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Online Gambling of Pure Chance: 
Wager Distribution, Risk Attitude, 
and Anomalous Diffusion
Xiangwen Wang1,2 & Michel Pleimling1,2,3

Online gambling sites offer many different gambling games. In this work we analyse the gambling logs 
of numerous solely probability-based gambling games and extract the wager and odds distributions. We 
find that the log-normal distribution describes the wager distribution at the aggregate level. Viewing 
the gamblers’ net incomes as random walks, we study the mean-squared displacement of net income 
and related quantities and find different diffusive behaviors for different games. We discuss possible 
origins for the observed anomalous diffusion.

Today, gambling is a huge industry with a huge social impact. According to a report by the American Gaming 
Association1, commercial casinos in the United States alone made total revenue of over 40 billion US dollars in 
2017. On the other hand, different studies reported that 0.12%–5.8% of the adults and 0.2–12.3% of the adoles-
cents across different countries in the world are experiencing problematic gambling2,3. Studying the gamblers’ 
behavior patterns not only contributes to the prevention of problematic gambling and adolescent gambling, but 
also helps to better understand human decision-making processes. Researchers have put a lot of attention on 
studying gambling-related activities. Economists have proposed many theories about how humans make deci-
sions under different risk conditions. Several of them can also be applied to model gambling behaviors. For 
example, the prospect theory introduced by Kahneman and Tversky4 and its variant cumulative prospect theory5 
have been adopted in modeling casino gambling6. In parallel to the theoretical approach, numerous studies focus 
on the empirical analysis of gambling behaviors, aiming at explaining the motivations behind problematic gam-
bling behaviors. However, parametric models that quantitatively describe empirical gambling behaviors are still 
missing. Such models can contribute to evaluating gambling theories proposed by economists, as well as yield a 
better understanding of the gamblers’ behaviors. Our goal is to provide such a parametric model for describing 
human wagering activities and risk attitude during gambling from empirical gambling logs. However, it is very 
difficult to obtain gambling logs from traditional casinos, and it is hard to collect large amounts of behavior data 
in a lab-controlled environment. Therefore in this paper we will focus on analyzing online gambling logs collected 
from online casinos.

Whereas historically the development of probability theory, which then became the foundation of statistics, 
was tied to chance games, today we use statistical tools to analyze gamblers’ behaviors.

Recent years have seen an increasing trend of online gambling due to its low barriers to entry, high anonym-
ity and instant payout. For researchers of gambling behaviors, online gambling games present two advantages: 
simple rules and the availability of large amounts of gambling logs. In addition to the usual forms of gambling 
games that can be found in traditional casinos, many online casinos also offer games that follow very simple 
rules, which makes analyzing the gambling behavior much easier as there are much fewer degrees of freedom 
required to be considered. On the other hand, many online casinos have made gambling logs publicly available 
on their websites, mainly for verification purposes, which provides researchers with abundant data to work on. 
Due to the high popularity of online gambling, in a dataset provided by an online casino there are often thou-
sands or even hundreds of thousands of gamblers listed. Such a large scale of data can hardly be obtained in a 
lab environment. Prior research has begun to make use of online gambling logs. For example, Meng’s thesis7 
presented a pattern analysis of typical gamblers in Bitcoin gambling. It is worth arguing that although our work 
only focuses on the behaviors of online gamblers, there is no reason to think that our conclusions cannot be 
extended to traditional gamblers.
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Naturally, we can treat the changing cumulative net income of a player during their gambling activities as a 
random walk process8. We are particularly interested in the diffusive characteristics of the gambler’s net income. 
This is another reason why we want to analyze the wager distribution and risk attitude of gamblers, since both dis-
tributions are closely related to the displacement distribution for the gambler’s random walks. Within this paper, 
we will mainly focus on the analysis at the population level. Physicists have long been studying diffusion processes 
in different systems, and recently anomalous diffusive properties have been reported in many human activities, 
including human spatial movement9–11, and information foraging12. In a previous study of skin gambling8, we 
have shown that in a parimutuel betting game (where players gamble against each other), a gambler’s net income 
displays a crossover from superdiffusion to normal diffusion. We have reproduced this crossover in simulations 
by introducing finite and overall conserved gamblers’ wealth (see13 for a different way of modeling this using 
kinetic equations of Boltzmann and Fokker-Planck type). However, this explanation cannot be used in other 
types of gambling games where there is no interaction among gamblers (e.g., fixed-odds betting games, which 
will be introduced below), as they violate the conservation of gamblers’ overall wealth. In this paper, we want to 
expand the scope of our study to more general gambling games, check the corresponding diffusive properties, and 
propose some explanations for the observed behaviors.

One of our goals is to uncover the commonalities behind the behavior of online gamblers. To implement this, 
we analyze the data from different online gambling systems. The first one is skin gambling, where the bettors are 
mostly video game players and where cosmetic skins from online video games are used as virtual currency for 
wagering8,14. The other system is crypto-currency gambling, where the bettors are mostly crypto-currency users. 
Different types of crypto-currencies are used for wagering. Commonly used crypto-currencies include Bitcoin, 
Ethereum, and Bitcoin Cash, whose basic units are BTC, ETH and BCH, respectively. As the overlap of these two 
communities, video game players and crypto-currency users, is relatively small for now, features of gambling 
patterns common between these two gambling systems are possibly features common among all online gamblers.

Not only do we consider different gambling systems, but we also discuss different types of gambling games. 
In this paper, we discuss four types of solely probability-based gambling games (Roulette, Crash, Satoshi Dice 
and Jackpot), whose outcomes in theory will not benefit from the gamblers’ skill or experience when the in-game 
random number generators are well designed. In general, there are two frameworks of betting in gambling: 
fixed-odds betting, where the odds is fixed and known before players wager in one round; and parimutuel betting, 
where the odds can still change after players place the bets until all players finish wagering. In fixed-odds betting, 
usually players bet against the house/website, and there is no direct interaction among players; and in parimutuel 
betting, usually players bet against each other. The four types of games we discuss in this paper will cover both 
betting frameworks (see the Methods section).

When a player attends one round in any of those games, there are only two possible outcomes: either win or 
lose. When losing, the player will lose the wager they placed during that round; whereas when winning, the prize 
winner receives equals their original wager multiplied by a coefficient. This coefficient is generally larger than 1, 
and in gambling terminology, it is called odds in decimal format15,16. Here we will simply refer to it as odds. Note 
that the definition of odds in gambling is different than the definition of odds in statistics, and in this paper we 
follow the former one. When a player attends one round, their chance of winning is usually close to, but less than 
the inverse of the odds. The difference is caused by the players’ statistical disadvantage in winning compared to 
the house due to the design of the game rules. In addition, the website usually charges the winner with a site cut 
(commission fee), which is a fixed percentage of the prize.

We further define the payoff, op, to be the net change of one player’s wealth after they attend one round. 
Although the four types of games are based on different rules, the payoffs all follow the same expression
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where >b 0 is the wager the player places, >m 1 is the odds, η> ≥1 0 corresponds to the site cut, and fm is a 
non-negative value based on the odds representing the players’ statistical disadvantage in winning, as mentioned 
earlier. At least either η or fm are non-zero.

From Eq. (1), we can obtain the expected payoff of attending one round
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which is always negative since either η or fm are non-zero. In gambling terminology, ξ is called the house edge, 
from which the websites make profits. The house edge represents the proportion the website will benefit on aver-
age when players wager. In the four types of games we discuss, the house edge ξ ranges from 1% to 8%. If there is 
no house edge ξ = 0, that means it is a fair game. In a fair game or when we ignore the house edge, the expected 
payoff would be 0.

In the Results section, we begin with an analysis of wager distribution and log-ratios between successive 
wagers, which helps us to understand the gamblers’ wagering strategy. We then focus on an analysis of risk atti-
tude by studying the distribution of the odds players choose to wager with. We conclude by extending our discus-
sion to the analysis of net incomes of gamblers viewed as random walks. This allows us to gain insights into the 
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gamblers’ behaviors by computing quantities like the ensemble/time-averaged mean-squared displacement, the 
first-passage time distribution, ergodicity breaking parameter, and Gaussianity. Detailed information about the 
games and datasets discussed in this paper can be found in the Methods section.

