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Neuronal avalanches and time-
frequency representations in 
stimulus-evoked activity
Oshrit Arviv1,2,3, Abraham Goldstein   3,4 & Oren Shriki   1,2,5

Neuronal avalanches are a hallmark feature of critical dynamics in the brain. While the theoretical 
framework of a critical branching processes is generally accepted for describing avalanches during 
ongoing brain activity, there is a current debate about the corresponding dynamical description 
during stimulus-evoked activity. As the brain activity evoked by external stimuli considerably varies 
in magnitude across time, it is not clear whether the parameters that govern the neuronal avalanche 
analysis (a threshold or a temporal scale) should be adaptively altered to accommodate these 
changes. Here, the relationship between neuronal avalanches and time-frequency representations 
of stimulus-evoked activity is explored. We show that neuronal avalanche metrics, calculated under a 
fixed threshold and temporal scale, reflect genuine changes in the underlying dynamics. In particular, 
event-related synchronization and de-synchronization are shown to align with variations in the power-
law exponents of avalanche size distributions and the branching parameter (neural gain), as well as in 
the spatio-temporal spreading of avalanches. Nonetheless, the scale-invariant behavior associated 
with avalanches is shown to be a robust feature of healthy brain dynamics, preserved across various 
periods of stimulus-evoked activity and frequency bands. Taken together, the combined results suggest 
that throughout stimulus-evoked responses the operating point of the dynamics may drift within an 
extended-critical-like region.

Criticality, a state found in complex systems situated at the edge of a phase transition, is marked by dynamical 
properties that lack any distinctive spatial or temporal scale. In the context of neuronal systems, critical phenom-
ena have already gained substantial evidence1–5. Accordingly, power law distributions and scale-free correlations, 
observed at scales ranging from neuronal cultures to the whole brain, are very general characteristics of cortical 
activity, and therefore offer a unifying framework for the dynamical organization of this activity across scales6–9.

One of the most established hallmarks of scale-free critical dynamics are neuronal avalanches – propagat-
ing cascades of bursts of activity, whose sizes exhibit a power-law distribution. The neuronal avalanche analysis 
consists of identifying large positive and negative signal excursions beyond a threshold. The cascades are then 
identified by clustering these discrete supra-threshold events based on temporal proximity, thus, defining neu-
ronal avalanches as periods of collective spatio-temporal organization, which are intercepted by prior- and post- 
relative silence. Since the pioneering research by Beggs and Plenz in 2003, many experimental works in several 
measurement modalities have found that neuronal avalanche analysis can be successfully explained using the 
framework of critical branching processes3,10,11. Accordingly, the critical exponent, α, of avalanche size distri-
bution (P(s) ~ sα) was found to be approximately −3/2. Nonetheless, recently several publications pointed to the 
reported variations and possibly significant deviations from α = −3/2, questioning whether such measurements 
could reflect different critical exponents that potentially belong to universality classes of other distinct critical 
regimes12–15.

One interesting scenario of potential deviations from the critical branching process is during stimulus-evoked 
activity, i.e., in response to external sensory input16–18. Previous studies indicate that on long temporal scales 
(~1 sec) despite the presence of a sensory drive, the approximate description of a critical branching process holds, 
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whereas on shorter temporal scales there are deviations from this description16,17. Specifically, in Arviv et al.17, we 
reported highly similar scale-free avalanche size distributions for stimulus-evoked activity and ongoing resting 
state over ~1 sec intervals. Yet, stimulus-evoked activity was characterized by a tendency for larger size avalanches 
and temporary deviations from the predictions of a critical branching process. This suggests that sensory adapta-
tion and other compensating mechanisms may be involved in maintaining criticality over long temporal scales. In 
a recent article, Yu et al.19 suggested that the proximity to a critical branching process is maintained all through-
out stimulus-evoked activity (even on relatively short temporal scales of 100 or 400 msec), much like in the 
mean-field description of ongoing brain activity. According to this publication, stimulus-evoked activity should 
be divided to periods or windows which are associated with distinct supra-threshold event rate. The authors claim 
that the parameters of the neuronal avalanche analysis should be adapted to the average event rate characterizing 
each period. By doing so, the authors were able to maintain similar distributions and critical exponent, α, for all 
stimulus-evoked periods.

Stimulus-evoked responses are characterized by temporal modulations in the frequency domain20. Therefore, 
the relationship between neuronal avalanches and spectral changes can be straightforwardly investigated during 
stimulus-evoked activity. In addition, any potential deviations from criticality during stimulus evoked activity 
may be interconnected to variations in the magnitude and spectral content of recorded activity. Here, we take 
a closer look at the underlying dynamics of different periods of stimulus-evoked activity by applying spectral 
decompositions as well as focusing on substantially shorter time intervals (80 ms). Obtaining time-frequency 
representations of evoked-responses can shed light on the evolving dynamics and the networks involved during 
such periods. Accordingly, we suggest that (1) neuronal avalanche analysis can reflect similar dynamical and 
topographical characteristics as time-frequency representations. Moreover, neuronal avalanche analysis does not 
rely on time intervals, other than the time of interest (e.g., base-line correction), in order to capture spatiotem-
poral dynamics. (2) stimulus-evoked dynamics are better reflected by avoiding simple compensating (adaptive) 
changes in the parameters of the neuronal avalanche analysis that aim to mimic fluctuations in event rate. Rather, 
some of the changes in stimulus-evoked dynamics can be represented by allowing critical exponents to freely 
change. (3) scale-free behavior is a relatively robust feature of cortical dynamics, preserved during various peri-
ods of stimulus-evoked responses and frequency bands. We suggest that changes in the underlying dynamics of 
stimulus-evoked responses may shift the operating point of the neural system within an extended critical-like 
region (Griffiths phase)21–23. This may cause changes in the corresponding power-law exponents, while maintain-
ing scale-free statistics.

Results
Using the framework of neuronal avalanches, both stimulus-evoked and resting state brain activities are exam-
ined. Particularly, in order to assess the sensitivity of the neuronal avalanche analysis to evoked responses and 
its relations to temporal and spectral features, we analyzed MEG data collected from a group of subjects (n = 21, 
age = 22.6 ± 3.0 years) preforming a visual task of face perception17.

Neuronal avalanche analysis differentiates between stimulus-evoked and resting-state activ-
ities over short time intervals.  Figure 1A (left panel) displays avalanche size distributions for a single 
subject at stimulus-evoked and resting-state activity. The distributions obey power law behavior, P(s) ~ sα, for 
both states (α = −1.54, at stimulus-evoked and rest). The cutoff of the power law was previously shown to be a 
function of the size of the sensor array, and thus relating to the finite spatial limits of the system11,24. The branch-
ing parameter, σ, which represents the neural gain and denotes the ratio between the numbers of elevated activity 
events in consecutive time steps, is also as expected for critical systems (σ = 1.00 and 1.01 for evoked and rest, 
respectively), that is, one local synchronous group (ancestor) triggers on average one other local synchronous 
group (descendant).

