vaccine, indicating an association with immune system processes36. 
RSV activates innate immunity through the toll like receptor (TLR) pathway. MCOLN1 has been associated with 
TLR signaling through modulating viral pathogen-associated molecular pattern (PAMP) along with trafficking 
of single-stranded RNA (ssRNA) into lysosomes37,38. MCOLN1 also regulates autophagy39, as expected in the 
convalescence phase of an infection.

We also evaluated if any genes changed their expression levels in response to RSV infection severity. We found 
600 genes differentially expressed at a nominal p-value significance of less than 0.05. Out of these,  the most 
significantly differentially-expressed gene was EZH1 (p-value = 2.3 × 10−6; FDR = 0.026) (Fig. 2D,E). EZH1 was 
previously included in a biosignature proposed as a molecular diagnosis tool for RSV infection40. Interestingly, 
both EZH1 and IFITM have been implicated in immune response signaling indicating resolving infection27.

Because we were only able to identify a handful of genes, primarily related to immune response, as signifi-
cantly differentially-expressed in these same infants, we also investigated whether differences between severe and 
mild RSV infection could be captured using other methods. In particular, we examined whether gene expression 
differences between mild and severe RSV infection might be better captured through changes in variability rather 
than in mean expression levels. We evaluated the differential variability in gene expression levels between mild 
versus severe samples using the F-test and identified 641 (5.5%) genes that were differentially variable at an FDR 
significance threshold of 0.05. Gene Ontology enrichment analysis41 identified a number of biological processes 
nominally associated with these genes (Supplemental Fig. 3). Many of these were associated with mitochondrial 
activity such as mitochondrial gene expression and translation. Mitochondria are important for viral suppression 
of the innate immunity30.

RSV Severity Group

P ValueMild n (%) Severe n (%)

Sex

   Female 13 (44.83%) 16 (55.17%)
0.592

   Male 10 (34.48%) 19 (65.52%)

Ethnicity

   Hispanic or Latino 6 (60%) 4 (40%)
0.173   Non-Hispanic or Non-Latino 17 (35.42%) 31 (64.58%)

Race

   White 14 (36.84%) 24 (63.16%)
0.789   Black or African American 5 (45.45%) 6 (54.55%)

   Other 4 (44.44%) 5 (55.56%)

Hospitalization

   Not Hospitalized 23 0

   Hospitalized (>24 h) 1 34

Mild Mean (SE) Severe Mean (SE) P Value

Severity score 1.32 (0.20) 6.37 (0.29) <0.001

Age at Visit 1 3.81 (0.45) 2.98 (0.37) 0.155

Days since onset relative to Visit 1 4.87 (0.50) 5.21 (0.38) 0.595

Table 1.  Demographic and clinical information for the 58 infants included in our analysis.
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Microbiome data analysis.  We next characterized microbiome data from nasal swabs obtained by 16 S 
rRNA sequencing. This included data collected at two time points, with 51 samples collected during the acute visit 
(Visit 1) and 40 collected during a one-month follow-up visit (Visit 3); 23 of these samples were from infants with 
mild RSV infection and 35 were from infants with severe RSV infection (Fig. 2B).

We used both PCA and Principal Coordinate Analysis (PCoA) with various dissimilarity metrics, includ-
ing rooted-Jensen–Shannon divergence (rJSD)42 as well as weighted and unweighted Unifrac distance43, to 
reduce dimensionality and visualize the microbiome data (Supplemental Fig. 4)44. We also applied MaAsLin 
(Multivariate association Analysis with Linear modeling) to test for significant relationships between microbial 
taxa and clinical outcome, after adjusting for sex, race, and enrollment season45. At a nominal p-value of 0.05, 
this analysis identified one operational taxonomic unit (OTU) – H. influenza – as positively associated with 
severity, and two OTUs – Ralstonia and Streptococcus – as negatively associated with severity. We also assessed 
the influence of visit and infection severity on the microbiome composition by using two measures to quantify 
the α-diversity: (1) observed number of operational taxonomic units (OTUs), i.e., the OTU richness and (2) the 
Shannon index46. We found that both α-diversity measures have higher values for infants with severe infection 
compared to those with mild infection during the acute visit (Visit 1), as well as higher values in the acute as 