Results
Wager distribution.  From the viewpoint of the interaction among players, the games discussed in this paper 
can be grouped into two classes: in Roulette, Crash, and Satoshi Dice games, there is little or no interaction 
among players, whereas in Jackpot games, players need to gamble against each other. At the same time, from the 
viewpoint of wager itself, the games can also be grouped into two classes: In games (A-G), the wagers can be an 
arbitrary amount of virtual currencies, such as virtual skin tickets or crypto-currency units, whereas in game 
(H), the wagers are placed in the form of in-game skins, which means the wager distribution further involves the 
distributions of the market price and availability of the skins.

Furthermore, from the viewpoint of the odds, considering the empirical datasets we have, when analyzing the 
wager distribution, there are three situations: i) For Roulette and Satoshi Dice games, the odds are fixed constants, 
and wagers placed with the same odds are analyzed to find the distribution. ii) For Crash games, the odds are 
selected by the players, and wagers placed with different odds are mixed together during distribution analysis. iii) 
For the Jackpot game, the odds are not fixed at the moment when the player wagers.

In Table 1 we categorize the 8 datasets based on the above information. At the same time, for each dataset we 
perform a distribution analysis of wagers at the aggregate level. Within the same dataset wagers placed under 
different maximum allowed bet values are discussed separately. We plot the complementary cumulative distribu-
tion function (CCDF) of the empirical data and the fitted distribution to check the goodness-of-fit, see Fig. 1. 
CCDF, sometimes also referred to as the survival function, is given by = > = − ≤F x P X x P X x( ) ( ) 1 ( ).

It turns out that when players are allowed to place arbitrary wagers (games A–G in Table 1), the wager dis-
tributions can in general be best-fitted by log-normal distributions. In particular, in games (A, B, C, E, F, G), the 
wager distribution can be approximated by the following expression
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with ≤x xmin  and σ > 0. Φ ⋅( ) is the cumulative distribution function of the standard normal distribution. 
Meanwhile in game (D), the fitted log-normal distribution is truncated at an upper boundary xmax, which might 
result from the maximum allowed small bet value and the huge variation of the market price of crypto-currencies.

During model selection, we notice that when we select different xmin, occasionally a power-law distribution 
with exponential cutoff is reported to be a better fit, but often it does not provide a decent absolute fit on the 
tail, and overall the log-normal distribution provides smaller Kolmogorov-Smirnov distances, see the Methods 
section.

Game Name Game Category Wager Currency Arbitrary Bet Max Bet Odds Best-Fitted Model Parameters

csgofast- Double (A)

Roulette

Virtual Skin Ticket

Yes

500,000 (A1)

2 (Red)

Log-normal

μ = 3.689, σ = 1.952 xmin = 21

2 (Black) μ = 3.807, σ = 1.922 xmin = 21

14 (Green) μ = 3.972, σ = 1.647 xmin = 21

50,000 (A2)

2 (Red) μ = 2.936, σ = 2.108 xmin = 11

2 (Black) μ = 3.175, σ = 2.118 xmin = 12

14 (Green) μ = 2.633, σ = 2.113 xmin = 14

csgofast- X50 (B) 50,000

2 (Blue) μ = 2.734, σ = 1.930 xmin = 11

3 (Red) μ = 2.450, σ = 2.030 xmin = 12

5 (Green) μ = 2.814, σ = 1.999 xmin = 12

50 (Gold) μ = 3.416, σ = 1.548 xmin = 11

csgofast- Crash (C)
Crash

10,000 (C1)

Player- Selected

μ = 1.647, σ = 2.226 xmin = 15

20,000 (C2) μ = 1.932, σ = 2.143 xmin = 11

Ethcrash (D)

Crypto- currency

0.25 ETH μ = −7.186, σ = 6.356 xmin = 1

Satoshi dice (E)
Satoshi Dice

10 BCH
1.98

μ = 5.910, σ = 2.691 xmin = 34

Coinroll (F) 3 BTC μ = 1.930, σ = 2.638 xmin = 2

csgospeed (G)

Jackpot

Virtual Skin Ticket 500,000

Not-fixed

μ = 5.167, σ = 1.301 xmin = 23

csgofast- jackpot (H) In-game Skin No 15 items 180,000 per item
Power Law  
- Exponential - 
Power Law

α = 0.802, δ = 2.457 × 102

β = 7.080 × 10−3, η = 3.783
λ = 8.625 × 10−5, xmin = 250

Table 1.  The best-fitted distribution and estimated parameters of wagers. For games (A, B, C, E, F, G) the 
best-fitted model is a log-normal distribution, and for game (D) the log-normal distribution is truncated at a 
maximum value. For game (H) the wager distribution follows a power law - exponential - power law pattern. In 
the rightmost column, μ (respectively σ2) represents the mean (respectively variance) of the logarithms of bet 
values.
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On the other hand, as we have pointed out in the previous study8, when players are restricted to use in-game 
skins as wagers for gambling, the wager distribution can be best fitted by a shifted power law with exponential 
cutoff. Now, with a similar situation in game (H), where wagers can only be in-game skins, we find that the early 
part of the curve can be again fitted by a power law with exponential cutoff, as shown in Fig. 1(H). However, this 
time it does not maintain the exponential decay of its tail; instead, it changes back to a power-law decay. The over-
all distribution contains six parameters, given by the expression
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We believe that when players are restricted to use in-game skins as wagers, the decision to include one particu-
lar skin in their wager is further influenced by the price and availability of that skin. These factors make the wager 
distribution deviate from the log-normal distribution, which is observed in games (A-G). This is very clear when 
comparing the wager distributions of games (G) and (H) as both games are jackpot games of skin gambling, and 
the only difference is whether players are directly using skins as wagers or are using virtual skin tickets obtained 
from depositing skins. The power-law tail, which was not observed in the previous study8, might result from the 
increment of the maximum allowed skin price (from $400 to $1800).

The above discussions, including the results for games (A–G) in Table 1, show that the wager distributions in 
pure probability-based gambling games, no matter whether the game follows parimutuel betting or fixed-odds 
(preset/player-selected) betting, stay log-normal as long as the players are allowed to place arbitrary amounts of 
wagers. This commonality of log-normal distribution no longer holds when this arbitrariness of wager value is 
violated, e.g., in the scenario where the player can only wager items (in-game skins).

Log-normal distribution has been reported in a wide range of economic, biological, and sociological sys-
tems17, including income, species abundance, family size, etc. Economists have proposed different kinds of 

Figure 1.  In games (A–G), where players are allowed to choose arbitrary bet values, the wager distribution 
can be best fitted by log-normal distributions (3). In game (D), the log-normal distribution is truncated at its 
maximum bet value, indicated by *. The fitting lines represent the log-normal fittings. Wagers placed under 
the different maximum allowed bet values are discussed separately, e.g., in game (A), (A1) has a maximum bet 
value of 500,000, and (A2) has a maximum bet value of 50,000. On the other hand, in game (H) where wagers 
can only be in-game skins, the wager distribution is best described by a pairwise power law with an exponential 
transition, see Eq. (4). The red dotted line represents the log-normal fitting and the blue solid line represents the 
fitting of a pairwise power law with an exponential transition.

https://doi.org/10.1038/s41598-019-50168-2


5Scientific Reports |         (2019) 9:14712  | https://doi.org/10.1038/s41598-019-50168-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

generative mechanisms for log-normal distributions (and power-law distributions as well). One particular inter-
est for us is the multiplicative process18,19. Starting from an initial value X0, random variables in a multiplicative 
process follow an iterative formula ν=+X Xexp( )i i i1  or ν= ++X Xln lni i i1 . If the vi has finite mean and vari-
ance, and is independent and identically distributed, then according to the central limit theorem, for large i, ln Xi 
will follow a normal distribution, which means Xi will follow a log-normal distribution.

If we want to check whether gamblers follow multiplicative processes when they wager, we can first check the 
correlation between consecutive bets +b b( , )i i 1 . Due to the large variances of the wager distributions, Pearson’s 
correlation coefficient may perform poorly. Instead, we adopt two rank-based correlation coefficients, Kendall’s 
Tau20 τK  and Spearman’s Rho21 ρS. At the same time, we also check the mean and variance of the log-ratios 

+b bln( / )i i1  between consecutive bets. These statistics can be found in Table 2. The results reveal that the values of 
consecutive bets exhibit a strong positive correlation, with all the correlation coefficients larger than 0.5. It shows 
that players’ next bet values are largely dependent on their previous bet values. At the same time, the bet values are 
following gradual changes, rather than rapid changes. These conclusions can be confirmed by the small mean 
values and small variances of log-ratios between consecutive bets.

