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High Entropy Alloys Mined From 
Binary Phase Diagrams
Jie Qi*, Andrew M. Cheung & S. Joseph Poon

High entropy alloys (HEA) are a new type of high-performance structural material. Their vast degrees 
of compositional freedom provide for extensive opportunities to design alloys with tailored properties. 
However, compositional complexities present challenges for alloy design. Current approaches have 
shown limited reliability in accounting for the compositional regions of single solid solution and 
composite phases. For the first time, a phenomenological method analysing binary phase diagrams 
to predict HEA phases is presented. The hypothesis is that the HEA structural stability is encoded 
within the phase diagrams. Accordingly, we introduce several phase-diagram inspired parameters and 
employ machine learning (ML) to classify 600+ reported HEAs based on these parameters. Compared to 
other large database statistical prediction models, this model gives more detailed and accurate phase 
predictions. Both the overall HEA prediction and specifically single-phase HEA prediction rate are above 
80%. To validate our method, we demonstrated its capability in predicting HEA solid solution phases 
with or without intermetallics in 42 randomly selected complex compositions, with a success rate of 
81%. The presented search approach with high predictive capability can be exploited to interact with 
and complement other computation-intense methods such as CALPHAD in providing an accelerated 
and precise HEA design.

High entropy alloys were first discovered in 20041,2. They are also known as multi principal elements (MPE) alloys 
or compositionally complex alloys (CCA). HEAs can form as either single or mixed phases. HEAs have emerged 
as one of the most popular topics in material research1–5. These materials span vast compositional space, pro-
viding flexibility in alloy design6–11. However, the compositional complexity poses a significant challenge in the 
control of phase formation due to thermodynamic and kinetic constraints12,13. Empirical approaches that utilised 
atomistic and thermodynamic parameters3,14–16 were first introduced to investigate the compositional regions 
of HEA phases, but with only limited success. Additionally, first-principles calculation16–21 and Calculation of 
Phase Diagrams (CALPHAD)22 methods have been employed to shed light on the atomistic and thermody-
namic mechanisms of HEA formation. However, the accuracy of CALPHAD is often limited by the availability of 
thermal databases, and the appearance of miscibility gaps and intermetallic (IM) compounds in the binary sys-
tems23. Monte Carlo simulations show promising results in predicting the formation of certain IM phases and the 
phase structure evolution with varying temperatures24. Employing statistical approaches, a thermodynamics and 
Gaussian process statistical model25 that utilised up to nine parameters was proposed as the basis for identifying 
single solid solution phases. Another model using a database of over 2000 multicomponent alloy compositions 
from a high-throughput sputter deposition experiment, applied a regression method to interrogate the HEA 
phase formation tendency26. Models using neural networks were trained based on atomistic and thermodynamic 
parameters to predict the HEA phase categories without specific phase formation information27,28. Despite recent 
progress in understanding the formation trend of subgroups of HEAs, the constitution of HEAs still relies on trial 
and error, which impedes the design of these multicomponent alloys for fundamental studies and applications.

High entropy provides the driving force for a HEA system to form a single solid solution phase. A distinctive 
feature of good HEA forming systems is significant to moderate solid solution formation tendency among the 
constituent binary alloys. However, the experimental scenario is more complicated. Rather than forming single 
solid solution phase HEAs, different solid solution phases can coexist with occasionally IM formation occurring. 
The phase formation and stability can be influenced by temperature and atomic interactions, such as a miscibil-
ity gap or atomic level strain. Except for the computation-intensive studies, atomic interactions are usually not 
comprehensively accounted for by the prior mentioned models. On the other hand, the experimentally validated 
phase diagrams are encoded with the binary atomic interaction information.