Figure 2.  (A) Overview of study timelines, including when each type of data was collected. All 58 infants 
included in this study had both transcriptomic and microbiome data collected for at least one time point. (B) 
Venn diagrams showing the overlap in the infants that had either transcriptomic or microbiome data collected 
during the acute visit (57 of the 58 infants), the overlap in the transcriptomic data collected at either the 
initial (Visit 1) or follow-up visit (Visit 3), and the overlap in the infants microbiome data collected at either 
the initial (Visit 1) or follow-up visit (Visit 2). Numbers are shown separately for mild and severe groups, 
with the total number in each category indicated below the Venn diagram. (C) Differential gene expression 
analysis comparing Visit 1 versus Visit 2 RNA-Seq samples yields 27 significantly differentially expressed genes 
(FDR < 0.05). The log2 of the expression levels of these genes are shown as boxplots combining mild and severe 
samples. The genes on the left side of the panel have higher mean expression during the acute visit and those 
on the right side of the panel have higher expression levels in the follow-up visit (D,E) The log2 expression 
levels for EZH1 comparing (D) data from infants with severe versus mild RSV infection and (E) data from the 
acute and follow-up visit. The reported FDR p-values are based on limma analysis. (F,G) Abundance profiles of 
nasal microbiota comparing groups of mild and severe infants at each of the two visits, including (F) observed 
diversity and (G) Shannon diversity index.
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compared to the post-acute visit (Visit 3) for infants with severe infection (Fig. 2F,G). In particular, the Shannon 
diversity is significantly different between severe versus mild samples in Visit 1 (p-value = 0.011), and between 
the Visit 1 and Visit 3 samples among infants with severe RSV infection (p-value = 0.0057). The infection score 
was estimated during Visit 1 (the acute phase). Severity of infection generally decreases over time, potentially 
explaining why we observe that the α-diversity decreases between the Visit 1 and Visit 3 samples.

Integrative analysis of transcriptome and microbiome data.  Although it has been suggested that 
host gene expression is influenced by the microbiome, the biological mechanisms that may facilitate these types 
of interactions are largely unknown47. Integrative analysis of microbiome and transcriptome data could help us 
understand the relationships between host gene expression, microbial composition, and disease pathogenesis. 
Therefore, we applied a network-based approach, which systematically evaluates the interdependence of multiple 
biological entities instead of looking at each one independently, to identify microbiome—transcriptomic relation-
ships important for RSV severity.

We focused on the 40 infants from Visit 1 that had paired transcriptome and microbiome data (see Fig. 2B) 
and performed dimension reduction on these data using PCA (Fig. 3A). This analysis identified 13 gene principal 
components (gPCs) and 10 clade principal components (cPCs) that explained 95% of the variance in each of their 
respective data (Fig. 3B).

The loadings of each cPC and gPC represent a pattern of highly correlated microbial and transcriptional 
abundances, respectively (Fig. 3C). In order to relate these patterns and identify associations between highly 
varying genes and clades, we calculated the Spearman correlation between the loadings of the top gPCs and cPCs 
(Fig. 3D). We find several gPC—cPC pairs that are highly correlated, such as gPC5 and cPC4 (most positively 
correlated; ρ = 0.48), and gPC4 and cPC7 (most negatively correlated; ρ = −0.43). Interestingly, these relation-
ships are not limited to the top few PCs, which are normally the primary focus of dimension reduction analysis. 
Instead, these relationships highlight that prominent patterns in microbiome data may be associated with more 
subtle patterns in gene expression, and vice versa.

Integration of microbiome/transcriptome relationships with clinical characteristics.  To inter-
pret these results, we considered this correlation matrix as edges in a bipartite graph, where nodes are gPCs and 
cPCs. This network framework can help us identify important transcriptomic-microbiomic (gPC—cPC) relation-
ships. However, since this network was derived using information from all samples, by itself it is unable to shed 
light on which of these relationships might be associated with differences in the various phenotypic or clinical 
properties of the input samples, including disease severity.

To overcome this limitation, we applied LIONESS48,49, which employs a jackknife approach to reverse engineer 
a set of sample-specific networks, to our gPC/cPC correlation network. This allowed us to construct separate cor-
relation networks between gPCs and cPCs for each of the infants and to analyze gPC—cPC relationships in light 
of clinical information for these infants.

The weights of edges across these networks are shown in Fig. 4A. We compared the distribution of the 
sample-specific edge-weights between the mild and severe groups and identified six edges which were nominally 

Figure 3.  (A) Principal component analysis was performed on Visit 1 samples for which we had both 
transcriptome and microbiome data to reduce the transcriptome into gPCs (top) and the microbiome into 
cPCs (bottom). (B) Cumulative distribution of the amount of variance explained by the top gPCs and cPCs. 
The vertical and horizontal lines indicate the number of PCs which explain 95% of variance and which were 
included in our network analysis. (C) The coordinates of the gene and clade principal components across the 40 
analyzed samples from Visit 1. (D) Spearman correlation across the loadings of the top 13 gPCs and the top 10 
cPCs.
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significant with a p-value less than 0.05: gPC1 with cPC2, gPC8 with cPC8 and cPC4, gPC3 with cPC10, gPC13 
with cPC9, and gPC12 with cPC1 (Fig. 4B).