Further analysis of the distribution of ν shows an exponential decay on both of its tails, see Fig. 2. This means 
that ν approximately follows a Laplace distribution. However, compared to a Laplace distribution, the empirical 
log-ratio distribution shows a much higher probability at ν = 0, whose value can be found in the last column of 
Table 2. We also observe that ν presents higher probability densities around small integers/half-integers and their 
inverses. Due to the existence of these differences, we will skip the parameter fitting for the distribution of ν. The 
high probability of staying on the same wager indicates that betting with fixed wager is one of the common strat-
egies adopted by gamblers.

Meanwhile, the high positive auto-correlations, along with the higher probability densities at small integers/
half-integers and their inverses, provide evidence that gamblers often follow a multiplicative process when wager-
ing. The multiplication process can be explained by the wide adoption of multiplicative betting systems. “Betting 
system” here refers to the strategy of wagering where the next bet value depends on both the previous bet value 
and the previous outcome22,23. Although betting systems will not provide a long-term benefit, as the expected 
payoff will always be 0 in a fair game, still they are widely adopted among gamblers. A well-known multiplicative 
betting system is the Martingale (sometimes called geometric progression)23. In Martingale betting, starting with 
an initial wager, the gambler will double their wager each time they lose one round, and return to the initial wager 
once they win. Martingale is a negative-progression betting system where the gambler will increase their wager 
when they lose and/or decrease their wager when they win.

Apart from multiplicative betting, there are many other types of betting systems, such as additive betting and 
linear betting23. The reasons why multiplicative betting systems are dominant in our datasets are: 1) Martingale is 
a well-known betting system among gamblers; 2) Many online gambling websites provide a service for changing 
the bet value in a multiplicative way. For example, for the Crash games csgofast-Crash (C) and ethCrash (D), both 
websites provide a simple program for automatically wagering in a multiplicative way. For the Roulette games 
and Coinroll (F), the websites provide an interface with which the gambler can quickly double or half their wager. 
However, for Satoshi Dice (E) and csgospeed-Jackpot (G), no such function is provided, yet we still observe sim-
ilar results, indicating that gamblers will follow a multiplicative betting themselves.

Figure 2 provides us with the distribution of ν, however, it will not tell us whether the gamblers adopt the 
negative/positive-progression betting systems. Therefore we further analyze the effect on the bet values of win-
ning/losing a round. How the gamblers adjust their wager after winning/losing rounds is shown in Table 3. We 
can see that although there is a high probability for sticking to the same bet values, the most likely outcome after 
losing a round is that the gambler increases their wager. When winning one round, gamblers are more likely to 
decrease their wager. This means that negative-progression strategies are more common among gamblers than 
positive-progression strategies.

Risk attitude.  We now turn to the following question: When a player is allowed to choose the odds them-
selves in a near-fair game, how would they balance the risk and potential return? Higher odds means a lower 
chance of winning and higher potential return, for example, setting odds of 10 means that the winning chance is 
only 1/10, but the potential winning payoff equals 9 times the original wager. In our analysis, we can examine such 

Dataset
τK(bi, 
bi+1)

ρs(bi, 
bi+1) 〈log10 (bi+1/bi)〉 var(log10 (bi+1/bi)) P(bi = bi+1)

csgofast-Double (A) 0.596 0.737 0.010 0.183 0.342

csgofast-X50 (B) 0.692 0.803 0.007 0.102 0.512

csgofast-Crash (C) 0.858 0.909 0.004 0.038 0.802

ethCrash (D) 0.866 0.949 0.000 0.147 0.549

Coinroll (F) 0.826 0.925 0.000 0.282 0.497

csgospeed-Jackpot (G) 0.522 0.675 0.002 0.288 0.136

csgofast-Jackpot (H) 0.591 0.759 0.002 0.206 —

Table 2.  Correlation analysis shows that there is a strong positive correlation between consecutive bets, along 
with the small mean values and variances of log-ratio between consecutive bets. Satoshi Dice (E) is excluded 
here as individual gamblers in the dataset are not distinguishable. csgofast-Jackpot (H) is excluded in the 
calculation of P(bi = bi+1) due to the low precision of bet values in this dataset.
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behaviors based on the gambling logs from Crash and Satoshi Dice games. For the Crash game only CSGOFAST.
COM provides the player-selected odds even when players lose that round, whereas for the Satoshi Dice game 
only Coinroll accepts player-selected odds. We will therefore focus on the data collected on these two websites. 
For the Crash game on CSGOFAST.COM, the odds can only be set as multiples of 0.01, whereas for the Satoshi 
Dice game on Coinroll the odds can be set to 0.99·65536/i where i is a positive integer less than 64000. To simplify 
our modeling work, we will convert the odds on Coinroll to be multiples of 0.01 (same as for the Crash game).

It turns out that in both cases the odds can be modeled with a truncated shifted power-law distribution,
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where ζ ⋅ ⋅( , ) is the incomplete Zeta function, and mmax is the upper truncation. Note that there is a jump at mmax, 
meaning that the players are more likely to place bets on the maximum allowed odds than on a slightly smaller 

Figure 2.  The distribution of the logarithmic of the ratio (log-ratio) between consecutive bet values. For games 
(A–C), the log-ratio can be described by a Laplace distribution. For games (D,F–H), the log-ratio presents bell-
shaped distribution. In general, the distributions are symmetric with respect to the y-axis, except in games 
(D,F). The x-coordinate +b blog ( / )i i10 1  is proportional to the parameter ν.

Dataset

After Losing After Winning

P(bi+1 > bi) P(bi+1 = bi) P(bi+1 < bi) P(bi+1 > bi) P(bi+1 = bi) P(bi+1 < bi)

csgofast-Double (A) 0.432 0.319 0.249 0.228 0.383 0.388

csgofast-X50 (B) 0.293 0.500 0.207 0.167 0.541 0.292

csgofast-Crash (C) 0.201 0.685 0.114 0.076 0.854 0.069

ethCrash (D) 0.566 0.401 0.033 0.079 0.690 0.231

Coinroll (F) 0.560 0.377 0.061 0.121 0.606 0.274

csgospeed-Jackpot (G) 0.478 0.159 0.374 0.415 0.104 0.480

Table 3.  Statistics about how gamblers change their bet values after winning/losing rounds. Apart from fixed-
wagering betting, a comparison between the probabilities suggests gamblers prefer negative-progression betting 
rather than positive-progression betting. See the caption of Table 2 for some additional details.

https://doi.org/10.1038/s41598-019-50168-2


7Scientific Reports |         (2019) 9:14712  | https://doi.org/10.1038/s41598-019-50168-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

odds. The estimated parameters α = .1 881, δ = .0 849, and = .m 1 15min  for csgofast-Jackpot on CSGOFAST.
COM, whereas for Coinroll the parameters are found to be α = .1 423, δ = .2 217, and = .m 2 58min . From the 
comparison between the CCDFs of empirical data and fitting curves, as shown in Fig. 3, we can see that the trun-
cated shifted power law can capture the overall decaying trends of odds distribution. The stepped behavior results 
from the gamblers’ preference of simple numbers.

A distribution that is close to a power law indicates that a gambler’s free choice of odds displays scaling char-
acteristics (within the allowed range) in near-fair games. It also means that when gamblers are free to determine 
the risks of their games, although in most times they will stick to low risks, showing a risk-aversion attitude, they 
still present a non-negligible probability of accepting high risks in exchange for high potential returns. The scaling 
properties of risk attitude might not be unique to gamblers, but also may help to explain some of the risk-seeking 
behaviors in stock markets or financial trading.