Departing from current approaches, we present herein a phenomenological method using binary phase 
diagrams to predict the compositional space of HEA phases. The advantage of using binary phase diagrams to 
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assess phase stability is that they can readily provide direct and realistic information about the roles of individual 
elemental components on phase formation. The phenomenological method is built on the hypothesis that the 
constituent binary alloys encode a wealth of information about the multi-component alloy in terms of crys-
tal structures, elemental mixing, and phase separation. Here, we demonstrate the effectiveness of the proposed 
method by introducing physically meaningful phenomenological parameters that can be conveniently accessed 
from binary phase diagrams. These parameters are used to demarcate the phases forming regions for HEAs. The 
phases studied here are those with homogeneity ranges in the phase diagrams such as body-centred cubic (BCC) 
single-phase, face-centred cubic (FCC) single-phase, mixed FCC + BCC phase, hexagonal close-packed (HCP) 
single-phase, Sigma phase, and Laves phase. Minor phases such as line compounds are not included but will be 
for future work. ML algorithm is employed to navigate the complex parameter space regions occupied by the 
currently known HEA compositions. The effectiveness of the method is evaluated, and the derived ML algorithms 
are used to make predictions for experimental verification. The presented “phase diagram” approach to predicting 
single solid solution HEAs can complement CALPHAD and other first-principles methodologies in providing an 
efficient pathway to phase-field and microstructural control.

Database Partitioning
The HEAs included in our model have phases classified as: disordered FCC (A1), disordered BCC (A2), disor-
dered HCP (A3), mixed disordered FCC + BCC (A1 + A2), ordered BCC (B2), B2 mixed with disordered solid 
solution phases specifically A1, A2, and A3 (B2 + SS), and either Sigma or Laves IM mixed with the other phases 
(IM+). The set of HEAs included in A1 + A2 are the commingling of A1s, A2s, or the coexistence of A1s and A2s. 
The set of HEAs included in the IM+ phase have at least Sigma or Laves phase. Additionally, the IM+ phase may 
also contain other complex or solid solution phases. The database is parsed into three different levels, namely, 
Level 1, 2, and 3. Level 1 is composed of the simple disordered phases: A1, A2, A1 + A2, and A3. Level 2 is Level 1 
with the addition of the B2 + SS HEAs. And Level 3 is Level 2 with the addition of IM+ HEAs. HEAs with other 
minor phases such as line compounds that do not belong to the above categories are not included in the present 
study. Levels 1, 2, and 3 comprise 317, 486, and 614 HEAs respectively. More details about the database can be 
found in the method section and the supplementary materials.

HEA Phase Formation Parameters
The parameters, introduced below, and elaborated on in detail in the method section, provide the basis for quanti-
fying HEA phase formation tendencies. For ML, these individually measured property parameters, used as input 
data to do classification, are called features.

The HEA melting temperature (Tm) is expressed as the weighted average of binary liquidus temperatures. For 
the as-cast HEAs, undercooling usually extends to the region around 0.8 Tm

29. Phase evolution may still exist 
below this temperature because of the high kinetic energies of the atoms. Here, a phase formation temperature 
(Tpf) is defined where rapid phase evolution ceases. It is assumed that Tpf is not lower than 0.7 Tm. Below this tem-
perature, the kinetic energy of atoms is not high enough to transform the phase within the brief time of cooling. 
Incidentally, most post-annealed HEAs in the full database are homogenised above 0.7 Tm. Atoms are free to 
exchange neighbours during undercooling (i.e. above 0.8 Tm), or via fast diffusion down to Tpf. The alloy mix-
ture is essentially ergodic and local atoms have nearly equal probabilities of sampling any binary configurations 
favoured by the phases present in the constituent binary phase diagrams.

Following the above discussion, information from individual binary phase diagrams is combinatorially used 
within the model. It is assumed that the tendency for a pair of elements to form a specific phase is directly deter-
mined by its binary phase field percentage. The binary phase field percentage of phase X for i-j elemental pair is 
denoted as −Xi j and is determined using Tpf. Then, −Xi j is used to calculate the phase field parameter (PFPX) 
which is related to the tendency of a HEA to form a phase X.

Many mixed phase HEAs are found to form because of interatomic repulsions30,31. Specific element pairs, such 
as Cr and Cu, separate because of the large positive mixing enthalpy, causing multiphase formations in HEAs30. 
This effect is included in the model with the phase separation parameter (PSP).

The selection of Tpf can influence the values of parameters and the prediction accuracy. The optimized Tpf value 
was obtained to get the most accurate ML prediction. Further details for Tpf determination and calculating these 
parameters (value ≤ 1) are found in the method section.

Visualisation of Phase Regions in Parameter Space
The prior defined parameters are calculated for all HEAs in different database levels. Their correlations with the 
actual phases formed are examined.