To assess the robustness of this result, we performed a sensitivity analysis by randomly selecting 10 samples 
each from mild and severe groups and repeating this analysis 1000 times. This analysis allows us to assess the 
robustness of our results given our relatively low sample number as well as the disparity between the number of 
mild and severe samples. If an edge is robustly different between the severe and mild groups, we will recover that 
association repeatedly across the randomizations. We found that the top edges obtained above were frequently 
(at least 20% of the time compared to 5% expected by chance) identified as significant with the same direction of 
effect (Supplemental Fig. 5).

Microbiome/transcriptome relationships identify clades that may impact the host immune 
response.  Six clade principal components, cPC2, cPC8, cPC10, cPC9, cPC1, and cPC4 (ordered by signifi-
cance) were identified as differentially-associated with gPCs in the context of RSV severity based on our network 
analysis. To understand why these cPCs might have a different relationship with the host transcriptome in the 
context of RSV severity, we identified their associated top OTUs (Table 2). We find that genus like Streptococcus, 
Corynebacterium, Alloiococcus, Haemophilus influenzae, and Staphylococcus are among the top OTUs in cPC2, 
Ralstonia, Corynebacterium, Neisseriaceae (family, genus not known), and Pseudomonas are among the top OTUs 
in cPC8, and Corynebacterium, Ralstonia, Alloiococcus, and Staphylococcus are among the top OTUs in cPC10. 
Some of these same OTUs were also identified as OTUs that discriminate between severe and mild RSV infection 
in our MaAsLin analysis.

The gene principal components that were identified as differentially-associated with cPCs in the context of 
RSV severity included gPC1, gPC8, gPC3, gPC13, and gPC12. We identified the top genes from these gPCs 
based on their loadings (Table 3). Interestingly, we found that 10 of top 20 genes in gPC1 are mitochondrial 
genes. We also found IFITM1 or IFITM2 in the top loadings of gPC3. These two genes are also significantly 
differentially-expressed between the acute and post-acute visit, but not between infants with severe versus mild 
RSV infection (see Fig. 2C). CCR7 (Chemokine receptor type 7), a top gene in gPC1, gPC8, and gPC3, and 
ILR7 (interleukin 7 receptor) from gPC8 and gPC12 have been found to be downregulated in RSV patients50. 
Other genes present in the loadings of multiple gene PCs included L-ribosomal proteins (RPL family), which are 
involved in various pathophysiological process, and SELL (L-Selectin), a cell surface lectin mostly expressed in 
leukocytes, which is down-regulated in RSV infection. SELL also plays a key role in the recruitment of neutrophils 
to roll along the endothelium to the infected tissue51,52.

We performed Gene Ontology (GO) enrichment analysis on the top 100 genes associated with each of these 
gPCs. For gPC1, top significant terms included “immune system process”, “immune response”, “viral process”, 

Figure 4.  (A) The weights of edges predicted for each of the 40 sample-specific networks obtained from the 
LIONESS analysis. Columns are grouped based on each infant’s infection severity, sex, and race. Rows are 
sorted based on the significance of edges. (B) The significance of each edge as defined from multivariate linear 
analysis comparing edge-weights between two groups, mild and severe, and corrected for sex and race. The top 
significant edges with nominal p-value less than 0.05 are labeled.
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Family Genus Species OTU ID PC loading

cPC2 (gPC1)

Streptococcaceae Streptococcus X 4479601 −0.834726

Corynebacteriaceae Corynebacterium X 4474764 0.378128

Aerococcaceae Alloiococcus X 886735 0.333977

Staphylococcaceae Staphylococcus X 1060737 0.147457

Neisseriaceae X X 861327 −0.074763

Moraxellaceae X X 932707 0.071822

Pasteurellaceae Haemophilus influenzae 3125352 0.067097

Moraxellaceae X X 893147 0.064341

Moraxellaceae Moraxella X 1080004 0.044229

Streptococcaceae Streptococcus X 131778 −0.038727

cPC8 (gPC8)

Oxalobacteraceae Ralstonia X 550644 0.4919892

Corynebacteriaceae Corynebacterium X 4474764 −0. 4735642

Neisseriaceae X X 861327 −0. 4097664

Corynebacteriaceae Corynebacterium X 997086 0.3448678

Aerococcaceae Alloiococcus X 886735 0. 2542127

Streptococcaceae Streptococcus Agalactiae 1076969 −0.2107604

Moraxellaceae X X 932707 −0.2008934

Pseudomonadaceae Pseudomonas X 350105 0.1744260

Streptococcaceae Streptococcus X 4479601 − 0.1421117

Staphylococcaceae Staphylococcus X 1060737 −0.1144590

cPC10 (gPC3)