In Arviv et al.17, we showed that the avalanche size distributions of both cognitive states for relatively long seg-
ments (1 sec trials) closely resemble each other for each individual subject, and that their characteristics align with 
near-critical dynamics. In view of the consistency across subjects, we introduced a group analysis for the neuronal 
avalanche approach, accumulating cascades from all subjects. Indeed, for the relatively long segments (1 sec tri-
als), Fig. 1A (right panel) group analysis demonstrates that avalanche size distributions of both cognitive states 
closely resemble each other (in fact the two distributions nearly overlap) (α = −1.52, σ = 1.10 and 1.08 for evoked 
and rest, respectively). Notably, the group size distributions (Fig. 1A, right panel, and all displayed distributions 
onwards) appear to be curved at the cutoff region. Combining avalanches collected from different subjects to a 
joint group distribution smooths the cutoff, since for each subject the cutoff occurs at different typical avalanche 
size (due to variations of head size versus MEG helmet or in the dynamics itself25). Therefore, group distributions 
are expected to demonstrate a less defined cutoff and a more gradual decline in the slope compared to individual 
distributions. Nevertheless, the improved sample sizes justify the group approach, despite the between-subject 
variability. The maximum likelihood estimations, which were applied directly to the samples of avalanche sizes, 
and not to the distributions, provide increased sensitivity to sizes of higher probability (small avalanches) (see 
Methods). Testing the power-law hypothesis, the group distributions at both cognitive states remained in favor 
of a power-law model, as opposed to alternative hypotheses17. When Comparing single-parameter distribution 
models, the calculated log of the likelihood-ratio (LLR) demonstrated a significantly higher likelihood of a power 
law compared to an exponential function [LLR > 8 * 104, p-values as small as the precision limit (p < 10−324)]. 
When comparing distribution models with two parameters, the LLR was higher for an exponentially truncated 
power law compared to lognormal and stretched exponential distributions (LLRtruncPL_Lognormal > 103, p < 10−154, 
LLRstretched_Lognormal > 4 * 102, p < 10−324, LLRtruncPL_stretched > 8 * 102, p < 10−84).

Here, the group analysis approach enabled us to focus on shorter time intervals, as the cascades accumulated 
across subjects resulted in sufficient sampling and statistics. Accordingly, group analysis was applied for 80 msec 
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time intervals (sliding windows with a 20 msec overlap). The cascades collected obey power law distributions 
(α = −1.55 ± 0.04, α = −1.552 ± 0.004, and σ = 1.00 ± 0.08, σ = 1.00 ± 0.02 for evoked and rest, respectively). 
Figure 1B demonstrates the histograms of α and σ calculated for the 80 msec intervals. Comparing the histograms 
obtained from stimulus evoked to resting state, it is clear that histograms obtained for rest are very narrow around 
the mean, whereas the histograms of the stimulus-evoked state are more dispersed (Fig. 1B).

The first step of the neuronal avalanche analysis consists of discretizing the continuous electromagnetic sig-
nals by identifying supra-threshold events. Here, a fixed threshold of ±3 sd was applied. Subsequently, cascades 
were identified in each of the electromagnetic traces (i.e., per subject and of specific trial), by clustering the 
discrete events based on temporal proximity. The time bin for clustering was set here to be Δt = 2.95 msec (for 
details see Methods). Figure 1C, adopted from Arviv et al.17, portrays all accumulated events across all sub-
jects and trials in raster plots, while on top of each raster plot are the peristimulus time histograms (PSTHs), 
a sample-wise summation of all events over sensors. This figure demonstrates for stimulus-evoked state (left 
panel), a change in the frequency of events across time (locked to stimulus onset, t = 0), which is not seen for 
spontaneous resting state: following stimulus onset, there is a significant peak, followed by a decrease and slow 
rise till average event frequency. In Figs 1C,D and 2B, we also included pre-stimulus intervals (prior to the 1 sec 
trials), characterized by an elevated frequency of identified events compared to the average and to rest. In the 
neuronal avalanche analysis, cascades are collected for each trace (e.g., trial) separately. Nonetheless, the α and σ 
calculated for 80 msec intervals now plotted as a function of time, and relative to the means associated with rest-
ing state (Fig. 1D, as opposed to the top row of Fig. 1B), follow the same trend seen in event rate. Yet, although the 
obtained values considerably deviate from those obtained in resting state, all size distributions follow a scale-free 
behavior [a significantly higher likelihood of a power law compared to an exponential function: LLR > 5 * 103, 
p < 10−75, p < 10−93, for evoked and rest, respectively, as well as a significantly higher likelihood of an exponen-
tially truncated power law compared to lognormal and stretched exponential distributions for both evoked and 

Figure 1.  Neuronal avalanche analyses of stimulus evoked and resting state activities. (A) Avalanche size 
distributions of a single subject (right panel) and of the group of subjects (left panel). Notably, at both the single 
subject and the group, the distributions of stimulus evoked and rest overlap. Additionally, due to between-
subject variability at the cut-off, the group distribution (across all subjects) demonstrate a more curved and 
gradual decline in the slope. Estimations of best-fit parameters rely more heavily on the higher probability 
(small avalanches) limit (see Methods). (B) Calculating the power law exponents, α, and the branching 
parameter, σ, for avalanches accumulated during 80 msec intervals resulted in more disperse histograms for 
stimulus evoked activity versus rest. Blue and red vertical lines indicate the averages of the rest and stimulus 
evoked histograms, respectively. Markers of plus sign indicate SD = 1, 2, 3 from the mean. (C) Grand supra-
threshold event rasters of stimulus-evoked (left panel) and rest (right panel) and PSTHs (above rasters). An 
event is marked by a dot at the relevant sensor and time point. The color of the dot is the number of events 
summed across all trials and subjects. (D) Time-dependent stimulus-evoked histograms of α and σ relative to 
the mean over the resting state (the y-axis ticks indicate the corresponding values of stimulus evoked activity) 
reveal a similar trend as the grand raster (right panel in C).
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rest: LLRtruncPL_Lognormal > 4 * 101, p < 10−3, LLRstretched_Lognormal > 101, p < 10−21, LLRtruncPL_stretched > 101, (p < 10−3, 
with the exception of two segments of marginal significance p < 0.1, and two non-significant segments. All 4 
segments are from evoked activity and relate to low event rates, and thus with a relatively small sample of ava-
lanches)]. Figure 2A, represents neuronal avalanche size distributions of post-stimulus evoked response at 70–150 
msec (α = −1.45, σ = 1.21) and at 300–380 msec (α = −1.60, σ = 0.95). Topographies displaying probabilities 
of each sensor to participate in avalanches during representative time intervals (summing across all sensors 
will give 1) are presented in Fig. 2B: pre-stimulus (−80–0 msec) (α = −1.49, σ = 1.11), post-stimulus evoked 
response (70–150 msec) (α = −1.45, σ = 1.21), post-stimulus decrease (300–380 msec) (α = −1.60, σ = 0.95), 
post-stimulus return to average (800–880 msec) (α = −1.55, σ = 1.02), and mean topography of all rest intervals 
(α = −1.552 ± 0.004, σ = 1.00 ± 0.02); the associated α and σ are represented alongside the rest histograms, with 
only the 800 msec interval not deviating by more than 3 SD from the mean of the rest distributions. Markedly, the 
same tendency of results was obtained, when avalanches assigned to each 80 msec interval were not limited by 
the interval limits [i.e., the analysis was ran over 1 sec segments and all avalanches partially contained within each 
specific 80 msec interval were collected, overpassing the hindrance for large avalanches [rest: α = −1.494 ± 0.005, 
σ = 1.12 ± 0.01; evoked: α = −1.43, σ = 1.26, α = −1.41, σ = 1.30, α = −1.55, σ = 1.04, α = −1.49, σ = 1.11, 
(Testing model likelihood – power law is better than exponential function: rest: LLR > 8 * 103, p < 10−122; evoked: 
LLR > 7 * 103, p < 10−104 and exponentially truncated power law is better than lognormal and stretched exponen-
tial distributions: rest: LLRtruncPL_Lognormal > 6 * 101, p < 10−5, LLRstretched_Lognormal > 101, p < 10−27, LLRtruncPL_stretched  
> 101, p < 10−2; evoked: LLRtruncPL_Lognormal > 6 * 101, p < 10−4, LLRstretched_Lognormal > 3 * 102, p < 10−26, LLRtruncPL_