For the Level 1 phases, there are correlations between the calculated parameters PFPA1, PFPA2, PFPA3, and 
PSP with the A1, A2, A3, and A1 + A2 phase formation. Figure 1a, a plot of PFPA1 verse PFPA2 shows the param-
eters partitioning the A1, A2, and A1 + A2 HEAs. Typically, A1 HEAs have PFPA1 > 0.4 and PFPA2 < 0.4, while 
A2 HEAs have PFPA1 < 0.4. Some A2 HEAs form even with small PFPA2 values because their B2 phase field can 
transfer into the A2 phase to prompt A2 formation. As discussed in the following Level 2 and Level 3, specific 
phase formation is influenced by multiple parameters. A1 + A2 HEAs are distributed in a region where neither 
PFPA1 nor PFPA2 is dominant and cannot be separated from the single phase HEAs. In general, individually large 
PFPA1 or PFPA2 values promote the formation of a single phase, while the similar values of PFPA1 and PFPA2 tend 
to favour a mixed phase formation. Adding PSP as the third axis in Fig. 1b separates the A1 + A2 from the A1 and 
A2 HEAs by their relative higher PSP values because a large PSP indicts the strong phase separation effect which 
leads to the A1 + A2 phase formation. To study the effect of PFPA3 on A3 phase formation, a plot with axes PFPA1, 
PFPA2, and PFPA3 is plotted for A1, A2, A3, and A1 + A2 HEAs in Fig. 1c, where A1, A2, and A1 + A2 HEAs are 
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grouped as non-A3 HEAs. All the A3 HEAs have higher PFPA3 than the non-A3 HEAs and appear separate from 
the other phases.

For the Level 2 phases, the five parameters are PFPA1, PFPA2, PFPA3, PFPB2, and PSP. In Fig. 2a–g, to study the 
effects of the new parameter PFPB2, the 5D parameter space of the Level 2 data is visualised by projecting it on to 
3D spaces. Figure 2a is plotted with only the parameters in Level 1. B2 + SS HEAs are mixed with HEAs in other 
phases. In Fig. 2b–d, PFPB2 is added. Figure 2e–g have the same axes as Fig. 2d but can give direct comparisons 
between the B2 + SS phase and the A1, A2, and A1 + A2 phases. On all these plots, B2 + SS HEAs are located in a 
region with relatively higher PFPB2 values. This indicates that PFPB2 is strongly correlated with the B2 + SS phase 
formation. PFPA3 and A3 HEAs are not plotted here because PFPA3 does not affect the formation of B2 + SS phase 
and A3 HEAs are trivial to predict with PFPA3 as shown in Level 1.

For the Level 3 phases, two additional parameters PFPSigma and PFPLaves are added. Seven parameters PFPA1, 
PFPA2, PFPA3, PFPB2, PFPSigma, PFPLaves, and PSP are used to separate the phase regions of A1, A2, A3, A1 + A2, 
B2 + SS, and IM + HEAs. In order to study the correlation between the newly added IM+ phase formation and 
the two parameters PFPSigma and PFPLaves, a 2D graph with axes PFPSigma and PFPLaves is plotted in Fig. 3. All the 
phases from Level 2 are grouped as Non-IM phases. In general, IM+ HEAs have larger PFPLaves or PFPSigma than 
most of the Non-IM HEAs. However, all seven parameters have influence on the IM+ phase formation. Figure 3 
is insufficient to convey all the information from the seven parameters.

In summary, Level 1 shows separation between all single phase HEAs in the PFPA1, PFPA2, PFPA3, and PSP 
parameter space. A1 + A2 phase region is seen to have some overlaps with A1 and A2 phase regions. By adding 

Figure 1.  Visualisations of Level 1 HEA parameters PFPA1, PFPA2, PFPA3, and PSP for phases A1, A2, A3, and 
A1 + A2. (a) PFPA1 is plotted against PFPA2 for A1, A2, and A1 + A2 HEAs; (b) PFPA1, PFPA2, and PSP are 
plotted for phase regions of A1, A2, and A1 + A2 HEAs; and (c) PFPA1, PFPA2, and PFPA3 are plotted for A3 
HEAs and phase region of non-A3 (A1, A2, and A1 + A2) HEAs.