We now re-examine the distributions from the point of view of estimating the crash point mC (Satoshi Dice 
games can be explained with the same mechanism). The true distribution of mC generated by the websites follow 
a power-law decay with an exponent of 2 (with some small deviation due to the house edge). Meanwhile, a closer 
look at the fitted exponents listed above gives us two empirical exponents of 1.423 and 1.881, both of which 
are smaller than 2. The smaller exponents reveal that gamblers believe that they have a larger chance to win a 
high-odds game than they actually do. Or equivalently, it means the gamblers over-weight the winning chance of 
low-probability games. At the same time, the “shifted” characteristics here lead to more bets on small odds, which 
also indicates that the gamblers over-estimate the winning chance of high-probability games. As a result, they 
under-weight the winning chances of mild-probability games. These are clear empirical evidence of probability 
weighting among gamblers, which is believed to be one of the fundamental mechanisms in economics6.

Wealth distribution.  In the previous study of skin gambling8, we pointed out that the wealth distribution of 
skin gamblers shows a pairwise power-law tail. This time, by considering the players’ deposits to their wallets on a 
gambling site as the wealth data, we find that the pairwise power-law tails are also observed for bitcoin gambling. 
We find that on the gambling website Coinroll, starting from 5660 cents, the players’ wealth distribution follows 
a pairwise power-law distribution, with the power of the first regime to be 1.585, and the power of the second 
regime to be 3.258, see Fig. 4. The crossover happens at 1.221 × 105 cents. As both wealth distributions of skin 
gambling and bitcoin gambling can be approximated by a pairwise power distribution, we believe that it is a good 
option for modeling the tails of gambler wealth distribution in different scenarios.

Removing effects due to inequality in the number of bets.  In the above sections, we have analyzed 
the distributions of several quantities at the population level. However, there is a huge inequality of the number 
of placed bets among gamblers. We therefore wonder whether those distributions we obtain result from the 
inequality of number of bets among individuals. To remove the effects of this inequality, we randomly sample 
in each dataset the same number of bets from heavy gamblers. We re-analyze the wager distribution and odds 
distribution with the sample data to see if we obtain the same distribution as before. In each dataset we randomly 
sample 500 bets from each of those gamblers who placed at least 500 bets above bmin given in Table 1. Some data-
sets are excluded here as either they do not have enough data or we cannot identify individual gamblers. When 
re-analyzing the odds distribution, to ensure we have enough data, we respectively sample 100 and 2000 bets from 
each of those gamblers in games (C) and (F) who have at least 100 and 2000 valid player-selected odds above mmin. 
According to the results in Fig. 5, after removing the inequality the wager distributions can still be approximated 
by log-normal distributions, but some deviation can be observed. Similarly, the odds distributions again follow 
truncated shifted power-law distributions after removing the inequality. These results demonstrate that the shape 
of the distributions we obtained in the above sections is not a result of the inequality of the number of bets.

Now our question becomes whether the conclusion regarding the distribution at the population level can 
be extended to the individual level. Here due to the limitation of data, we will only discuss the wager distribu-
tion. Analyzing the individual distribution of top gamblers, we find that although heavy-tailed properties can be 

Figure 3.  Odds distributions can be well-fitted by truncated shifted power-law distributions.
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widely observed at the individual level, only a small proportion of top gamblers presents log-normal distributed 
wagers. Other distributions encountered include log-normal distributions, power-law distributions, power-law 
distributions with exponential cutoff, pair-wise power-law distributions, irregular heavy-tailed distributions, as 
well as distributions that only have a few values. The diversity of the wager distributions at the individual level 
suggests a diversity of individual betting strategies. Also, it indicates that a gambler may not stick to only one 
betting strategy. It follows that the log-normal wager distribution observed at the population level is very likely 
an aggregate result.

Diffusive process.  For an individual player’s gambling sequence we define “time” t as the number of bets one 
player has placed so far, and define as net income the sum of the payoffs of those bets. In all the games we analyze, 
there are only two possible outcomes: a win or a loss. The player’s net income will change each time they place 
a bet in a round, with the step length to be the payoff from that bet. We can treat the change of one player’s net 
income as a random walk in a one-dimensional space (see Fig. 1 in ref.8 for an example of such a trajectory). The 
time t will increase by 1 when the player places a new bet, therefore the process is a discrete-time random walk.

Now, let us focus on the analysis of the diffusive process of the gamblers’ net incomes, starting with the analy-
s is  of  the  change of  the  mean net  income with the  number of  rounds played ( t ime) , 
∆ = − = ∑ =w t w t w o i( ) ( ) ( )i

t
p0 1 , where w0 is the player’s initial wealth, w(t) is the player’s wealth after 

attending t rounds, and o i( )p  is the payoff from the ith round the player attended. 〈⋅〉 represents an ensemble aver-
age over a population of players placing bets. In the rest of this paper, 〈⋅〉 will always be used for representing an 
ensemble average. In Fig. 6 we show the change of ∆w t( )  over time. In most of the datasets, players’ mean net 

Figure 4.  The tail of the wealth distribution of Bitcoin gamblers follows a pairwise power-law distribution.

Figure 5.  The wagers obtained from random sampling of top gamblers’ bets still present log-normal 
distributions, although there are some observable deviations.
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income decreases over time, which suggests that in general players will lose more as they gamble more. At the 
same time, in some datasets such as Ethcrash (D) and Coinroll (F), large fluctuations can be observed.

An useful tool for studying the diffusive process is the ensemble-averaged mean-squared displacement (MSD), 
defined as

∑∆ = − =








=

w t w t w o i( ) ( ( ) ) ( ) ,
(6)i

t

p
2

0
2

1

2

For a normal diffusive process, ∆ ∼w t t( )2 , otherwise an anomalous diffusive behavior prevails. More spe-
cifically, when the MSD growth is faster (respectively, slower) than linear, superdiffusion (respectively, subdiffu-
sion) is observed.

In Fig. 7, we present the growth of the ensemble-averaged MSD against time for each of the datasets. To reduce 
the coarseness, MSD curves are smoothed with log-binning technique. The error bars in Fig. 7 represent 95% 
confidence intervals computed with bootstrapping using 2000 independent re-sampling runs. It is interesting to 
see that for different datasets we observe different diffusive behaviors. For games csgofast-Crash (C) we observe 
that the MSD grows faster than a linear function, suggesting superdiffusive behavior. Meanwhile, for games 
csgofast-Double (A), ethCrash (D), csgospeed (G), and csgofast-Jackpot (H), the MSD first presents a superdif-
fusive regime, followed by a crossover to a normal diffusive regime. For games csgofast-X50 (B) and Coinroll (F), 
although the ensemble-averaged MSD roughly presents a linear/sublinear growth, a careful inspection shows 
that both curves consist of several convex-shaped regimes, indicating a more complex behavior. Convex-shaped 
regimes can also be observed in csgofast-Crash games (C).

In ref.8 we argued that the crossover from a superdiffusive regime to a normal diffusive regime in a parimutuel 
game is due to the limitation of individuals’ wealth and the conservation of total wealth. Similar crossovers are 
observed in games (G) and (H), two parimutuel betting games, where the same explanation can be applied. On 
the other hand, this crossover is also found in a Roulette game and in a Crash game, where there is no interaction 
among gamblers. The limitation of an individual’s wealth can still be a partial explanation, but the conservation of 
total wealth no longer holds. A different explanation needs to be proposed to model this crossover.

In the following we briefly discuss how we can obtain from gambling models the different diffusive processes 
observed in the data. We will not attempt to reproduce the parameters we obtained from the gambling logs, but 
rather try to explore the possible reasons for the anomalous diffusion we reported.

For a gambling process, if the gambler’s behavior is independent among different rounds, i.e., the wager and odds 
are respectively independent and identically distributed (IID), with no influence from the previous outcomes, and if 
the wager b has finite variance and the odds m has finite mean, then MSD’s growth will be a linear function of time t:

Figure 6.  Change of the mean net income with time for the different datasets. Most of the datasets present a 
decreasing net income as time t increases. Each point is obtained from an average over at least 200 players.
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∆ = − = 〈 〉 −w t w t w m b t( ) ( ( ) ) ( 1) , (7)2
0

2 2

where 〈 〉m  is the mean value of odds distribution and b2  is the second moment of the wager distribution. But 
normal diffusion is only found in few datasets, the remaining datasets presenting anomalous diffusion which 
conflicts with the IID assumption.