stretched > 2 * 101, p < 5 * 10−2)].

Trial-based time-frequency decomposition and neuronal avalanche analysis exhibit similar 
dynamical and topographical characteristics.  Studying Event-Related Fields (ERFs) of these datasets 
emphasizes different aspects of the dynamics, demonstrating ERF components associated with face process-
ing17. Here, we analyzed “ERF time-frequency power” for the frequency range consisting of the theta to gamma 
(4–80 Hz) frequency bands. Figure 3A–C depict time-frequency matrix averaged over all sensors (A), summa-
tion across sensors and frequencies (B), and summation across time and frequencies (C). As expected, the ERF 
time-frequency power representations do not have well-defined frequency components, due to mixing in the time 
domain during averaging and to the violation of stationarity during ERFs20. Nonetheless, the evoked response is 
limited to ~300 msec from stimulus onset and has similar appearance across frequency bands. The ERF baseline 
activity contains only diminutive variability in all frequency bands due to averaging across time. In contrast, ana-
lyzing “total power”, comprising both phase-locked and non-phase-locked activity, revealed alongside a discern-
ible evoked response peak (at theta, beta and gamma frequency bands), an induced pre-event synchronization 
(at theta, alpha and beta frequency bands) and a post-event desynchronization (at all frequencies) (Fig. 3D left 
panel and E). While the “ERF time-frequency power” have no pre- and post- activation responses corresponding 
to the dynamical profile revealed by avalanche analysis (Fig. 1C,D), the total power shows a similar profile to the 
avalanche analysis. Notably, as expected, the “total power” has a narrower and more confined frequency structure.

Comprising the “total power”, both the ERFs and induced event-related synchronization/de-synchronization 
(ERS and ERD) are task-related, time-locked to stimulus-onset (time = 0), yet the ERS/D are not phase-locked to 
time = 0. However, another component of “total power” is the background activity which is not event-related and 
has no particular relations to time = 0. Resting state activity is by definition unrelated to a task, and therefore nei-
ther phase-locked nor time-locked to any particular event. Accordingly, it is potentially similar to the background 
activity mentioned above and can still be measured by time-frequency power (Fig. 3A,C,D,F left panels). Figure 4 
shows the relative “ERF time-frequency power” and “total power” (spectrograms and topographies of means 
across indicated time intervals). The relative time-frequency representations are obtained by subtracting from 
the evoked responses the corresponding resting state and normalizing by the resting state). The obtained topog-
raphies for “relative total power” demonstrate a clear similarity to topographies obtained from the avalanche 

Figure 2.  Neuronal avalanche analyses of exemplar intervals of stimulus evoked activity. (A) Avalanche size 
distributions, and (B) topographies of sensors’ probabilities to participate in avalanches, for particular time 
intervals (offset from t = 0, stimulus onset). Vertical lines indicate the specific α and σ of each particular interval 
corresponding to the rest histogram and its mean.
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analysis by the naïve approach of calculating sensors’ probabilities to participate in an avalanche (Figs 2B and 
4D). Notably, the avalanche analysis invoked a thresholding operation on the inspected time intervals, whereas 
the “total power” approach relies on baseline correction based on entirely separated time intervals.

A scale-free behavior is maintained for short time intervals of stimulus-evoked activity, while 
(σ, α phase plots display a similar yet shifted behavior.  In the avalanche analysis, the fixed threshold 
(±3 sd) and bin duration (Δt = 2.95 msec) were set in accordance with predicted values for critical branching 
dynamics of a power law exponent α ≈ −1.5, and a branching parameter σ ≈ 1 during 1 sec segments of resting 
state as well as stimulus-evoked state. Zooming on particular intervals in stimulus-evoked state (Figs 1D and 
2), characterized by a different event rate (Fig. 1C), resulted in variations in α and σ. Nonetheless, changing the 
threshold and/or bin duration, leads to different values for α and σ. Figure 5A,C display phase plots of α as a 
function of σ, while altering either the threshold or the bin duration (respectively). The different stimulus-evoked 

Figure 3.  Time-frequency representations of rest and stimulus-evoked activities. “ERF time-frequency 
power” (A) and “total power” spectra across time (D) averaged over sensors (stimulus-evoked, left panel; rest, 
right panel). (B,E) Temporal profile of the summation over frequencies (1–80 Hz) and sensors of the relevant 
power-spectra across time (insets: theta 4–8 Hz: orange; alpha 8–13 Hz: pink; beta 13–30 Hz: violet; gamma 
30–80 Hz: light blue; solid line – stimulus-evoked, broken line - rest). (C,F) Topographies of the summation 
over frequencies (1–80 Hz) and time interval (indicated above) of the relevant power-spectra across time. In 
(C) the colorbar of the 70–150 msec interval (corresponding to the most pronounced evoked-response) is 
different from those of the other topographies. The “total power”, averaging the time-frequency decomposition 
obtained for each trial (aligned to t = 0), reveals a temporal profile similar to the profile obtained from neuronal 
avalanche analysis.
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Figure 4.  Relative time-frequency representations of stimulus-evoked activity versus rest. (A,B) and (C,D) 
correspond to (Fig. 3A,C,D,F), respectively, when subtracting from the stimulus-evoked spectra the rest spectra 
and dividing by rest. This gives the relative changes in the power-spectra across time. In (B), the colorbar of the 
70–150 msec interval (corresponding to the most pronounced evoked-response) is different from those of the 
other topographies. Overall, the relative “total power” (D) reveals similar topographies to those obtained by 
avalanches (Fig. 2B).