Figure 2.  Visualisation of Level 2 parameters PFPA1, PFPA2, PFPA3, PFPB2, and PSP for the A1, A2, A1 + A2, 
and B2 + SS HEA phase regions. (a) PFPA1, PFPA2, and PSP; (b) PFPA1, PFPB2, and PSP; (c) PFPA2, PFPB2, and 
PSP; (d) PFPA1, PFPA2, and PFPB2; and (e–g) the decomposition of the plot (d) highlighting the location of the 
B2 + SS phase region relative to the A1, A2, and A1 + A2 phase regions.
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parameters in Level 2 and Level 3, additional overlaps are noted. The parameter space of the HEAs assumes an 
increasingly complex topological configuration as the number of parameters increases. Additionaly, it is difficult 
to resolve the connections in 3D space. In such complicated cases, ML is superior to the visualisation method to 
determine phase formation regions.

HEA Phases Prediction Using Machine Learning
ML is employed to analyse the complex parameter space of HEA phase formation. It creates links between the 
parameters and phase formation in the higher-dimensional parameter space. Through ML composition-phase 
correlations are determined and new HEA compositions are predicted.

The effect of phase formation from alloy preparation methods is also studied. ML is first applied to only the 
as-cast HEAs and its performance serves as a benchmark. Then ML is applied to all HEAs in as-cast and annealed 
states. The ML prediction performance comparison of the HEA sets yields on average that the addition of the 
annealed HEAs has a slight abating effect, as seen in Table 1.

The ML results for Level 1 HEAs are obtained using the features PFPA1, PFPA2, PFPA3, and PSP. The overall suc-
cess rates with 50–90% training sets are 89–90% for the as-cast HEAs or 87–89% including the annealed HEAs. 

Figure 3.  Level 3 parameters PFPSigma and PFPLaves plotted for IM+ and Non-IM HEAs, where Non-IM 
includes A1, A2, A3, A1 + A2, and B2 + SS.

ML Prediction Success Rate (%)

As-Cast [As-Cast + Annealed]

Level
Training Set 
Percentage (%)

Phase Category

Overall A1 A2 A1-A2 A3 B2+SS IM+

Level 1

90

80 89 [89] 88 [91] 95 [94] 80 [76] 100 [98]

75 90 [88] 89 [90] 95 [93] 81 [73] 100 [100]

67 89 [87] 87 [89] 95 [93] 79 [73] 100 [98]

50 89 [87] 87 [89] 95 [93] 80 [74] 98 [98]

Level 2

90 85 [85] 84 [87] 94 [94] 69 [62] 100 [100] 86 [87]

80 84 [85] 83 [87] 94 [93] 67 [62] 100 [98] 85 [86]

75 85 [84] 84 [86] 94 [93] 68 [60] 100 [98] 86 [85]

67 85 [83] 83 [85] 94 [92] 68 [59] 100 [96] 85 [85]

50 83 [84] 79 [85] 94 [92] 64 [61] 100 [95] 84 [85]

Level 3

90 82 [80] 81 [81] 92 [87] 64 [61] 100 [100] 84 [85] 78 [77]

80 81 [79] 80 [80] 91 [87] 63 [58] 100 [100] 84 [83] 78 [76]

75 81 [79] 80 [80] 91 [87] 63 [59] 100 [100] 84 [83] 76 [74]

67 80 [78] 80 [80] 91 [85] 63 [60] 100 [100] 83 [82] 74 [73]

50 78 [77] 78 [77] 90 [86] 62 [56] 100 [98] 80 [81] 73 [71]

Total Alloy Counts

As-Cast [As-Cast + Annealed]

Phase Category

Level Overall A1 A2 A1-A2 A3 B2+SS IM+

Level 1 235 [317] 69 [118] 101 [121] 61 [72] 4 [6]

Level 2 375 [486] 69 [118] 101 [121] 61 [72] 4 [6] 140 [169]

Level 3 470 [614] 69 [118] 101 [121] 61 [72] 4 [6] 140 [169] 95 [128]