Corynebacteriaceae Corynebacterium X 997086 0.81347

Oxalobacteraceae Ralstonia X 550644 −0.460545

Aerococcaceae Alloiococcus X 886735 −0.208054

Staphylococcaceae Staphylococcus X 1060737 −0.175109

Corynebacteriaceae Corynebacterium X 4474764 0.152976

Neisseriaceae X X 861327 −0.086017

Moraxellaceae X X 893147 −0.062479

Streptococcaceae Streptococcus X 4455633 −0.058702

Corynebacteriaceae Corynebacterium X 484315 0.053777

Pseudomonadaceae Pseudomonas X 350105 0.050156

cPC9 (gPC13)

Aerococcaceae Alloiococcus X 886735 −0.56923761

Oxalobacteraceae Ralstonia X 550644 0.55397649

Corynebacteriaceae Corynebacterium X 4474764 0.52806963

Neisseriaceae X X 861327 −0.18306144

Staphylococcaceae Staphylococcus X 1060737 −0.15290246

Moraxellaceae X X 893147 −0.13401397

Streptococcaceae Streptococcus X 4455633 −0. 08041118

Pseudomonadaceae Pseudomonas X 350105 0.04756214

Pasteurellaceae Haemophilus influenzae 3125352 0.04140956

Streptococcaceae Streptococcus X 4479601 −0.02649437

cPC1 (gPC12)

Moraxellaceae Moraxella X 1080004 −0.95754551

Staphylococcaceae Staphylococcus X 1060737- 0.15074314

Corynebacteriaceae Corynebacterium X 4474764 0.11808617

Neisseriaceae X X 861327 0.08584030

Aerococcaceae Alloiococcus X 886735 0.08026760

Moraxellaceae Moraxella X 1053321 −0.07771730

Pasteurellaceae Haemophilus influenzae 3125352 0.07023736

Streptococcaceae Streptococcus X 4479601 0.06943155

Moraxellaceae X X 932707 0.06696839

Moraxellaceae Streptococcus X 893147 0.06376892

cPC4 (gPC8)

Pasteurellaceae Haemophilus influenzae 3125352 0.68452895

Staphylococcaceae Staphylococcus X 1060737 −0.54778068

Neisseriaceae X X 861327 0.32793288

Moraxellaceae X X 893147 −0.20623383

Moraxellaceae X X 932707 −0.19733937

Streptococcaceae Streptococcus X 4479601 −0.11957387

Corynebacteriaceae Corynebacterium 4474764 −0.09267271

Continued
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“T cell activation”, and “leukocyte activation”. Terms associated with gPC8 included “viral gene expression”, 
“viral transcription”, and “multi-organism process”. Terms associated with gPC3 were associated with signaling 
pathways like “cytokine-mediated signaling”, “type I interferon”, “innate immune response”, “defense response”, 
“response to other organism”, “viral genome replication”, “defense response”, and “regulation of viral genome 
replication” (Fig. 5). Similar functions were identified for gPC12 and gPC13 (Supplemental Fig. 6). All of these 
GO terms are consistent with viral infection and immune response in infected infants. The association of these 
viral and immune processes with the taxa identified in the associated cPCs allows us to hypothesize that certain 
microbial species may modulate the immune response in the host CD4+ T cells.

Discussion
Our microbiome data analysis indicated that taxonomic diversity is highest in infants with severe infection dur-
ing the acute visit, and decreases over time. Moreover, using MaAsLin and at a nominal p-value of 0.05, we 
identified one OTU (H. influenza) that is positively associated with RSV severity, and two OTUs (Ralstonia and 
Streptococcus) that are negatively associated with RSV severity. These results are partially consistent with previous 
observations that infants within H. influenzae-enriched clusters mount a distinct host inflammatory response 
characterized by the overexpression of genes related to toll-like receptor signaling and neutrophil recruitment 
and activation22. Interestingly, our subsequent network analysis implicated many of the same OTUs as MaAsLin 
did. Top OTUs in the network-identified clade PCs included Streptococcus, Corynebacterium, Alloiococcus, H. 
influenzae, Staphylococcus, Moraxella, Ralstonia, and Pseudomonas. These are consistent with a similar study ana-
lyzing the microbiome from nasopharyngeal bacterial swabs alongside whole blood transcriptomic data collected 
from RSV infected infants22. In addition, among these identified OTUs, incidence of co-infection of Streptococcus, 
Haemophilus influenza, and Moraxella with RSV has been reported in studies of nasopharyngeal aspirate samples 
from RSV infected infants53–55. During acute respiratory illness most infants show stable colonization of these 
microbes with Alloiococcus or Moraxella21.

Our transcriptome analysis found that genes involved in immune response, such as IFITM1 and IFITM2, 
decreased in expression after the acute visit, while EZH1, which has also been implicated in immune response sig-
naling27, was expressed at lower levels in infants with severe RSV infection. Interferons are widely expressed and 
are among the key genes responsible for mediating immune response27,56. In particular, the IFN-inducible protein 
is localized in the cell membrane and endocytic vesicle and is important in restricting viral entry to the cell57–59. 
In27, IFITM genes have been shown to potentially inhibit RSV infection by interfering with virus entry and sub-
sequent viral multiplication. Despite these promising findings, we note that standard differential expression only 
identified one gene as significantly (FDR < 0.05) differentially expressed based on RSV infection severity –EZH1 
with an FDR of 0.026.