Figure 5.  The influence of changing threshold and bin durations on the (σ, α) phase plots during stimulus-
evoked activity. (A,B) Phase plots for specific 80 msec intervals (t = 0, stimulus onset), when in (A) Changing 
the threshold, while holding a fix bin duration (2.95 msec) and in (B) Changing bin duration, while holding a fix 
threshold (±3 SD). (C,D) While changing both threshold and bin durations: (C) displays multiple curves, each 
of a fix threshold, for the 70–150 msec (solid line) and the 300–380 msec (dashed line). This two time intervals 
show the stronger difference among the tested stimulus-evoked intervals. (D) Displays multiple curves, each of 
a fix bin duration for the 70–150 msec (solid line, left panel) and the 300–380 msec (dashed line, right panel). In 
all phase plots a black star indicates the (σ, α) obtained for the bin duration of 2.95 msec and threshold of 3 SD, 
which are the parameter values used for the prior avalanche analyses in this manuscript. These values for bin 
duration and threshold are those utilized to obtain (σ, α) at close proximity to the (σ = 1, α = −1.5) predicted 
from critical dynamics theory.
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intervals show a very similar monotonic behavior, only the curves are slightly shifted from one another. As the 
threshold increases (Fig. 5A: moving on the curve in the left direction), the number of identified discrete events 
decreases and there is a monotonic reduction in avalanche sizes. As the bin duration increases (Fig. 5B: moving 
on the curve in the right direction), by definition the required quiescent periods pre- and post- cascade increase, 
resulting in the merging of what in shorter bin duration would have counted as separate cascades. Thus, there is 
a monotonic increase in avalanche sizes. Examining the variation in both threshold and bin duration (Fig. 5C,D) 
for the stimulus-evoked intervals demonstrating the largest difference, 70–150 msec and 300–380 msec (Fig. 2A), 
showed there is a consistent shift between (σ, α) phase plots for all thresholds and bin durations, while maintain-
ing a close similarity in behavior. Testing the model likelihood for all four examined stimulus-evoked intervals 
while changing both threshold and bin duration showed a higher likelihood to a power-law compared to an 
exponential function (LLR(min, max) = [2 * 102, 7 * 104], p(min, max) = [10−324, 10−4]), as well as a significantly 
higher likelihood to an exponentially truncated power law compared to lognormal and stretched exponential dis-
tributions [LLRtruncPL_Lognormal (min, max) = [2, 103], (p(min, max) = [10−324, 10−2], excluding the interval 800–880 
msec: at the highest threshold of 4.2 SD when Δt is equal or larger to 2.95 msec, and the interval 300–380 msec: 
at thresholds larger than 3.3 SD when Δt equal or larger than 2.95 msec, (the lower thresholds 3.3 and 3.6 SD or 
the smaller Δt 2.95 msec are related to marginally significant p-values (p < 0.1), higher thresholds while at larger 
Δt are non-significant), LLRstretched_Lognormal (min, max) = [2, 5 * 102], p(min, max) = [10−324, 4 * 10−2], LLRtruncPL_

stretched (min, max) = [2, 103], (p(min, max) = [10−324, 5 * 10−2], excluding the interval −80–0 msec with marginal 
significance p < 0.1 at highest threshold when Δt is the largest, and the interval 800–880 msec at highest thresh-
old, 4.2 SD, while Δt larger than 0.98 msec (i.e., marginally significant at Δt 1.97 msec, and non-significance at 
larger Δt). For the interval 300–380 msec substantial parameter combinations correlated with a non-significant 
p-values: all thresholds equal or above 2.7 SD at Δt equal or above 2.95 msec, while one of these combinations 
resulted in negative LLR (LLR = −0.5 and p = 0.96))]. Overall power-law (one parameter) and exponentially 
truncated power-law (two parameters) are significantly better models for the majority of examined thresholds 
and Δt-s during periods of stimulus-evoked responses. Moreover, all the exceptions in the evaluated significance 
correspond with relatively small sample of avalanches, due to combinations of higher thresholds, larger Δt, and 
periods related to lower event rate. Additionally, the combinations of higher thresholds and larger Δt-s also cor-
respond to deviations in the monotonic behavior of the curves in the (σ, α) phase plots. Thus, the lower number 
of identified avalanches may have resulted in less reliable estimations of σ and α at the particular (threshold, Δt) 
combinations.

A scale-free behavior is maintained for a range of thresholds and bin durations for 
frequency-band specific activities.  Avalanche analysis can be applied to each frequency band sepa-
rately. Using the parameters of fixed threshold (±3 sd) and bin duration (Δt = 2.95 msec), revealed a scale-free 
behavior in all inspected frequency bands, excluding the gamma band, for resting state and stimulus-evoked 
activity, accumulated across 1 sec epochs and subjects [frequency band (σ, α) evoked/rest: theta (−1.54, 0.84)/
(−1.56, 0.82); alpha (−1.36, 1.37)/(−1.31,1.50); beta (−1.45, 1.35)/(−1.47, 1.32); gamma (−1.62, 0.83)/(−1.62, 
0.82); while for 1–80 Hz (−1.52, 1.10)/(−1.52, 1.08)] (a significantly higher likelihood of a power law com-
pared to an exponential function: LLR > 3 × 104, p < 10−180, for all frequency bands at both evoked and rest, 
as well as a significantly higher likelihood of an exponentially truncated power law compared to lognormal 
and stretched exponential distributions: LLRtruncPL_Lognormal > 8 * 102, p < 10−153, LLRstretched_Lognormal > 2 * 102, 
p < 10−120, LLRtruncPL_stretched > 4 * 102, p < 10−86, for theta, alpha, beta frequency bands at both evoked and rest. 
Gamma band demonstrated a higher likelihood for the lognormal and stretched exponential than the expo-
nentially truncated power law: LLRtruncPL_Lognormal < −3 * 103, p < 10−172, LLRtruncPL_stretched < −3 * 103, p < 10−324). 
Notably, stimulus-evoked and rest, demonstrate similar (σ, α) for each frequency band, yet, with a slight ten-
dency for larger avalanches in the alpha frequency band during rest versus stimulus-evoked and an opposite 
even more minute tendency in the theta and beta frequency bands. For example, Fig. 6 demonstrates, the results 
for stimulus-evoked activity, when applying avalanche analysis on each frequency band (similar results for rest 
are not shown). Avalanche size distributions at (Δt = 2.95 msec, threshold = ±3 sd) are displayed at Fig. 6A. 
Changing the threshold and/or bin duration revealed that the scale-free behavior for the theta, alpha and beta 
frequency bands as well as for the broad band signal is maintained for a wide range of (threshold, Δt) values at 
both evoked and rest (a significantly higher likelihood of a power law compared to an exponential function: theta: 
LLR(min, max) = [3 * 103, 5 * 105], p(min, max) = [10−324, 10−49], alpha: LLR(min, max) = [103, 9 * 105], p(min, 
max) = [10−324, 10−19], beta: LLR(min, max) = [3 * 103, 106], p(min, max) = [10−324, 10−34], broad: LLR(min, 
max) = [5 * 103, 8 * 105], p(min, max) = [10−324, 10−81], as well as a significantly higher likelihood of an expo-
nentially truncated power law compared to lognormal and stretched exponential distributions: theta: LLRtruncPL_