Table 1.  ML results and count of HEAs for the three levels of the study. ML prediction success rates for the 
as-cast HEAs and the as-cast + annealed HEAs in different phases are listed. The success rates are F1 scores. 
Counts of HEAs and phases for the as-cast HEAs and the as-cast + annealed HEAs in different phases are listed.
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Single phase predictions have higher success rates than the mixed phase predictions. The high prediction suc-
cess rates prove that these parameters are sufficient for describing the disordered solid solution phase formation 
behaviour. PFPB2 is added as a fifth ML feature to predict the B2 + SS HEAs in Level 2. The overall and the B2 + SS 
phase prediction success rates are near 85% for both the as-cast HEA set and the set including the annealed HEAs. 
Thus, PFPB2 is useful in predicting the presence of the B2 + SS phase. Formation of the IM+ phases in the Level 
3 HEAs are studied by adding PFPSigma and PFPLaves as new features. The IM+ phase prediction success rates are 
73–78% for the as-cast HEAs or 71–77% including the annealed HEAs. The overall success rate is as high as 80% 
for all HEAs.

With the increasing complexity of the database from Level 1 to Level 3, the ML prediction success rates 
decrease but still maintain high values. As the training set percentages change from 90% to 50% in each level, 
the success rates show little variance. High accuracy is obtained even with training set percentages as low as 50%.

Model Validation
To show that the model avoids overfitting with ML and can expand the current phase regions, 42 new HEAs were 
synthesised. The phases of these elemental combinations, which do not exist in the current collected database, are 
then predicted by the model. As shown in Fig. 4, the selection of compositions is distributed evenly in the param-
eter space of the collected database. The numbers of new HEAs in different predicted phases are approximately 
proportional to the numbers of different HEA phases in the database. Many synthesised HEAs are outside the 
current known phase regions in order to show the ability to expand the phase region. As shown in Table 2, our 
method is not limited by the use of a specific element type nor the number of elements in a HEA. Elements are 
chosen from different groups of the periodic table such as refractory metals, transition metals, and main group 
elements. The number of elements in a single HEA varies from four to seven. All the phases are measured in the 
as-cast state. Out of the 42 HEAs, 34 were predicted by ML correctly, yielding a success rate of 81%. Their X-Ray 
Diffraction (XRD) patterns are found in the supplementary materials.

Discussion
For the first time, a method predicting the phase formation of HEAs based solely on the binary phase diagrams 
is demonstrated and validated. The information on elemental mixing and phase separation from binary phase 
diagrams has provided success to the phenomenological approach presented. Considering the atomic mobil-
ity at high temperatures and presumed pairwise additivity of atomic pair interactions, this information from 
binary diagrams is used combinatorially to evaluate HEA phases formation. The initial success of using PFPX 
and PSP, defined using binary phase diagrams, in predicting the corresponding single phase and mixed phase 
HEAs, prompted us to apply this method to include more phases. The inter-correlated roles of these param-
eters are noted, and their combined effect must be considered in designing HEAs. We have included in our 
study the majority of the entire available HEA database, excluding those containing line compounds and the 
minor phases. Visualisation reveals robust HEA phase formation regions in the parameter space. ML enables 
the quantification of HEA phase formation, yielding an average single phases prediction success rate of about 
90% for the Level 1 and Level 2, and more than 80% for Level 3. The ML success rates obtained from the as-cast 
HEAs, or the as-cast and annealed HEAs vary marginally. Thus, the model works well for the as-cast and the 
high temperature annealed HEAs. Considering that these are the most common HEA preparation methods, our 
model can be applied to most HEA synthesis situations. High accuracy is obtained even with small training set 

Figure 4.  Our synthesised HEAs locations are plotted relative to the phase regions of Level 3 for (a) PFPA1, 
PFPB2, and PSP; (b)PFPA1, PFPA2 and PFPB2; and (c) PFPA1, PFPA2, and PSP parameters.
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percentages. This implies that the phase formation parameters are well defined and efficient in prediction. Most 
HEA phase prediction models do not have experiment validation. The high experimental validation success rate 
of this method is indicative of its reliability. Moreover, ML can predict the phases of the new HEAs to expand the 
current database and phase parameter regions.