Having shown the popularity of betting systems among gamblers, we would like to check how different betting 
systems affect diffusive behaviors. First, we simulate gamblers that follow Martingale strategies in a Crash game. 
We assume that the selection of odds follows a power-law distribution with an exponent α, with a minimum odds 
of 1 and a maximum odds of 50, where the maximum odds is set to ensure a finite mean of the odds distribution. 
Starting from a minimum bet of 1, we multiply wagers by a ratio γ each time the gamblers lose one round and 
return to the minimum bet each time they win. Once the wager reaches a preset maximum bet value 10000, we 
reset the gambler with a minimum bet. MSD obtained from 10 billion individual simulations is shown in Fig. 8. 
Different curves correspond to different exponents in odds distribution. We can see that the MSD initially pre-
sents an exponential-like growth, before the growths reduce to a linear function. It is easy to explain the exponen-
tial growth since many gamblers lose the rounds and therefore increase their wager by the factor γ, which leads to 
an increase in the average bet value. The superdiffusion here suggests that Martingale strategy increases gamblers’ 
risks of huge losses. Considering the wide adoption of Martingale among gamblers, this could be a reason for the 
superdiffusion as well as the crossover to normal diffusion we found in several datasets. Comparison of the MSD 
curves of different α suggests that a more aggressive risk attitude leads to a higher risk of huge losses (as well as 
higher potential winnings).

Next we examine the ergodicity of the random walk process of net income by computing the time-averaged 
mean-squared displacement and the ergodicity breaking parameter. The time-averaged MSD is defined as

∑δ =
−

+ −
=

−
t

T t
w k t w k( ) 1 ( ( ) ( )) ,

(8)k

T t
2

1

2

where T is the length of the player’s betting history, i.e. total number of rounds they attend, and 


 is used for 
representing a time average. To calculate the time-averaged MSD, we need to make sure the player has played 
enough rounds so that we have a long enough series of net income data, therefore in each dataset we filter out the 
players who played less than T = 1000 rounds. As shown in Fig. 9 the time-averaged MSD shows huge deviations 
from player to player, suggesting diverse betting behaviors at the individual level. At the same time, comparison 
between the ensemble-averaged time-averaged MSD δ t( )2  and the ensemble-averaged MSD ∆w t( )2  shows 

Figure 7.  The growth of ensemble-averaged mean-squared displacement in different datasets presents different 
diffusive behaviors. In the figures, the error bars represent 95% confidence intervals, blue dashed lines follow 
linear functions (slope = 1), and green dotted lines follow quadratic functions (slope = 2).
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clear deviations in most datasets, except in the Coinroll (F), csgospeed (G) and csgofast-Jackpot (H) games. To 
further examine breaking of ergodicity, we have calculated the ergodicity breaking parameter EB24–26 defined as

δ δ= − .t t tEB( ) ( ( )) / ( ) 1 (9)2 2 2 2

For an ergodic process, the parameter EB should be close to 0. However, as shown in Fig. 10, in most data-
sets, with the exception of csgospeed (G) and csgofast-Jackpot (H), EB is large. It follows that non-ergodicity is 
observed in most games and that gambling processes indeed often deviate from normal diffusion, which further 
highlights the complexity of human gambling behavior.

Another way to examine the diffusive behavior of a process is through the analysis of the first-passage time 
distribution. The first-passage time tFP is the time required for a random walker at location w to leave the region 

− +w V w V[ , ]FP FP  for the first time, where VFP is the target value or first-passage value. The first-passage time 
distribution P t( )FP

8,27, defined as the survival probability that the random walker, who is located at w at time t0, 
stays within range − +w V w V[ , ]FP FP  up to time = +t t tFP0 , can be calculated from the expression
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where Θ ⋅( ) is the Heaviside step function. We use =V 200FP  (US cents), with the exception of csgofast-Jackpot 
(H) for which VFP is chosen to be 5000. For a normal diffusive process, the tail of P t( )FP  should decay with an 
exponent of 3/2. In Fig. 11 we plot the first-passage time distribution for each dataset, where again diverse diffu-
sive behaviors are observed. In the games csgofast-Double (A) and csgofast-Jackpot (H), the tails of P t( )FP  approx-
imately decay with an exponent of 3/2 (see the thin green lines), indicating normal diffusive processes. For the 
game csgospeed (G), the exponent is found to be larger than 3/2, indicating a superdiffusive process. And in 
games csgofast-X50 (B), csgofast-Crash (C), ethCrash (D), and Coinroll (F), the exponents are clearly smaller 
than 3/2, indicating a subdiffusive behavior. We note that the results obtained from ensemble-averaged MSD 
sometimes differ from the results obtained from the first-passage time distributions. Nonetheless, anomalous 
diffusive behavior is widely observed.

To confirm our conclusion about the wide existence of anomalous diffusive behavior in gambling activities, we 
further calculate the non-Gaussian parameter (NGP)26,28,29

=
∆
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w t
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1
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For a Gaussian process, the NGP should approach 0 when t gets large. In Fig. 12 we show the NGP as a func-
tion of time. In most of the games, except Coinroll (F), NGP shows a clear decreasing trend as t increases. In the 
game Coinroll (F), a decrease is not apparent, and most likely this game does not follow a Gaussian process. In the 
other games, although the NGP is still decreasing, we can not discriminate whether for large t this quantity will 
tend to 0 or instead reach a plateau value larger than zero. For example, for the game csgospeed (G) the NGP 
seems to reach a plateau ≈ .NGP t( ) 1 5 instead of continuing to decrease, but this could also be the consequence 
of insufficient data. Still, our analysis does not provide clear evidence for the presence of Gaussianity in gambling 
behaviors.

Figure 8.  A betting system similar to Martingale will lead to a crossover from superdiffusion to normal 
diffusion according to the growth of mean-squared displacement. Comparison between curves of different 
parameters shows that higher γ and lower α both will lead to a higher chance of huge losses/winnings.
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To sum up our analysis of the players’ net incomes viewed as random walks, the diverse diffusive behaviors 
found in the datasets indicate that human gambling behavior is more complex than random betting and simple 
betting systems. Further studies are required in order to fully understand the observed differences. At the individ-
ual level, as has been pointed out by Meng7, gamblers show a huge diversity of betting strategies, and even indi-
vidual gamblers constantly change their betting strategy. Differences in the fractions of gamblers playing specific 
betting strategies could be a reason why we see a variety of diffusive behaviors in the datasets.

Discussion
The quick development of the video gaming industry has also resulted in an explosive growth of other online 
entertainment. This is especially true for online gambling that has evolved quickly into a booming industry with 
multi-billion levels. Every day million of bets are placed on websites all around the globe as many different gam-
bling games are available online for gamblers.

Analysing different types of gambling games (ranging from Roulette to Jackpot games), we have shown 
that log-normal distributions can be widely used to describe the wager distributions of online gamblers at 
the aggregate level. The risk attitude of online gamblers shows scaling properties too, which indicates that 
although most gamblers are risk-averse, they sometime will take large risks in exchange for high potential 
gains.

Viewing the gamblers’ net income as a random walk in time (where for each gambler time is increased by 
one unit every time they play a game), we can analyze the mean-squared displacement of net income and related 
quantities like the ergodicity breaking parameter or the non-Gaussian parameter with the goal to gain an under-
standing of the gamblers’ betting strategies through the diffusive behaviors emerging from the datasets. For some 
games the mean-squared displacement and the first-passage time distribution reveal a transition from superdiffu-
sion to normal diffusion as time increases. For all games the ergodicity breaking parameter and the non-Gaussian 
parameter reveal deviations from normal diffusion. All this indicates that gamblers’ behaviors are very diverse 
and more complex than what would be expected from simple betting systems. We speculate that one of the rea-
sons for the observed diverse diffusive behaviors at the aggregate level can be found in the differences in the frac-
tions of gamblers playing specific betting strategies, but more work is required to fully understand the gamblers’ 
complex behaviors.