Lognormal (min, max) = [5 * 101, 8 * 103], p(min, max) = [10−324, 10−2], LLRstretched_Lognormal (min, max) = [3 * 101, 
104], p(min, max) = [10−324, 9 * 10−19], LLRtruncPL_stretched (min, max) = [4 * 102, 4 * 103], p(min, max) = [10−324, 
2 * 10−2] excluding smallest Δt at all thresholds which demonstrated a significantly higher likelihood to a 
stretched exponential distribution, alpha: LLRtruncPL_Lognormal (min, max) = [2 * 102, 2 * 104], p(min, max) = [10−324, 
10−20], LLRstretched_Lognormal (min, max) = [9 * 101, 104], p(min, max) = [10−324, 2 * 10−55], LLRtruncPL_stretched (min, 
max) = [6 * 101, 6 * 103], p(min, max) = [10−324, 10−5], beta: LLRtruncPL_Lognormal (min, max) = [102, 2 * 104], p(min, 
max) = [10−324, 9 * 10−7], LLRstretched_Lognormal (min, max) = [8 * 101, 8 * 103], p(min, max) = [10−324, 5 * 10−39], 
LLRtruncPL_stretched (min, max) = [3 * 101, 104], p(min, max) = [10−324, 10−2] excluding largest Δt at lower thresholds 
(2.1–2.7 SD) which demonstrated a significantly higher likelihood to a stretched exponential distribution, as well 
as non-significant likelihood at the highest threshold, broad: LLRtruncPL_Lognormal (min, max) = [8 * 101, 104], p(min, 
max) = [10−324, 9 * 10−8], LLRstretched_Lognormal (min, max) = [5 * 101, 7 * 103], p(min, max) = [10−324, 8 * 10−37], 
LLRtruncPL_stretched (min, max) = [3 * 101, 8 * 103], p(min, max) = [10−324, 8 * 10−3]). Gamma band demonstrated 
a non-consistent likelihood trend for variating combinations of (threshold, Δt), at large rejecting a scale-free 
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behavior at this frequency band. Therefore, the estimated power-law exponent at this range of frequencies can 
only be regarded as a linear approximation at log-log coordinate system. Notably, the α(σ) curves for the gamma 
band at the examined (threshold, Δt) values, showed unusual behaviors compared to other frequency bands 
(Fig. 6C,D) and with a particular non-monotonicity with the increment of Δt (Fig. 6C). Across all frequency 
bands, a very similar trend was found for resting state as in stimulus evoked activity (graphs not shown).

Discussion
Neuronal avalanches are manifestations of collective organization of activity, which naturally occur in the cortex. 
Many studies have demonstrated that spontaneous neuronal activity can be modeled with a good approxima-
tion by a critical branching process1. This study sheds light on the relations between neuronal avalanches and 
time frequency representations, while at the same time addresses the validity of the branching process model in 
describing stimulus-evoked activity.

Examining the time-frequency decompositions of stimulus-evoked activity and resting state reveals similar-
ities between trial-based decompositions and avalanche analyses. Accordingly, both task related induced- and 
evoked- activities are sampled by the thresholding operation and the aggregation of the identified discrete events 
into avalanches. The temporal profile of time-locked spectral decomposition, which relies on phase-locked as 
well as non-phase locked activities, aligns with the temporal behavior revealed by the power-law exponent and 
branching parameter (Figs 1D and 3E). Thus, the fluctuations in metrics following the critical state dynamics 
capture similar properties as the additive ERS/D and ERFs. Markedly, similar topographies are obtained from the 
spectral and the avalanche analyses, yet only when the “total power” spectral decomposition is baseline-corrected 
by the resting-state decomposition (Figs 2B and 4D). This suggests a couple of things: one, that given that neu-
ronal avalanches successfully capture the functional connectivity of neuronal networks26, neuronal avalanches 
can give a valid description of spatial spreading of activity without relying on any information taken outside of 
the studied time-interval – hence neuronal avalanches have an advantage over spectral description; two, that 
ongoing background activity (not task-related) has similar characteristics during rest as during stimulus-evoked 
responses, and therefore, subtracting this background activity does not hide the identity of task-related brain sites 
involved. It is worthwhile to remark that this does not exclusively support or discard whether evoked responses 
are additive to ongoing signals or are the result of frequency-dependent phase reset and alignment20,27, as the 
last can result in synchronizations that give “more of the same” activations, which will also survive thresholding.

Figure 6.  A scale-free behavior of each frequency band, excluding gamma, at different thresholds and bin 
durations. (A) Avalanche size distributions at all inspected frequency bands. (B, left panel) and (C) display in 
the (σ, α) phase plots, multiple curves at a fix threshold, while (B, right panel) and (D) display multiple curves 
at a fix bin duration. In all phase plots a black star indicates the (σ, α) obtained for the bin duration of 2.95 msec 
and threshold of ±3 SD.
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Stimulus-evoked responses are associated with changes in band-limited activity, and in the 1/f component28, 
thus representing an extensive interplay that comes about in the measured signals. As was shown in Fig. 6, 
band-limited activities, as well as the broad-band activity, exhibit power-law cascade size distributions over a 
range of (threshold, Δt) combinations at stimulus-evoked (as well as at resting state, data not shown), indicative 
of a scale-free behavior. Specifically, the gamma band demonstrated at large a non-scale free behavior. The gamma 
band has a relatively broad frequency range, which consists of fast oscillations. Accordingly, these results could 
be the reflection of neurophysiological processes and/or compelled by the constraints of the applied signal pro-
cessing (see Methods).

Another important feature is that stimulus-evoked activity is characterized by consistent variations in event 
rate (Fig. 1C). The fact that changes in ERFs and ERS/D (Fig. 3E) are tied to functional properties29–32, implies 
that the corresponding changes in event rate are also tied to functional aspects. Utilizing a fixed threshold (calcu-
lated relative to the mean activity over extended periods) highlights these changes (Figs 2 and 4C,D). Markedly, 
the interlinked parameters that govern the avalanche analyses (threshold and Δt), have an assortment of values 
in which they will enable detecting the same type of phenomenon, when shifts within this range will only affect 
the sensitivity of detecting events (“noise” level) – threshold; and the aggregation of events into cascades (joining 
events into a single cascade or isolating events into separate cascades) – Δt. As in rest, the examined time inter-
vals of stimulus-evoked activity, for a range of (threshold, Δt) combinations, demonstrated scale-free avalanche 
size distributions. Additionally, when varying the thresholds or bin durations (Fig. 5), stimulus-evoked periods 
associated with different event rates resulted in (σ, α) curves of similar shape, yet shifted. This suggests similarity 
in dynamical regimes.