Compared with the other large database statistical approaches, Tancret et al. combined Gaussian Process 
using nine thermodynamic and atomistic parameters with CALPHAD to predict the formation of over 60 single 
solid solution phase HEAs25. The performance of the model has high precision but low recall. Many of the alloys 
predicted as single solid solution phase HEAs by this method have a high chance of being single solid solu-
tion phase HEAs, but many potential single solid solution phase HEAs are misidentified as mixed phases HEAs. 
Additionally, the exact phase of a HEA such as BCC or IM cannot be predicted. As a comparison, our method has 
high precision and high recall, and gives specific phase formation information.

Another model by Kube et al. assigned values called stabilising abilities (βi) to seven specific elements Al, Co, 
Cr, Cu, Fe, Mn, and Ni representing their strength in stabilising FCC or BCC formation. The βi’s are optimised by 
ordinal logistic regression based on a database of over 2000 sputter deposited HEAs from a high-throughput 
experiment26. This method is efficient in separating out FCC and BCC single phase HEAs. But mixed FCC and 
BCC phase cannot be separated from the prior phases. Moreover, other phases such as HCP and IM were not 
studied. Our method has no element preference and a higher number of phases can be predicted.

Neural network models trained by Huang et al.28 and Islam et al.27 based on the thermodynamic and atomistic 
parameters only predict the phase categories such as the formation of solid solution, IM, or their mixture. Details 
of phase information are not predicted. Thus far, no published model uses these parameters to predict detailed 
phase formation accurately. However, with the phenomenological parameters in this article, we have proved the-
oretically and experimentally the ability to predict detailed phase formation with high accuracy.

To summarise, the advantages of our approach are the following:

	 1.	 Indiscriminate HEA selection feasibility: Some prediction methods such as CALPHAD are limited by the 
availability and depth of proprietary databases. Our method is based solely on binary phase diagrams for 
which there exist plentiful easily accessible data.

	 2.	 Phase region expansion ability: New HEAs are predicted with a high success rate outside the regions where 
614 HEA phases are currently known.

	 3.	 Parameter-phase relevance: Unlike the traditional thermodynamic parameters, our parameters directly 
determine the formation of the corresponding phases. Detailed phase formation can be predicted.

	 4.	 Ease of computing: Methods such as ab initio molecular dynamics require high computation capability. 

Alloy (at.%)
Predicted 
Phase Real Phase Alloy (at.%)