In this paper, we have proposed and applied a novel approach for integrating data from multiple omics plat-
forms, in our case the host transcriptome and nasal microbiome, in order to extract meaningful associations. Our 
method constructs infant-specific correlation networks between the transcriptome and microbiome in reduced 
dimensions using PCA. Linear modeling of these interactions, accounting for various confounding factors, 
allowed us to identify associations between top gene PCs and clade PCs that differ between infants with mild 
versus severe RSV infection. This allowed us to better understand the etiology of RSV infection and its impact on 
disease severity by highlighting key associations between active components in the transcriptome and dominant 
constituents of the microbial composition.

The functional enrichment analysis of the top genes in the network-identified gene PCs indicated that the 
top-loading genes are highly enriched in pathways related to immune response and viral infection. These top 
genes included IFITM1 and IFITM2, which were significantly expressed between the acute and post-acute visit, 
but not between infants with severe versus mild infection, and CCR7, which has been found to be downregulated 
in RSV patients50. Interestingly, many of the top genes are encoded in mitochondrial DNA and included members 
of NADH dehydrogenase (MT-ND4L and MT-ND5), members of cytochrome c oxidase (MT-CO1, MT-CO2, 
and MT-CO3), and members of ATP synthase (MT-ATP6 and MT-ATP8). Mitochondrial function can be mod-
ulated by viruses60,61 and mitochondrial genes play a key role in the host immune response62,63. These genes are 
also important for viral suppression of natural immunity in RSV infection30.

Importantly, our analysis indicates that the association of some clade PCs with gene PCs is context-dependent 
and a function of RSV infection severity. Further, the enrichment of immune and viral pathways in the 
network-identified gene PCs implies that specific microbial taxa in the nasal microbiome may impact host 
immune response, potentially mediating RSV infection severity. In this context, the identification of mitochon-
drial genes in our integrative analysis is an especially intriguing finding. The relationship between mitochondria 
and the microbiome is only beginning to emerge64,65, and has not been previously described in the context of RSV 
severity. However, interestingly, the role of microbiota has been noted in the immune response to influenza66.

We also point out that the sign of the identified associations (negative versus positive correlations) may imply 
that both adverse as well as cooperative relationships exist between certain bacterial species and immune and 

Family Genus Species OTU ID PC loading

cPC4 (gPC8)

Aerococcaceae X X 886735 0.07434957

Streptococcaceae Streptococcus X 4455633 −0.05788193

Pasteurellaceae Haemophilus influenzae 2243354 0.05635886

Table 2.  Microbial composition and loadings of the top clades in each of the cPCs identified as associated with 
significant edges (with gPCs in parentheses) in the sample-specific network analysis. X = unclassified.
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viral defense response. For example, clade PC4 and clade PC8 both have positive associations with the gene PC8, 
indicated a potentially multifactorial host response. However, in the context of this analysis, we note that it is 
impossible to establish whether the microbiome-transcriptome associations we identified are indeed causal, and, 
if so, their direction of effect (whether the microbiome influences the transcriptome, vice versa, or both). Without 
data-collection in infants prior to RSV infection, we can only hypothesize as to whether targeting these associa-
tions might help to prevent or minimize the impact of RSV infection.

Finally, it is also important to note that, although highly intriguing, the associations identified in our network 
analysis were only nominally significant. This likely reflects heterogeneity in the disease as well as a limitation 

gPC1 (cPC2) gPC3 (cPC10) gPC8 (cPC8 and cPC4) gPC12 (cPC1) gPC13 (cPC9)