In this study, the neuronal avalanche analysis was applied without modifying the threshold or Δt as a function 
of event rate. The obtained results demonstrate that neuronal avalanches capture genuine changes in the under-
lying dynamics. Specially, that the changes found in power-law exponents correlate with the synchronization 
and desynchronization of the recorded activity, which in turn may reflect changes in the excitation-inhibition 
balance of the neuronal system33,34. Notably, Yu et al.19 suggested that periods associated with distinct event rates 
should be analyzed with adaptive time bins of varying duration Δt - set to the inverse of the average rate over 
each period, or alternatively by an adaptive threshold which can be the mean amplitude ± n · sd over each period 
(or over consecutive windows). In other words, they propose to adapt the analysis parameters to task- or event- 
related changes in rate. This enabled the authors to obtain similar distributions and power-law exponent, α, for 
all periods. Indeed, the effect of the determined Δt parameter on neuronal avalanche analysis is linked to, among 
others, the determined threshold, as well as to the ongoing inter-event interval distribution, and thus to changes 
in event rate. Nonetheless, Yu et al. indicate that in order to accommodate changes in rate, adaptively changing 
the applied parameters of the analyses is not properly defined (i.e., what should be regarded as natural fluctuations 
in rate as opposed to a robust violation of stationarity, and thus, what should be the division to periods or win-
dows). Moreover, adaptively changing the threshold or alternatively, the duration of the time bins, Δt, constitute 
two distinctive methodology approaches that alter in a different manner the identity of the collected avalanches 
(affecting either the above threshold detected events, or their aggregation in-between quiescent periods of at 
least Δt duration). Yet, there is no clear theoretical rationale to favor adaptively changing one over the other. 
Therefore, as also claimed by Yu at el., either approach cannot account as a perfect “solution” to temporal changes 
in rate. Furthermore, as proposed here, adapting the analysis parameters may mask valuable information about 
the underlying dynamics, such as changes in network excitability and degree of synchrony, which are carried by 
the changes in the neuronal avalanche metrics.

As experimentally shown before, the parameters Δt and threshold affect the power-law exponent in a pre-
dicted manner11,19,24. This was also demonstrated in this manuscript (Figs 5 and 6). In agreement with our find-
ings, Yu et al. also reported that for all periods, characterized by different event rate, the distributions remained 
close to power-laws even at a fixed threshold and bin duration, Δt. Therefore, even if one assumes that these 
changes do not reflect changes in dynamical regimes, the subsequent changes in power-law exponents may simply 
serve as an easier to apply alternative than adaptively changing a parameter that govern the analysis (Δt or thresh-
old). Another advantage of fixed threshold and bin duration relates to applying the analysis across trials and sub-
jects. This group analysis requires a unified time axis, and hence would not have been possible if the bin sizes were 
adapted according to the corresponding temporal profile of the event rate for each individual subject. Grouping of 
cascades follows the spirit of other techniques commonly applied within the cognitive research field. The choice of 
a temporal scale (Δt), and hence the temporal resolution of evolving cascades, is related to the ratio between the 
average spacing among sensors and carries an implicit assumption regarding the propagation velocity between 
sites triggering events. A fixed Δt assumes relatively small variations in the propagation velocity, whereas adap-
tively decreasing Δt when the event rate increases, implies an increased propagation velocity. Altering Δt with 
changes in event rate effectively maintains the characteristic temporal scale to be the momentary time between 
one event to another. However, from a physiological point of view it is not clear why would stimulus-evoked 
activity propagate faster than ongoing non-evoked brain activity. A fixed threshold may lead to over- or under- 
estimation of the number of identified events (“noise” in the determination of what should count as an event), 
whereas adaptively changing the threshold may mask genuine changes in excitability and synchrony, which were 
previously shown to be associated with the proximity to critical dynamics6,25,34–36. Either choice may not be opti-
mal. We argue that fixed analysis parameters, determined from ongoing (or long periods ~1 sec of) brain activity 
more faithfully portray the underlying dynamics, and that the avalanches obtained under fixed threshold and Δt 
seem to correctly capture the changing aspects of stimulus evoked activity (Figs 1C,D, 2, 3D,E and 4C,D). We 
point out that future research may strive to define a cascade by relying on intra-avalanche dynamics.

Variations in power-law exponent were previously shown to relate to altered excitation and inhibition balance, 
e.g. in sleep deprivation37,38 and in epilepsy25,39. Focal (or partial) epilepsy is characterized by abnormal activa-
tion of hyperexcitable and hypersynchronous localized networks40,41. And indeed, zooming on the epileptiform 
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discharges themselves resulted in deviation from scale-free statistics, displaying higher probability than expected 
from a power-law of a stereotypical avalanche size as well as avalanche spatial dispersion that highlights the epi-
leptic zone25. Nonetheless, scale-free behavior is maintained for the ongoing brain activity of epilepsy, which is 
characterized by shallower power-law exponents than healthy population (i.e., including not only the discharges 
themselves but also short time intervals surrounding the discharges, resulted in scale-free avalanche size dis-
tributions, yet, with a shallower power-law exponent than for long duration ongoing brain activity of the same 
epilepsy patients). It seems that even in epilepsy, most of the time and at most locations the epileptic brain follows 
scale-free dynamics. This supports the claim that scale-free behavior is a robust feature of brain dynamics, even 
in the pathological state and that following a fixed threshold and bin duration procedure can reflect important 
changes in the dynamics by a shift in the power-law exponents.

Stimulus-evoked activity involves activations of extensive networks encompassing many brain regions, 
which is moreover smeared in time by between-trial variability. This may aid to explain the scale-free nature 
of stimulus-evoked activity, even during short time intervals, as accordingly, and in contrast to the pathological 
activations of epileptic neural networks, there should be no particular avalanche sizes of excessive probability 
than predicted by a power-law distribution. Accordingly, the coordinated activity of evoked response across trials 
does not deviate from a scale free nature, while only by zooming on local or temporally precise grouped activity 
(bypassing background ongoing activity) this could be the case. It is interesting to compare with another study, 
which investigated the effect of stimuli on the scale free 1/f component of the spectrum: Podvalny et al. 2015 
found a change in the power-law exponent of the 1/f component (shallower distributions)28. Moreover, at particu-
larly highly activated electrodes, they show a deviation from scale-free behavior associated with a band-limited 
power rise (a “bump”)28. According to the proposed view, across significant intervals of time (~1 sec) there 
will be compensating mechanisms leading to an overall highly similar dynamics as the dynamics found in rest 
(Fig. 1A,E and17). Nevertheless, at the resolution of short time-intervals of stimulus-evoked activity, the operat-
ing point of the dynamics may drift within an extended critical-like region (Griffiths phase)21–23, thus, remain-
ing scale-free. The shifts within the stretched critical range correspond to the changes in power-law exponents. 
Throughout stimulus-evoked activity the branching parameter, σ, which represents the neural gain, deviates from 
its resting-state value near 1 (Fig. 1B,D and17). As the change in power-law exponents, these deviations may also 
reflect fluctuations in the proximity to the critical state. Nonetheless, if indeed the system is not situated in the 
vicinity of a single critical point, but rather characterized by “wandering around” an extended “region of critical-
ity”, the mean-field branching process model may not be able to provide an accurate description of the dynamics 
at the resolution of these short periods within stimulus-evoked activity.