Predicted 
Phase Real Phase

Ag0.2Al2CrMnNi A1 + A2 B2 + A1 + A2 CoCrCuFe A1 + A2 A1 + A2

AgAlCrMnNi B2 + SS B2 + A1 + A2 CoCrCuFeMnNiTi0.4 A1 + A2 A1

Al0.2CoCr0.5Fe2NiTi0.25 A1 A1 CoCrCuMn0.8Ti IM+ Laves + A1

Al0.2Cr1.5Cu1.5Fe0.5Mn A1 + A2 A1 + A2 CoCrFeMnNi2V0.5 A1 A1

Al0.3Cr2Fe0.5Mn0.8 A2 A2 CoCrFeMoNiV0.5 IM+ Sigma + A1

Al0.5CoCr0.5CuMnNi A1 + A2 A1 CoCrFeMoV IM+ Sigma

Al0.5CoCuFeNiV0.5 A1 A1 CoCrFeNb0.5Ti0.5 IM+ Laves

AlCo0.5CrCu0.2FeMn B2 + SS A2 CoCrFeNiSi0.6 A1 A1

AlCoCrFe B2 + SS B2 + A2 CoCr1.5Fe1.5NiSi0.2 A1 A1

AlCoCrFeTi0.25 B2 + SS B2 + A2 CoCuFeMnNiV0.5 A1 A1

AlCoCu0.5Fe B2 + SS B2 + A2 CoFeMnNiTi0.5V0.5 IM+ A1

AlCoCuNiTi0.25 B2 + SS B2 + A1 + A2 CoFeMoNiTi IM+ Laves

AlCo2CrCuNi3V A1 A1 CrCuFeMn A1 + A2 A1 + A2

AlCrCuFeNiSi0.25 B2 + SS B2 + A2 CrCuFeMnNiTi0.3 A1 + A2 A1 + A2

AlCrMoNi3W0.5 B2 + SS A1 + A2 CrMoTiV A2 A2

AlCuFeNi B2 + SS B2 + A1 + A2 CrNbNiTiZr IM+ Laves

Al2CoNb0.2Ni B2+SS Laves + B2 + A2 Cr2FeNiTi IM+ Laves+A2

Co0.2TaTiV A2 A2 CuFeMnNiTi2 IM+ Laves+A2

CoCr0.3Cu0.2FeNiV0.5 A1 A1 CuFeMnNiV A1+A2 Sigma + A1

CoCr0.5Fe2NiTi0.25 A1 A1 Hf0.5NbTaW0.5Zr A2 A2

CoCrCu0.5FeNi2Ti0.5V0.5 A1 A1 HfNbTaZr A2 A2

Table 2.  HEAs synthesised to validate the ML model. The compositions, predicted phases by the ML in Level 
3, and the XRD measured phases are listed. Recall that IM+ phase is the appearance of Sigma or Laves phase 
together with the potential existence of other phases such as the A1 and A2 solid solution phases. In the real 
phase column, the detailed phase information is listed. The eight HEAs whose measured phases differ from 
predictions are underlined. (XRD patterns cannot reveal if the B2 phase exists with or without the A2 phase 
because of diffraction peaks overlapping. Moreover, in HEAs, B2 usually tends to form with A2. Thus, B2 is 
listed together with A2 in the real phase information).
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This model can be run on a laptop, and no high-performance computing facilities are needed.

Looking forward, the model can be enhanced by:

	 1.	 Including additional physical parameters into ML: Each parameter represents one factor influencing the 
phase formation. To fundamentally improve the phase prediction accuracy, ML can be further developed 
to uncover the hidden phase formation principles. For example, the proper use of mixing enthalpy can 
influence IM formation in a meaningful way.

	 2.	 Interaction with other models: On the one hand, the outcome of the current model can serve as a fast 
screening for other methods. Our approach can accurately and quickly find the alloy systems with desired 
phases to serve specific purposes. Beyond this, other methods such as CALPHAD can conduct an in-depth 
study on these systems for detailed information about the phase transition under different temperatures 
or the precise control of secondary phase precipitation by fine adjustment of the composition. Certainly, 
thermodynamic parameters from CALPHAD can help the ML prediction.

Method
Melting temperature.  The Tm is calculated from the liquidus temperatures in binary phase diagrams. ci and 
cj are the atomic percentages of the elements i and j. For the binary pair i-j, binary liquidus temperatures Ti–j can 
be found at the composition where i and j element relative ratio is ci:cj. Tm of the whole system will be calculated 
by the following Eq. (1):

=
∑ × ×

∑ ×
≠ −

≠

T
T c c

c c (1)
m

i j i j i j

i j i j

Where the summation is over all the i-j pairs in the alloy system.

Methods of calculating parameters.  Calculating PFPx.  The method of calculating binary phase field 
percentage, Xi–j, uses line segments at Tpf. Xi–j is the percentage of the line segment between the two intersection 
points of an isotherm at Tpf and the phase boundary of phase X. It is assumed that the phases at solidification are 
directly related to the phases occurring at Tpf because the phase transformation occurs for a longer duration near 
Tpf as opposed to near Tm due to a decreasing cooling rate when the temperature is decreased.

PFPx is calculated from Xi–j by Eq. (2), where ci and cj are the atomic percentages of i-th and j-th elements.

=
∑ × ×

∑ ×
÷≠ −

≠

PFP
X c c

c c
100 %

(2)

i

i
X

j i j i j

j i j

An example of the PFPx calculation is shown in Fig. 5. Here the Cr-Ni phase diagram is used to calculate A2Cr–

Niand A1Cr–Ni. Using the HEA Al2CoCrCuNi, with a Tm = 1569 K, the phases are assumed to form at Tpf = 1255 K, 
and the method gives A2Cr–Ni = 5% and −A1Cr Ni = 44%.

Calculating PSP.  The binary phase separation percentage for atomic pair i and j, Separationi–j, is calculated 
using the line segment method at Tpf. The remaining phase percentage is Mixingi–j. The PSP for a HEA is defined 
by Eq. (3):

Figure 5.  Demonstration of the binary phase field percentage calculation. The binary phase diagram Cr-Ni is 
used to determine the A1Cr–Ni and A2Cr–Ni for the HEA Al2CoCrCuNi.
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=
∑ × ×

∑ × ×
≠ −

≠ −

PSP
Separation c c

Mixing c c (3)

i j i j i j

i j i j i j

The atomic pairs with the separation effect are identified on phase diagrams by the presence of two bounding 
pure solid solution phases with no additional single phase present between the two. For example, a strong phase 
separation effect exists on the phase diagram of Cr-Cu (Fig. 6a) where Cr and Cu never dissolve into the same 
phase matrix.