Figure 9.  The growth of the time-averaged MSD for individual gamblers, presented as thin lines, suggests 
diverse betting behaviors at the individual level. The comparison between δ t( )2  (thick dashed black lines) and 

∆w t( ( ))2  (thick full red lines) reveals that these quantities are different for most games, with the exception of 
the Coinroll (F), csgospeed (G) and csgofast-Jackpot (H) games. Players who played less than 1000 rounds are 
filtered out in each dataset.
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Methods
Detailed rules of the different games.  Roulette.  We focus on a simplified version of Roulette games 
that appears in online casinos, where a wheel with multiple slots painted with different colors will be spun, after 
which a winning slot will be selected. The Roulette table of a traditional Roulette game is composed of 38 slots, 
among which 18 slots are painted in black, 18 slots are painted in red, and two slots (“0” and “00”) are painted 
in green. The online Roulette games are similar to the traditional ones, except that the number of colors and the 
number of slots for each color might be different. Each slot has the same probability to be chosen as the winning 
slot. Players will guess the color of the winning slot before the game starts. The players have a certain time for 
wagering, after which the game ends and a winning slot is selected by the website. Those players who successfully 
wagered on the correct color win, the others lose. As the chance of winning and odds for each color are directly 
provided by the website, roulette is a fixed-odds betting game.

Crash.  “Crash” describes a type of gambling games mainly hosted in online casinos. Before the game starts, 
the site will generate a crash point mC, which is initially hidden to the players. With a lower boundary of 1, the 
crash point is distributed approximately in an inverse square law. The players need to place their wager in order to 
enter one round. After the game starts, on the player’s user interface a number, called multiplier, will show up and 
gradually increase from 1 to the predetermined crash point mC, after which the game ends. During this process, 
if the player “cash-outs” at a certain multiplier m, before the game ends, they win the round; otherwise they lose. 
This multiplier m they cashed out at is the odds, which means when winning, the player will receive a prize that 
equals his wager multiplied by m. When mC is generated with a strict inverse-square-law distribution, the winning 
chance exactly equals the inverse of the player-selected odds m. The player can also set up the cash-out multipli-
ers automatically before the game starts, to avoid the possible time delay of manual cash-out. Since in a manual 
cash-out scenario, after the game starts, the multiplier will show up on the screen, at a given moment the decision 
of the cash-out multiplier is based on the player’s satisfaction with the current multiplier, and involves more 
complicated dynamics of decision-making processes. Meanwhile, in an auto cash-out scenario, the multiplier 
m is chosen before the game starts, which means the decision making is more “static.” Crash is also a fixed-odds 
betting game where the odds are player-selected.

Satoshi dice.  Satoshi Dice is one of the most popular games in crptocurrency gambling. In 2013, the transactions 
resulting from playing Satoshi Dice games accounted for about 60% of overall Bitcoin transactions30. When play-
ing Satoshi Dice, the player needs to pick a number A within a range U(0, ) provided by the website. The odds can 
be calculated with the expression =m U A/ . Once the player finishes wagering, the website will pick another 

Figure 10.  The change of the ergodicity breaking parameter with time. For all games, with the exception of the 
games csgospeed (G) and csgofast-Jackpot (H), EB is found to be much larger than 0, suggesting non-ergodic 
behavior.
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Figure 11.  The tails of first-passage time distributions for the different datasets indicate different diffusive behaviors. 
The green lines represent a power-law decay with an exponent 3/2. The blue error bars indicate 95% confidence 
intervals. Only gamblers who attended more than 1000 rounds of games have been included in these calculations.

Figure 12.  In most datasets, except Coinroll (F), the non-Gaussian parameter shows a decreasing trend as t 
increases. However, in none of the studied cases does the non-Gaussian parameter fall below the value 1.
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number B which is uniformly distributed on U(0, ). If B is less than A, then the player wins the round, otherwise 
they lose. Satoshi Dice is a fixed-odds betting game. In some online casinos, players cannot choose A arbitrarily, 
but instead, they have to select A from a preset list provided by the gambling website. Since the odds m is deter-
mined from A, we are more interested in the case where the players can choose A arbitrarily, from which we can 
obtain a more detailed distribution of the odds m, which helps us to understand the players’ risk attitude. 
According to the rules of Satoshi Dice games, the maximum allowed bet is proportional to the inverse of A, which 
means the accepted range of wager is directly related to the odds.

Jackpot.  Unlike the games discussed above, Jackpot is a parimutuel betting game, where players gamble against 
each other. During the game, each player attending the same round will deposit their wager to a pool. The 
game-ending condition varies across different websites, it could be a certain pool size, a certain amount of players, 
or a preset time span. When the game ending condition is reached, each player’s winning chance will be deter-
mined by the fraction of their wager in the wager pool, based on which one player will be chosen as the winner by 
the website. The winner will obtain the whole wager pool as the prize, after excluding the site cut. The odds can 
be calculated by the pool size divided by the player’s wager, but it is unknown to the players at the moment they 
wager. In the previous study8, we have already discussed the player’s behavior in Jackpot games of skin gambling 
where in-game skins are directly used as wagers. In this paper, we extend the analysis to a case where wagers can 
be arbitrary amounts of virtual skin tickets (players need to first exchange in-game skins into virtual skin tickets).

Data summary.  For each type of game, we collect two datasets. In total, we analyze 8 datasets collected from 
4 different online gambling websites, and the number of bet logs contained in each dataset ranges from 0.3 million 
to 19.2 million. Due to the high variation of market prices of crypto-currencies and in-game skins, the wager and 
deposits are first converted into US cents based on their daily market prices.

CSGOFAST.  From the skin gambling website CSGOFAST31 we collected four datasets on the Roulette, Crash 
and Jackpot games (csgofast-Double, csgofast-X50, csgofast-Crash, csgofast-Jackpot) it provides.

csgofast-Double (A) is a Roulette game in which players can bet on 3 different colors (Red, Black, Green), 
which respectively provide odds of (2, 2, 14). The data were collected in two different time periods, and the only 
difference between them is a change of the maximum allowed bet values. csgofast-X50 (B) is also a Roulette game 
in which players can bet on 4 different colors (Blue, Red, Green, Gold) with odds (2, 3, 5, 50).

csgofast-Crash (C) is a Crash game. As we mentioned earlier, when analyzing the risk attitude of gamblers in 
Crash game, we are more interested in how players set up the odds (multiplier) with the automatically cash-out 
option. On CSGOFAST, under the automatically cash-out option, players can only setup odds ranging from 1.10 
to 50. The interesting point about this dataset is that even if the player loses the round, if they used the automati-
cally cash-out option, it still displays the player-selected odds (which is set before the game starts); meanwhile if 
they used the manually cash-out option, no odds is displayed. Therefore in early-crashed games ( < .m 1 10C ), all 
the displayed odds that are larger than 1.10 were placed with automatically cash-out option. These displayed odds 
will be used in odds distribution analysis. The data are also collected in two different periods, where the only 
difference is still a change of the maximum allowed bet value. Roulette and Crash games on CSGOFAST all use 
virtual skin tickets for wagering.

csgofast-Jackpot (H) is a Jackpot game, where in-game skins are directly placed as wagers. Each skin has a mar-
ket value that ranges from 3 to 180000 US cents. A player can place at most 10 skins in one round.

CSGOSpeed.  From the skin gambling website CSGOSpeed32 we collected one dataset from its Jackpot game 
csgospeed-Jackpot (G), in which arbitrary amounts of virtual skin tickets can be used as wagers. The difference 
between datasets (H) and (G) focuses on whether the wagers are in-game skins or virtual skin tickets.

ethCrash.  ethCrash33 is a cryto-currency gambling website providing a Crash game ethCrash (D). Players need 
to place wagers in Ethereum (ETH), one type of crypto-currency.

SatoshiDice.  SatoshiDice34 is a cryto-currency gambling website which accepts Bitcoin Cash (BCH) as wagers. 
It provides a Satoshi Dice game satoshidice (E), where only 11 preset odds can be wagered on, ranging from 1.05 
to 1013.74. Among the preset odds, we find that more than 30% of the bets are placed under the odds 1.98, and we 
will analyze those bets for wager distribution.

Coinroll.  Coinroll35 is a cryto-currency gambling website which accepts Bitcoin (BTC) as wagers. It provides 
a Satoshi Dice game Coinroll (F), where players can either wager on the 8 preset odds listed by the website, or 
choose an odds of their own. When further analyzing the data, we find that a few players placed an unusual large 
amount of bets, where the top player placed more than 11 million bets. Although these large number of bets prove 
the heavy-tailed distribution of the number of bets of individuals, we have doubts that these players are playing 
for the purpose of gambling. As we have pointed out, all the games discussed in this paper have negative expected 
payoffs. Indeed, prior studies have raised suspicion about the use of crypo-currency gambling websites as a way 
for money laundering36. We will therefore exclude from our analysis gamblers who placed more than half a mil-
lion bets. For bets wagered on the preset odds, we find that more than 57% are placed under the odds 1.98, and 
we use these bets to analyze the wager distribution. On the other hand, since player-selected odds show a broader 
spectrum regarding the risk attitude of gamblers, we focus on the odds distribution of the player-selected odds. 
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As already mentioned, we will exclude the bets from those players who placed at least half a million bets from our 
odds distribution analysis.