Additionally, it is not obvious whether stimulus-evoked activity should be assigned to the same universality 
class as resting-state activity, or rather to different ones, which would imply a different set of critical exponents. 
Mainly, variations in power-law exponents may indicate variations in the associated universality classes. In the 
stimulus-evoked scenario, the neuronal system is exposed to sensory input that may drive the system. Recent 
theoretical works examining the influence of external input on neuronal avalanches supports alterations of the 
critical exponents14,15,42. The introduction of inputs is shown to surprisingly preserve the power-law scaling, at 
various input intensities, while the deviations from the branching process exponents align with avalanche merg-
ing (or “gluing”) due to partial loss of separation of time-scale, resulting in smaller power-law exponents, as 
larger (“glued-together”) cascades become more probable14. According to this view, the continuously varying 
exponent values across time may result from the sensory input driving different initial seeds to form cascades 
that can merge, leading to larger avalanches and smaller exponents15. Importantly, if multiple seeds are involved, 
adapting the time bin duration, Δt, according to the rate of supra-threshold events will not suffice to untangle 
parallel-existing avalanches of different origins43 (i.e., in practice the event rate is determined by collapsing all 
sensors to a single time-trace11, thus inherently assuming separation of time scale). Here, the evoked processing 
of visual stimuli may rely on dynamical changes in effective connectivity at multiple sites, leading to a mean-field 
branching process description being less adequate. Specifically, spatial effects and effective strength of connec-
tions were shown to affect critical exponents12,44.

Overall, the presented results support an intermixed nature of the power-law exponents and branching param-
eters with the parameters that govern the analyses, yet, alongside a robust scale free behavior. When maintaining 
the parameters that govern the analysis fixed, neuronal avalanches were shown to be able to capture profound 
changes in the underlying dynamics. The exemplar dynamics of stimulus-evoked response presented in this study, 
weakens the claim for adapting the parameters of the analyses to follow changes in event rate. Still, constant 
parameters may not lead to accurately identifying neuronal avalanches as evolving (directed and separated) cas-
cades. A new definition of an avalanche, based on intra-avalanche dynamics, may be a desired goal. Moreover, the 
time-varying power-law exponent and branching parameter values, may not only reflect the complex underlying 
dynamics of stimulus-evoked activity, but may also suggest deviations from the description offered by the mean 
field branching process model, and the existence of different universality classes for different cognitive states, such 
as resting and evoked activity.

We suggest that different periods within stimulus evoked activity correlate with shifts in an extended 
critical-like region (Griffiths phase)21, which manifest as changes in the corresponding power-law exponents and 
branching parameters. Taking a broader view, the mean field branching process model may provide relatively 
accurate description for extended periods and spatial domains, as there are compensating mechanisms involved. 
Yet, at high temporal or spatial resolutions, there are instantaneous changes in dynamical factors, such as excita-
bility, synchrony and the coordination of activity (effective connectivity) that may lead to drifts in the operating 
point of the corresponding neural system. We suggest that small drifts will result in scale-free statistics, whereas 
increased deviations will eventually manifest in breakdown of scale-free statistics.
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Methods
Experimental procedure and data acquisition.  Stimulus-evoked and resting state brain activities were 
recorded from healthy human subjects (n = 21, age = 22.64 ± 3.03 years) in the MEG facility at the EMBI Unit, 
Bar-Ilan University, Israel. The study was approved by the Bar-Ilan University ethics committee, in accordance 
with the relevant guidelines and regulations. The participants gave their informed consent and were financially 
compensated for their effort. Each subject was recorded during 4 minutes of rest, followed by 10 stimulus-pres-
entation blocks, and 4 additional minutes of rest. During rest, participants were instructed to fixate their eyes on 
a fixation cross at the center of a black screen. The task stimuli were gray-scale pictures of human faces displaying 
various emotional expressions and vertical head postures. Each stimulus was presented for 1000 ms with inter 
stimulus intervals varying between 1,300 and 1,700 ms. Participants completed an oddball gender detection task, 
in which they were instructed to press a button when a rarely presented female face appeared on the screen 
(16.67% of the trials). This procedure ensured that all analyzed trials, which consisted of male faces, were task-ir-
relevant. For additional information, please see17.

Neuromagnetic brain activities were recorded with a whole-head, 248-channel magnetometer array (4-D 
Neuroimaging, Magnes 3600 WH) in a dimly-lit magnetically-shielded room, as participants laid supine. In order 
to rule out head movements throughout the recordings, head localization measurements were performed before 
and after each experiment [head position and shape were determined by Pollhemus FASTTRAK digitizer and 
five coils attached to the participant’s head, measuring position relative to the MEG sensors]. Stimuli were back 
projected on a screen placed in front of the subjects, by a video projector situated outside the room. E-prime 2.0 
(Psychology Software Tools Inc.) was used for experimental control. Participants pressed a button using their 
right index finger on a response box (LUMItouch photon control) each time a female was presented. The MEG 
was recorded at a sampling rate of 1017.25 Hz and analog band-pass filtered online at 0.1–400 Hz. Reference coils 
were used to remove environmental noise. Accelerometers (Bruel and Kjaer) attached to the gantry were used to 
remove vibration noise. The 50-Hz signal from the power outlet was recorded by an additional channel and the 
average power-line response to a power cycle was subtracted from every MEG sensor45.

Data analysis.  Data processing and analysis were performed using MATLAB 2014a (Mathworks, Andover, 
MA) and Fieldtrip open-source toolbox for Advanced MEG Analysis46.

Cleaning and preprocessing.  MEG recordings were first cleaned for line frequency, building vibration and heart-
beats artifacts with an in-house open-source software45. Rest data were segmented to include 1 sec intervals with 
additional head and tail of 0.4 sec (the 0.4 intervals overlapped with prior and post epochs, but were later cut from 
analysis). Stimulus-evoked data were segmented to include the 1 sec trials as well as an additional 0.2 pre-trial 
interval and head and tail of 0.4 sec (as in rest the 0.4 intervals were later cut from analysis). All epoched-data 
were band-pass filtered offline between 0.8 and 80 Hz. Epochs containing a false-positive response or contami-
nated by muscle or jump (in the MEG sensors) artifacts were discarded. One mal-functioning MEG sensor (A41) 
was discarded from all analyses. Independent component analysis (ICA) was performed on the remaining data47, 
to ensure the removal of all eye-movements, blinks and leftover heartbeats artifacts. ICA components reflecting 
such artifacts, as determined by visual inspection of the 2D scalp maps and time course of that ICA component, 
were rejected and remaining components were used to reconstruct the data.

To examine bandlimited data, two-pass finite-duration impulse response (FIR) band-pass filter were applied 
on the whole trials, in accordance with the clinical frequency bands: theta 4–8 Hz; alpha 8–13 Hz; beta 13–30 Hz; 
gamma 30–80 Hz48. FIR filters were of order 3 times the rounded ratio between the sampling frequency and the 
lower bound of the bandpass frequencies (lowest frequency). This was chosen in order to identify the encompass-
ing oscillations while also restricting the degree of temporal integration caused by the filter.