Genes loadings Genes loadings Genes loadings Genes loadings Genes loadings

MT-ATP8 0.2631 MT-ATP8 0.4266 CCR7 0.2988 RPL10 0.2631 MT-CO2 0.3230

MT-CO2 0.1894 MALAT1 0.3832 MT-ND4L 0. 2391 TMSB4X 0.1894 B2M 0.2056

ACTB 0.1122 MT-CO2 0.1134 RPS3 0. 2103 MT-ATP8 0.1122 MT-CO3 0.2044

MT-ND4 0.1053 MT-ATP6 0.0846 RPL3 0. 1979 RPL30 0.1053 UCP2 0.1937

MT-CYB 0.0937 MT-CYB 0.0814 RPL10 0. 1977 RPS3 0.0937 RPL10 0.1893

MT-ATP6 0.0865 IFITM2 0.0738 RPL21 0. 1921 TXNIP 0.0865 RPL30 0.1619

CCR7 0.0665 DDX5 0.070 MALAT1 0.1468 RPL14 0.0665 CD52 0.1411

GNB2L1 0.0653 MT-CO1 0.0659 GNB2L1 0.1464 RPS28 0.0653 MT-ND1 0.1297

MT-ND4L 0.0653 MT-ND4 0.0605 MT-CO2 0.1342 CD52 0.0653 RPLP1 0.1181

UCP2 0.0557 IFITM1 0.0543 ARHGDIB 0.1308 RPL19 0.0557 RPS4Y1 0.1076

SELL 0.0521 ACTB 0.0496 UCP2 0.1234 B2M 0.0521 EIF1 0.1014

MT-CO3 0.0513 MT-CO3 0.0482 PABPC1 0.1123 RPL18 0.0513 MALAT1 0.0967

TRAC 0.0506 SELL 0.0312 TRAC 0.1123 IL7R 0.0506 H3F3B 0.0945

RPL3 0.0424 MT-ND5 0.0307 IL7R 0.1017 TRAC 0.0424 RPLP0 0.09342

ARHGDIB 0.0420 MT-ND4L 0.0297 MT-CO3 0.0928 PTMA 0.0420 RPL36 0.0822

MT-CO1 0.0410 MT-ND2 0.0295 RPS28 0.0895 RPS20 0.0410 RPL23A 0.08148

RPL10 0.0397 H3F3B 0.0282 MTND1P23 0.0886 RPL27A 0.0397 GAPDH 0.0814

MT-ND1 0.03553 CCR7 0.0281 HIST1H4C 0.0874 MT-ND6 0.03553 MT-ND4 0.0778

HSPA8 0.0321 IFI44L 0.0281 SNORD13 0.0874 PABPC1 0.0321 RPL18A 0.07362

MT-ND5 0.0301 IFIT3 0.0275 RPS4X 0.0834 TRBV25-1 0.0301 ACTB 0.0721

Table 3.  Top 20 genes with positive loadings in the gPCs (with associated cPCs in parentheses) identified as 
associated with significant edges in the sample-specific network analysis.

Figure 5.  GO term enrichment analysis for the top 100 genes based on the loadings of (A) gPC1, (B) gPC8, and 
(C) gPC3. These bubble plots include the 25 most significant GO terms identified in each analysis based on the 
FDR significance. All terms shown are significant at an FDR < 0.05. Size of each bubble indicates the number of 
genes annotated to the respective GO term and the color indicates the percentage of the top 100 genes annotated 
to that term. The top 25 GO terms enriched in the other identified gPCs are shown in Supplemental Fig. 6A,B 
and all GO terms enriched at an FDR < 0.05 are shown in Supplemental Fig. 6C–G.
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in statistical power due to sample size. However, we point out that the network analysis uncovered very simi-
lar microbial taxa as MaAsLin did, lending confidence to our results. Furthermore, highly plausible biological 
pathways related to viral processes and immune response were implicated in RSV severity using this integra-
tive analysis. These pathways were not found using more standard approaches, such as differential-expression 
analysis in the context of infection severity, and despite the fact that we did observe some immune genes 
differentially-expressed between the acute and post-acute visits. We believe these results illustrate the strength of 
using an integrative analysis approach to bring novel insights into the disease.

This study has several limitations. First, the number of samples with simultaneous collection of transcriptome and 
microbiome data was small. Hence most of the statistical analysis with interesting results, although nominally signifi-
cant, did not show significance after adjusted for multiple hypothesis testing. Second, there may have been other host 
factors such as maternal or household smoking history, breast-feeding status, number of siblings, and antibiotic use, 
that could affect the severity of RSV infection but were not considered in our study. Third, this study was only able to 
provide associations between genes and microbiota without exploring the potential causal relationship.

In this study, we performed dimension reduction and differential-association analyses to quantify patterns in the 
nasal microbiome and host transcriptome that are associated with RSV infection severity. We also used a network-based 
approach to integrate these two data types and identify higher-order associations among genes and clades. This integra-
tive analysis allowed us to systematically quantify relationships among the nasal microbiome, host transcriptome, and 
disease severity for RSV infection. Our results suggest that certain associations between the microbiome and transcrip-
tome are modulated based on RSV infection severity, and that particular microbial taxa impact host immune response, 
with a key role for mitochondrial genes. Overall, these findings on microbiome-transcriptome associations provides 
novel insights into how the immune system mounts a response against RSV. Based on our findings, a key future direc-
tion for our group is to study the potential mechanisms by which the nasal microbiome impacts host immune response, 
such as how gene regulation is altered or otherwise affected by microbial composition, or how nasal bacteria influence 
the severity of RSV from a pathophysiologic perspective.