Although crypto-currency has gained decent popularity in the financial and technological world, in this paper 
we still measure the wager/wealth deposited in forms of crypto-currencies in US dollars, since the wagers in skin 
gambling are measured in US dollars. The historical daily price data of crypto-currencies (Bitcion, Ethereum, 
Bitcoin Cash) are obtained from CoinDesk37 (for Bitcoin) and CoinMetrics38 (for Ethereum and Bitcoin Cash).

Ethics for data analysis.  The data collected and analyzed in this paper are all publicly accessible on the 
internet, and we collect the data either with the consent of the website administrators or without violating the 
terms of service or acceptance usage listed on the hosting website. The data we use do not include any personally 
identifiable information (PII), and we further anonymize account-related information before storing them into 
our databases to preserve players’ privacy. In addition, our data collection and analysis procedures are performed 
solely passively, with absolutely no interaction with any human subject. To avoid abusing the hosting websites 
(i.e., the gambling websites), the request rates of data-collecting are limited to 1 request per second. Considering 
the legal concerns and potential negative effects of online gambling39–46, our analysis aims only to help better 
prevent adolescent gambling and problem gambling.

Parameter estimation and model selection.  In our analysis, the parameters of different distribution 
models are obtained by applying Maximum Likelihood Estimation (MLE)47. To select the best-fit distribution, we 
compare the models’ Akaike weights48 derived from Akaike Information Criterion (AIC). Note that analyzing the 
fitting results, we constantly found that players show a tendency of using simple numbers when allowed to place 
wagers with arbitrary amounts of virtual currency. As a result, the curves of probability distribution functions 
appear to peak at simple numbers, and the corresponding cumulative distribution function shows a stepped 
behavior. This makes the fitting more difficult, especially for the determination of the start of the tail. To address 
this issue, we choose the start of the tail xmin such that we obtain a small Kolmogorov– Smirnov (K– S) distance 
between the empirical distribution and the fitting distribution, while maintaining a good absolute fit between 
the complementary cumulative distribution functions (CCDF) of the empirical distribution and the best-fitted 
distribution. Candidate models for model selection in this paper include exponential distribution, power-law 
distribution, log-normal distribution, power-law distribution with sharp truncation, power-law distribution with 
exponential cutoff, and pairwise power-law distribution. More details about parameter fitting and model selection 
can be found in the article by Clauset et al. article49 as well as in the previous paper by the authors8.

Data Availability
The datasets generated and/or analysed during the current study are available from the authors on reasonable 
request.

References
	 1.	 American Gaming Association. State of the states: The AGA survey of the commercial casino industry (2018) (Accessed October 1, 

2018).
	 2.	 Calado, F. & Griffiths, M. D. Problem gambling worldwide: An update and systematic review of empirical research (2000–2015). J. 

Behav. Addict. 5, 592–613 (2016).
	 3.	 Calado, F., Alexandre, J. & Griffiths, M. D. Prevalence of adolescent problem gambling: A systematic review of recent research. J. 

Gambl. Stud. 33, 397–424, https://doi.org/10.1007/s10899-016-9627-5 (2017).
	 4.	 Kahneman, D. & Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 47, 263–291 (1979).
	 5.	 Tversky, A. & Kahneman, D. Advances in prospect theory: Cumulative representation of uncertainty. J. Risk Uncertain. 5, 297–323, 

https://doi.org/10.1007/BF00122574 (1992).
	 6.	 Barberis, N. A model of casino gambling. Manag. Sci. 58, 35–51, https://doi.org/10.1287/mnsc.1110.1435 (2012).
	 7.	 Meng, J. Understanding Gambling Behavior and Risk Attitudes Using Massive Online Casino Data. Bachelor’s thesis, Dartmouth 

College, Hanover, New Hampshire, USA (2018).
	 8.	 Wang, X. & Pleimling, M. Behavior analysis of virtual-item gambling. Phys. Rev. E 98, 012126, https://doi.org/10.1103/

PhysRevE.98.012126 (2018).
	 9.	 Rhee, I. et al. On the levy-walk nature of human mobility. IEEE/ACM Transactions on Netw. 19, 630–643, https://doi.org/10.1109/

TNET.2011.2120618 (2011).
	10.	 Brockmann, D. Anomalous diffusion and the structure of human transportation networks. Eur. Phys. J. Special Top. 157, 173–189, 

https://doi.org/10.1140/epjst/e2008-00640-0 (2008).
	11.	 Kim, S., Lee, C.-H. & Eun, D. Y. Superdiffusive behavior of mobile nodes and its impact on routing protocol performance. IEEE 

Transactions on Mob. Comput. 9, 288–304, https://doi.org/10.1109/TMC.2009.124 (2010).
	12.	 Wang, X. & Pleimling, M. Foraging patterns in online searches. Phys. Rev. E 95, 032145, https://doi.org/10.1103/PhysRevE.95.032145 

(2017).
	13.	 Toscani, G., Tosin, A. & Zanella, M. Multiple-interaction kinetic modelling of a virtual-item gambling economy. Phys. Rev. E 100, 

012308, https://doi.org/10.1103/PhysRevE.100.012308 (2019).
	14.	 Holden, J. T. Trifling and gambling with virtual money. UCLA Entertain. Law Rev. 25, 41 (2018).
	15.	 Buhagiar, R., Cortis, D. & Newall, P. W. Why do some soccer bettors lose more money than others? J. Behav. Exp. Finance 18, 85–93 (2018).
	16.	 Rodríguez, P., Humphreys, B. R. & Simmons, R. The Economics of Sports Betting (Edward Elgar Publishing, 2017).
	17.	 Limpert, E., Stahel, W. A. & Abbt, M. Log-normal distributions across the sciences: Keys and clues. BioScience 51, 341–352, https://

doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 (2001).
	18.	 Gibrat, R. Une loi des réparations Économiques: l’effet proportionnel. Bull. de Stat. Gen. France 19, 419–513 (1930).
	19.	 Mitzenmacher, M. A brief history of generative models for power law and lognormal distributions. Internet Math. 1, 226–251 (2003).
	20.	 Kendall, M. & Gibbons, J. D. Rank Correlation Methods (Oxford University Press, 1990).
	21.	 Taylor, J. M. Kendall’s and Spearman’s correlation coefficients in the presence of a blocking variable. Biometrics 43, 409–416 (1987).
	22.	 Dubins, L. E., Savage, L. J., Sudderth, W. & Gilat, D. How to Gamble If You Must: Inequalities for Stochastic Processes. Dover Books on 

Mathematics (Dover Publications, 2014).
	23.	 Epstein, R. A. The Theory of Gambling and Statistical Logic (Academic Press, 2012).

https://doi.org/10.1038/s41598-019-50168-2
https://doi.org/10.1007/s10899-016-9627-5
https://doi.org/10.1007/BF00122574
https://doi.org/10.1287/mnsc.1110.1435
https://doi.org/10.1103/PhysRevE.98.012126
https://doi.org/10.1103/PhysRevE.98.012126
https://doi.org/10.1109/TNET.2011.2120618
https://doi.org/10.1109/TNET.2011.2120618
https://doi.org/10.1140/epjst/e2008-00640-0
https://doi.org/10.1109/TMC.2009.124
https://doi.org/10.1103/PhysRevE.95.032145
https://doi.org/10.1103/PhysRevE.100.012308
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2


17Scientific Reports |         (2019) 9:14712  | https://doi.org/10.1038/s41598-019-50168-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

	24.	 Cherstvy, A. G., Chechkin, A. V. & Metzler, R. Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. 
New J. Phys. 15, 083039, https://doi.org/10.1088/1367-2630/15/8/083039 (2013).

	25.	 Cherstvy, A. G., Chechkin, A. V. & Metzler, R. Particle invasion, survival, and non-ergodicity in 2d diffusion processes with space-
dependent diffusivity. Soft Matter 10, 1591–1601, https://doi.org/10.1039/C3SM52846D (2014).