Avalanche analyses.  Signal discretization: The signal from each sensor was z-scored by subtracting its 
mean and dividing by the SD. The mean for each sensor was calculated over the experimental periods of rest, 
stimulus-evoked and fixation-evoked of each specific subject. Then, positive and negative excursions beyond 
a chosen threshold for each sensor were identified. A single event was determined per excursion at the most 
extreme value (i.e., maximum for positive excursions and minimum for negative excursions). Band-specific ava-
lanche analyses were carried out by subtracting the band-specific mean and dividing by the band-specific SD.

Cascade-size distributions and power law statistics: The time series of events obtained from each sensor for 
each epoch was individually discretized with time bins of duration Δt. The temporal resolution of the analysis Δt 
is a multiplication by an integer of Δtmin = 0.983 msec (wheras Δtmin is the inverse of the data acquisition sam-
pling rate). A cascade is defined as a continuous sequence of time bins in which there is an event on any sensor, 
ending with a time bin with no events on any sensor. The number of events on all sensors in a cascade is defined 
as the cascade size.

According to the theory of critical branching processes, power-law behavior is predicted at the critical state 
(Harris T. E. 2002). The fit of the avalanche size distributions to a power law was analyzed as described previ-
ously49,50. The candidate distributions were power law and exponential distributions: both characterized by a 
single parameter (degree of freedom), and lognormal, stretched exponential and exponentially truncated power 
law distributions: all three characterized by two parameters.

Power laws were modeled as follows:
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Stretched exponential functions were modeled as follows:
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where Cα, Cλ, Cμ,σ, Cβ,λ and Cα,λ are normalization factors, and the parameters xmin and xmax were set to include 
all observed avalanches (xmin = 1 and xmax = 320).

A maximum likelihood estimation was applied directly to the sample of avalanche sizes, and not on the dis-
tributions. Accordingly, the obtained estimations are more sensitive to sizes of higher probabilities (small ava-
lanches). In comparison, direct regression of the distributions would have assigned the same weight to avalanches 
of low probability as to those with high probability and thus would have been more affected by the predicted 
cutoff of the power law around system size (i.e., number of sensors in the array).

Assuming independence of avalanche sizes and a sample of n avalanches, the likelihood of a sample of ava-
lanche sizes given the power law and exponential models given a parameter α or λ is:
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∑| =
=

l param x P x( ) ln( ( ))
(7)i

n

param i
1

The best fit parameters for the power law and exponential distributions (α̂ and λ̂) were calculated by maximiz-
ing the log-likelihood as a function of the parameter. To determine whether a power law or an exponential distri-
bution was a better fit to the data, the log of the likelihood-ratio (LLR) was taken with the best fit parameters as 
follows:

LLR x l x l x( ) ( ) ( ) (8)n n n( ) ( ) ( )α λ= | − |ˆ ˆ

Thus, a positive LLR indicates that the power law model is more likely, while a negative LLR indicates that the 
exponential model is more likely; for an LLR of zero, neither distribution is more likely. To determine whether the 
LLR was significantly different from zero, the p value of the LLR was calculated as follows:

σ
=











p erfc LLR

n2 (9)2

where: σ α λ= ∑ | − − | − λ= l x l l x l[( ( ) ) ( ( ) )]
n i

n
i a i

2 1
1

2 with l l x n( )/a
n( )α= |  and l l x n( )/n( )λ= |λ .

The LLR for the comparison between each pair of the distributions: exponentially truncated power law, 
stretched exponential and lognormal distributions can be calculated analogously (Eqs 8 and 9). Since these dis-
tributions have an additional degree of freedom as compared to the power law and exponential models, the LLR 
test would have been difficult to interpret if models with different number of degrees of freedoms were intermix-
ingly compared. Thus, only models with the same number of degree of freedoms were tested against each other50. 
Throughout this article, the reported power law exponent, α, is the one fitted to the simple power law model 
(Eq. 1), and not to the exponentially truncated power law (Eq. 5). The exponential decay multiplication factor in 
the exponentially truncated power law model is conventionally inserted to capture the cut-off of the power law 
behavior at approximately system size (in our case, size of the sensor array). However, it affects the entire range, 
thus, distorting the power law exponent itself. Therefore, the exponentially truncated power law model is sub-
optimal. Nonetheless, it is important to point out that the same trend of results was obtained for the power law 
exponents taken from the exponentially truncated power law as for the results for the power-law exponent in the 
naïve power-law model.
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Notably, Clauset et al.49 suggest to test the goodness of fit between the data and the power law model (if 
p-value is smaller than 0.1, the power-law hypothesis is rejected). However, Klaus et al.50 who statistically ana-
lyzed the fit to a power-law model in neuronal avalanches, refer to the test offered by Clauset et al.49, and claim 
that the offered test is misleading for large enough sample size. Klaus et al.50 claim that even a small (practically 
negligible) deviation from a power law will result in the rejection of the power-law hypothesis for most empirical 
systems in the large sample size regime. They show that the p-value depends on the sample size of the empirical 
distribution. The distributions in our manuscript are based on tens of thousands of samples – the same sample 
size regime that the results of Clauset et al.49 goodness-of-fit test are claimed by Klaus et al.50 to be misguiding.

The branching parameter: The branching parameter σ was estimated by calculating the ratio of the number of 
events in the second time bin of a cascade to that in the first time bin. This ratio was averaged over all cascades for 
each subject and for each experiment part, with no exclusion criteria11 as follows:

∑σ =
′
′=N

n nd bin of k th avalanche
n st bin of k th avalanche

1 (2 )
(1 ) (10)av k

N
events

events1

av

where Nav is the total number of avalanches in the particular dataset and nevents represents the number of events 
in a particular bin.

Group avalanche analyses (across subjects) were carried out by accumulating all identified cascades from all 
preprocessed segments of all subjects, while cascades from rest and stimulus-evoke were collected separately. This 
enabled focusing on shorter time intervals (within stimulus-evoked trials or rest) by separately accumulating the 
identified cascades at specific intervals (i.e., at sequential 80 msec intervals).

Spectral analyses.  Time-frequency representations of rest and stimulus-evoked activities were performed by 
effectively convolving the data with complex wavelets (applying Fieldtrip’s “mtmconvol”: multitaper-method con-
volution). Each complex wavelet was constructed by time-point wise multiplication of the cosine (real) and sine 
(imaginary) components at the specific frequency with a tapering function. Here, Hann tapers were chosen for 
the frequencies between 4 till 80 Hz. The lengths of the sliding time windows were set to include 3 cycles per time 
window. This resulted in power-spectra estimates as a function of time51. In order to obtain “ERF time-frequency 
power” estimates, first the ERF was computed by averaging across subjects and trials, aligned to stimulus onset: 
t = 0 (or equivalent rest epochs), and then calculating its time-frequency representation. Alternatively, in order to 
obtain “total power” spectra across time, first the time-frequency decomposition of each trial was calculated and 
then averaging those results from all subjects and trials together. Given the short intervals of interest (≪~1 sec 
trials), enabling the sampling of only a small number of cycles, delta frequency band was not investigated in this 
research.
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