Methods
Study participants.  RSV-infected infants were enrolled from three cohorts in order to capture the full spec-
trum of disease severity. A birth cohort was enrolled at the University of Rochester Medical Center’s (URMC), 
Strong Memorial Hospital and Highland Hospital, and Rochester General Hospital (RGH) for two winter sea-
sons, extending from August 15 to February 1 for 2012–2013 and 2013–2014, and followed by passive and active 
surveillance for development of RSV infection during the winter months (November 1–April 1). A second cohort 
was enrolled in pediatric offices or the emergency room at URMC’s Golisano Children’s Hospital or RGH when 
respiratory symptoms were present. The third cohort was enrolled on admission to the hospital with documented 
RSV infection. Eligible infants were full-term (>36 weeks gestation), healthy infants born after May 1 and less 
than 10 months of age at infection.

RSV-infected infants underwent evaluation by two members of the study team (a physician and a nurse). 
Demographic data, illness symptoms, findings on physical examination, results of laboratory and radiograph 
results were recorded. A nasal swab was obtained using a medium sized flocked swab (Copan Diagnostics 
Inc. Murrieta, CA, cat. no. 501CS01) and placed in 2 ml of sterile UV-inactivated water for quantitative RSV 
reverse-transcriptase polymerase chain reaction (RT-PCR). A 2–3 ml sample of heparinized blood was collected 
for CD4 gene expression studies as previously described12.

RSV severity score.  RSV disease severity was measured using the Global Respiratory Severity Score (GRSS) 
on a scale from 0–10, with higher scores representing more severe infection67. The GRSS was developed using 
an unbiased data-driven approach with nine clinical variables (including the infant’s general appearance, the 
presence of wheezing, rales, retractions, cyanosis, lethargy, and poor air movement). The maximal age-adjusted 
respiratory rate, as well as the worst room air oxygen saturation, are also included in the score. The GRSS is highly 
predictive of other potential parameters of severity, such as need for hospitalization and duration of hospitaliza-
tion67. The GRSS has an excellent ability to discriminate between mild and severe disease with AUC (area under 
the receiver operating characteristic curve) ~0.961. An infant with a GRSS ≤ 3.5 (or > 3.5) is classified as having 
mild (or severe) infection, respectively. For more information see67. We note that using continuous or discrete 
severity scores in our analyses resulted in similar results, so for simplicity we treated RSV infection severity as a 
binary variable.

CD4+ T cell extraction.  CD3+, CD4+, CD8− T cells were isolated from freshly collected peripheral blood 
samples as previously described12,68. Briefly, within 24 hours of collection, Ficoll-purified peripheral blood mono-
nuclear cells (PBMCs) were stained and sorted into major lymphocyte populations. Sorted cells were immediately 
lysed and homogenized in RNA extraction buffer and stored for later purification.

Transcriptomic data collection and analysis.  RNA extraction, processing and normalization.  RNA-Seq 
data for CD4+ T cells were collected at two distinct time points, with 46 samples collected during the acute 
visit (Visit 1) and 34 samples collected on follow-up day 12–16 (Visit 2). RNA purification, library preparation, 
sequencing and data processing were essentially the same as previously described12,68,69. Briefly, library prepa-
ration was performed using the NexteraXT library kit (Illumina, San Diego, CA) following the SMARter Ultra 
Low amplification kit (Clontech, Mountain View, CA). Libraries were sequenced using the Illumina HiSeq 2500 
at a target depth of ~20 million 100-bp single end reads per sample. Raw reads were mapped to Human Genome 
GRCh38 (annotation of GENCODE 23) and normalized by FPKM (fragments per kilobase of transcript per 
million reads). The transcriptome data contained reads for 11,576 genes with unique Gene Symbol annotations 
across 80 total samples.
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Differential expression analysis.  Differential gene expression analysis was performed on FPKM normalized 
RNA-Seq data using the Bioconductor70 limma package (version 3.30.13)71. We note that principal compo-
nent (PC) analysis indicated an association of the leading PC with enrollment season. Several methods have 
been developed to directly regress out signals related to batch in expression data72–74. We used ComBat func-
tion from sva (version 3.26.0) to correct for differences from enrollment season75. In our differential-expression 
analysis we compared groups based on RSV infection severity (mild vs. severe) while correcting for sex and 
race. RSV viral load from nasal swab and nasal wash did not show any association with severity of infection26 
and were not included as covariates. Genes were considered significantly differentially expressed (DE) if their 
Benjamini-Hochberg corrected p-value was less than 0.05.

Differential variability analysis.  We used var.test() in R (3.4.3 (2017–11–30)) to perform an F-test on 
log2-transformed gene expression data in order to statistically quantify differences in variance in gene expression 
levels between the mild and severe RSV-infected groups. Genes were considered significantly differentially varia-
ble if their Benjamini-Hochberg corrected p-value was less than 0.05.