In certain cases, at high temperatures, the mixing entropy term is large enough to overcome the positive mixing 
enthalpy and results in a negative Gibbs free energy for forming the solid solution. This makes it possible to have the 
two elements mixed marginally. Co-Cu in Fig. 6b is a typical example where two atoms separate at low temperature 
and mixing exists at high temperature. The Co-Cu phase diagram is used to calculate the −SeparationCo Cu by the line 
segment method. The HEA Al2CoCrCuNi is used again. This method gives a SeparationCo–Cu = 92% and MixingCo–

Cu = 8%. Separationi–j = 0% if the phase separation is absent from a phase diagram.

Phase formation temperature.  For an as-cast HEA, the phase transformation evolves at various tem-
peratures above Tpf as it cools from the molten state. The values of PFPX and PSP are different when calculated 
using different Tpf. Thus they result in different ML accuracies. To optimise the value of Tpf, the parameter calcu-
lation and corresponding ML were conducted with Tpf = 0.7, 0.75, 0.8, 0.85, and 0.9 Tm. Highest ML accuracy was 
obtained when Tpf = 0.8 Tm. Of note, the optimised Tpf is close to the undercooling temperature.

For the high temperature annealed HEAs, the phases formed during annealing at these high temperatures are 
locked in during rapid quenching. Thus, Tpf is the annealing temperature and the phase formation tendency is 
determined from the line segment percentages of the binary phase fields present.

Machine learning.  ML was conducted using the data mining software WEKA 3.832. We use Random Forest33 
with 300 trees to perform this classification task. The features are the parameters defined for the three levels of 
the database partition. Each database level is divided randomly into training and test sets. The ML algorithm 
establishes and optimises decision trees based on the training set. These trees are used to predict the phases of 
HEAs in the test set based on their features. The performance of the ML model is accessed by 2, 3, 4, 5, and 10-fold 
cross-validations, which, in Table 1, correspond to training set percentages of 50%, 67%, 75%, 80%, and 90%. An 
F1 score, as a weighted average of precision and recall model evaluation metrics, is used to denote the success rate 
of prediction. Each cross-validation is conducted for 20 times and then the average F1 score is obtained. After the 
optimisation, new HEAs are predicted.

Alloy validation experiment.  The 42 predicted HEAs used to validate our model were all prepared by suc-
tion casting. These HEAs are created by first making master ingots. These ingots are made from elements with a 
minimum purity of 99.7 wt%. The elements are arc-melted in a water-cooled copper hearth in a high purity argon 
atmosphere and are melted three times to ensure homogeneous mixing. The ingots are then suction-casted into a 
copper mould making 3 mm diameter rods. Structure investigations are carried out with XRD analysis using a Cu 
Kα radiation on a PANalytical Empyrean diffractometer.

Database description.  679 HEAs have been collected from literature in the supplementary material. Structural 
data used in our model is predominantly from XRD measurements. When transmission electron microscopy (TEM) 
data is available and it can reveal the hidden patterns from XRD results, the higher resolution TEM data will super-
sede the XRD data. The study is limited to 614 HEAs formed in the as-cast state or those annealed at temperatures 
higher than 0.7 Tm. Most of the heat-treated HEAs were annealed above 0.7 Tm. The high-temperature annealed 
HEAs are included since the formation entropy can contribute more Gibbs free energy change at the higher temper-
atures. Mechanically alloyed HEAs are not included because ball milling tends to retain metastable phases.

Figure 6.  Two binary phase diagrams used to determine binary phase separation percentage for HEA 
Al2CoCrCuNi. (a) Phase diagram of Cr-Cu to show a complete phase separation effect. (b) Overlay of the 
Co-Cu phase diagram illustrating the line segment method to determine the SeparationCo–Cu for the HEA 
Al2CoCrCuNi.
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