	26.	 Cherstvy, A. G., Thapa, S., Wagner, C. E. & Metzler, R. Non-gaussian, non-ergodic, and non-fickian diffusion of tracers in mucin 
hydrogels. Soft Matter 15, 2526–2551, https://doi.org/10.1039/C8SM02096E (2019).

	27.	 Inoue, J.-i & Sazuka, N. Crossover between Lévy and Gaussian regimes in first-passage processes. Phys. Rev. E 76, 021111, https://
doi.org/10.1103/PhysRevE.76.021111 (2007).

	28.	 Rahman, A. Correlations in the motion of atoms in liquid argon. Phys. Rev. 136, A405–A411, https://doi.org/10.1103/PhysRev.136.
A405 (1964).

	29.	 Toyota, T., Head, D. A., Schmidt, C. F. & Mizuno, D. Non-gaussian athermal fluctuations in active gels. Soft Matter 7, 3234–3239, 
https://doi.org/10.1039/C0SM00925C (2011).

	30.	 Meiklejohn, S. et al. A fistful of bitcoins: Characterizing payments among men with no names. In Proceedings of the 2013 Conference 
on Internet Measurement Conference, 127–140, https://doi.org/10.1145/2504730.2504747 (ACM, New York, 2013).

	31.	 CSGOFAST. https://csgofast.com/ (Accessed on April 20, 2018).
	32.	 CSGOSpeed. https://csgospeed.com/home (Accessed on April 20, 2018).
	33.	 ethCrash. https://www.ethcrash.io/play (Accessed on August 1, 2018).
	34.	 SatoshiDICE. https://www.satoshidice.com/ (Accessed on August 1, 2018).
	35.	 Coinroll. https://coinroll.com/home (Accessed on August 1, 2018).
	36.	 Fiedler, I. Online gambling as a game changer to money laundering? (2013). (Accessed on January 8, 2019).
	37.	 Coindesk. Bitcoin (usd) price. https://www.coindesk.com/price/bitcoin/ (Accessed on August 1, 2018).
	38.	 CoinMetrics. Data downloads. https://coinmetrics.io/data-downloads/ (Accessed on August 1, 2018).
	39.	 Martinelli, D. Skin gambling: Have we found the millennial goldmine or imminent trouble? Gaming Law Rev. 21, 557–565, https://

doi.org/10.1089/glr2.2017.21814 (2017).
	40.	 Millar, S. I. Cryptocurrency expands online gambling. Gaming Law Rev. 22, 174–174, https://doi.org/10.1089/glr2.2018.2232 (2018).
	41.	 Kairouz, S., Paradis, C. & Nadeau, L. Are online gamblers more at risk than offline gamblers? Cyberpsychology. Behav. Soc. Netw. 15, 

175–180, https://doi.org/10.1089/cyber.2011.0260 (2012).
	42.	 González-Roz, A., Fernández-Hermida, J. R., Weidberg, S., Martínez-Loredo, V. & Secades-Villa, R. Prevalence of problem gambling 

among adolescents: A comparison across modes of access, gambling activities, and levels of severity. J. Gambl. Stud. 33, 371–382, 
https://doi.org/10.1007/s10899-016-9652-4 (2017).

	43.	 Gainsbury, S. M. Online gambling addiction: the relationship between internet gambling and disordered gambling. Curr. Addict. 
Reports 2, 185–193, https://doi.org/10.1007/s40429-015-0057-8 (2015).

	44.	 Banks, J. Gambling, Crime and Society. (Palgrave Macmillan, London, 2017).
	45.	 Redondo, I. Assessing the risks associated with online lottery and casino gambling: A comparative analysis of players’ individual 

characteristics and types of gambling. Int. J. Mental Heal. Addict. 13, 584–596, https://doi.org/10.1007/s11469-014-9531-0 (2015).
	46.	 Macey, J. & Hamari, J. eSports, skins and loot boxes: Participants, practices and problematic behaviour associated with emergent 

forms of gambling. New Media & Soc. 21, 20–41, https://doi.org/10.1177/1461444818786216 (2019).
	47.	 Bauke, H. Parameter estimation for power-law distributions by maximum likelihood methods. Eur. Phys. J. B 58, 167 (2007).
	48.	 Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. (Springer, 

New York, 2002).
	49.	 Clauset, A., Shalizi, C. & Newman, M. Power-law distributions in empirical data. SIAM Rev. 51, 661–703, https://doi.

org/10.1137/070710111 (2009).

Acknowledgements
This work is supported by the US National Science Foundation through grant DMR-1606814.

Author Contributions
X.W. and M.P. conceived the study, X.W. wrote the computer codes and conducted the data analysis, X.W. and 
M.P. discussed the results and wrote the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-50168-2
https://doi.org/10.1088/1367-2630/15/8/083039
https://doi.org/10.1039/C3SM52846D
https://doi.org/10.1039/C8SM02096E
https://doi.org/10.1103/PhysRevE.76.021111
https://doi.org/10.1103/PhysRevE.76.021111
https://doi.org/10.1103/PhysRev.136.A405
https://doi.org/10.1103/PhysRev.136.A405
https://doi.org/10.1039/C0SM00925C
https://doi.org/10.1145/2504730.2504747
https://csgofast.com/
https://csgospeed.com/home
https://www.ethcrash.io/play
https://www.satoshidice.com/
https://coinroll.com/home
https://www.coindesk.com/price/bitcoin/
https://coinmetrics.io/data-downloads/
https://doi.org/10.1089/glr2.2017.21814
https://doi.org/10.1089/glr2.2017.21814
https://doi.org/10.1089/glr2.2018.2232
https://doi.org/10.1089/cyber.2011.0260
https://doi.org/10.1007/s10899-016-9652-4
https://doi.org/10.1007/s40429-015-0057-8
https://doi.org/10.1007/s11469-014-9531-0
https://doi.org/10.1177/1461444818786216
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
http://creativecommons.org/licenses/by/4.0/

	Online Gambling of Pure Chance: Wager Distribution, Risk Attitude, and Anomalous Diffusion

	Results

	Wager distribution. 
	Risk attitude. 
	Wealth distribution. 
	Removing effects due to inequality in the number of bets. 
	Diffusive process. 

	Discussion

	Methods

	Detailed rules of the different games. 
	Roulette. 
	Crash. 
	Satoshi dice. 
	Jackpot. 

	Data summary. 
	CSGOFAST. 
	CSGOSpeed. 
	ethCrash. 
	SatoshiDice. 
	Coinroll. 

	Ethics for data analysis. 
	Parameter estimation and model selection. 

	Acknowledgements

	Figure 1 In games (A–G), where players are allowed to choose arbitrary bet values, the wager distribution can be best fitted by log-normal distributions (3).
	Figure 2 The distribution of the logarithmic of the ratio (log-ratio) between consecutive bet values.
	Figure 3 Odds distributions can be well-fitted by truncated shifted power-law distributions.
	Figure 4 The tail of the wealth distribution of Bitcoin gamblers follows a pairwise power-law distribution.
	Figure 5 The wagers obtained from random sampling of top gamblers’ bets still present log-normal distributions, although there are some observable deviations.
	Figure 6 Change of the mean net income with time for the different datasets.
	Figure 7 The growth of ensemble-averaged mean-squared displacement in different datasets presents different diffusive behaviors.
	Figure 8 A betting system similar to Martingale will lead to a crossover from superdiffusion to normal diffusion according to the growth of mean-squared displacement.
	Figure 9 The growth of the time-averaged MSD for individual gamblers, presented as thin lines, suggests diverse betting behaviors at the individual level.
	Figure 10 The change of the ergodicity breaking parameter with time.
	Figure 11 The tails of first-passage time distributions for the different datasets indicate different diffusive behaviors.
	Figure 12 In most datasets, except Coinroll (F), the non-Gaussian parameter shows a decreasing trend as t increases.
	Table 1 The best-fitted distribution and estimated parameters of wagers.
	Table 2 Correlation analysis shows that there is a strong positive correlation between consecutive bets, along with the small mean values and variances of log-ratio between consecutive bets.
	Table 3 Statistics about how gamblers change their bet values after winning/losing rounds.