Gene Ontology pathway analysis.  We used the topGO package (version 2.30.1)41 in R to assess the enrichment 
of Gene Ontology (GO) pathways in a given gene list. Gene lists analyzed included (1) genes that were identified 
as significantly differentially-variable (see above), as well as (2) the top 100 genes associated with a gene principal 
component (PC) from principal component analysis on transcriptome data, based on the associated PC-loadings 
(see below). In the topGO (version 2.30.1) analysis, we used the 11,576 genes with measured reads in our RNA-Seq 
data as a background.

Microbiome data collection and analysis.  16S rRNA sequencing.  Nasal swab specimens were col-
lected during acute RSV-related illness (Visit 1) and one month later (Visit 3). As described in69, bacterial 16 S 
rRNA from these samples was extracted, amplified, and sequenced, and the resulting data were used to deter-
mine the taxonomic compositions, in terms of the relative abundances of those present operational taxonomic 
units (OTUs). Briefly, the V3-V4 hypervariable regions were targeted for amplification and sequenced using an 
Illumina MiSeq platform according to a paired end 2 × 300 bp read protocol. Preliminary read processing and 
quality control were performed using the Quantitative Insights into Microbial Ecology (QIIME) software pack-
age76, and a closed-reference OTU picking was done with USEARCH and the GreenGenes reference database76. 
The final microbiome data contained information for 1,022 distinct OTUs across 91 samples.

Multivariate association Analysis with Linear modeling (MaAsLin).  We used MaAsLin (version 0.0.5) to 
test for significant relationships between microbial clusters and clinical outcome (severe or mild infection). 
MaAsLin is a multivariate statistical framework that finds associations between clinical metadata and poten-
tially high-dimensional experimental data76. In contrast to transcriptomic data, the application of batch cor-
rection methods to microbiome data is still nascent77. Therefore, when we applied MaAsLin we adjusted for 
potential confounding factors, including sex and race, as well as enrollment season, which was removed by 
batch-correction in our transcriptomic data analysis. All microbiome samples from both Visit 1 and Visit 3 were 
used when running MaAsLin.

Integrative analysis of transcriptomic and microbiomic data.  Principal Component Analysis (PCA) 
on transcriptomic and microbiomic data.  To maximize statistical power in the integrative analysis, we first per-
formed dimension reduction47. In particular, we applied principal component analysis (PCA) to host transcrip-
tomics data to create a handful of gene principal components (gPCs), and to the nasal microbiomics data to create 
a few clade principal components (cPCs)76. To achieve that, we used the prcomp() function in the stats (version 
3.4.3) package in R to perform PCA on the OTU relative abundance profiles and the FPKM-normalized RNA-Seq 
gene expression profiles (after applying batch-effect correction for enrollment season). In this integrative analy-
sis, we restricted ourselves to samples from 40 subjects with both microbiome and transcriptome data collected 
during Visit 1. The top 13 gPCs and top 10 cPCs, which explained 95% of the variance in the transcriptomic and 
microbiomic data, respectively, were selected for further analysis.

Correlation between gPCs and cPCs.  We constructed a Spearman correlation matrix comparing the top 13 gPCs 
and the top 10 cPCs, using cor() function from the stats (version 3.4.3) package in R. We treated this global 13×10 
correlation matrix as the weighted adjacency matrix of a complete bipartite graph (Gα, where the subscript α 
denotes the fact that Gα is derived using all the 40 input samples) that contains two types of nodes, gPCs and 
cPCs.

Linear Interpolation to Obtain Network Estimates for Single Samples (LIONESS).  In order to relate gPC/cPC 
associations to clinical variables, we applied the LIONESS method to Gα to construct sample-specific 
(infant-specific) correlation networks49. LIONESS works under the assumption that the global correlation net-
work represents a linear combination of N different networks, one from each of the N input samples. Therefore, to 
construct the network for sample q, we first exclude sample q and calculate the Spearman correlation matrix using 
the remaining samples (G(α−q)). We then use the LIONESS equation, = − +α α α− −( )G N G G Gq q q( ) ( ),  to find the 
network estimate for that sample (Gq). We applied LIONESS to the nasal microbiome and host transcriptome 
samples collected from the same set of 40 infants during Visit 1. The end result of this analysis was 40 
sample-specific networks, i.e., bipartite graphs relating gPCs and cPCs.
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Analysis of sample-specific networks.  We separated the sample-specific LIONESS networks based on their sever-
ity class and compared the distribution of each edge’s weight between mild and severe groups using limma (ver-
sion 3.34.9) correcting for sex and race. All edges with p-value < 0.05 were considered nominally significant.

Data Availability
The Institutional Review Boards of the University of Rochester and Rochester General Hospital approved the 
study. For each infant, one parent provided written informed consent at enrollment. All methods were performed 
in accordance with the relevant guidelines and regulations. The data analyzed in the manuscript are available on 
dbGap (phs001201.v1.p1).
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