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A Novel Digital Score for 
Abundance of Tumour Infiltrating 
Lymphocytes Predicts Disease 
Free Survival in Oral Squamous Cell 
Carcinoma
Muhammad Shaban1, Syed Ali Khurram2, Muhammad Moazam Fraz1,3,4, Najah Alsubaie1,5, 
Iqra Masood6, Sajid Mushtaq6, Mariam Hassan6, Asif Loya6 & Nasir M. Rajpoot1,4,7

Oral squamous cell carcinoma (OSCC) is the most common type of head and neck (H&N) cancers with 
an increasing worldwide incidence and a worsening prognosis. The abundance of tumour infiltrating 
lymphocytes (TILs) has been shown to be a key prognostic indicator in a range of cancers with emerging 
evidence of its role in OSCC progression and treatment response. However, the current methods 
of TIL analysis are subjective and open to variability in interpretation. An automated method for 
quantification of TIL abundance has the potential to facilitate better stratification and prognostication 
of oral cancer patients. We propose a novel method for objective quantification of TIL abundance in 
OSCC histology images. The proposed TIL abundance (TILAb) score is calculated by first segmenting 
the whole slide images (WSIs) into underlying tissue types (tumour, lymphocytes, etc.) and then 
quantifying the co-localization of lymphocytes and tumour areas in a novel fashion. We investigate the 
prognostic significance of TILAb score on digitized WSIs of Hematoxylin and Eosin (H&E) stained slides 
of OSCC patients. Our deep learning based tissue segmentation achieves high accuracy of 96.31%, 
which paves the way for reliable downstream analysis. We show that the TILAb score is a strong 
prognostic indicator (p = 0.0006) of disease free survival (DFS) on our OSCC test cohort. The automated 
TILAb score has a significantly higher prognostic value than the manual TIL score (p = 0.0024). In 
summary, the proposed TILAb score is a digital biomarker which is based on more accurate classification 
of tumour and lymphocytic regions, is motivated by the biological definition of TILs as tumour 
infiltrating lymphocytes, with the added advantages of objective and reproducible quantification.

In 2014, there were more than 11,000 instances of Head and Neck (H&N) cancers in the UK and more than 
2,300 deaths resulting from oral cavity cancers1. Oral squamous cell carcinoma (OSCC) is the most common 
malignancy of the H&N region2 in both males (42%) and females (46%). The OSCC prevalence is almost twice 
as common in males and 3 times more in females than the next most common cancer which is larynx SCC (26% 
in males, 13% in females)3. OSCC is associated with invasion and destruction of local tissues and maxillofacial 
bones with significant associated morbidity. In addition to early recurrence, frequent lymph nodes metastasis 
and extranodal extension4 are further challenges in the management of OSCC patients. The high morbidity and 
mortality rates in OSCC patients5,6 highlight the need for an objective and quantitative analysis of any potential 
prognostic markers to help identify tumours which may respond poorly to therapy7.
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Tumour -infiltrating lymphocytes (TILs) have been analysed in a wide range of cancers with strong evidence 
demonstrating their prognostic value as a supplement to the Tumour -Node-Metastasis (TNM) staging8–10. TILs 
mainly comprise T lymphocytes which migrate from the blood into the tumour as part of the body’s immune 
‘fight-back- response’. However, it is important to analyse these cells in the correct context. A large number of 
lymphocytes can be present in inflamed and cancerous tissues and, therefore, it is vital to develop methods to spe-
cifically analyse lymphocytes infiltrating the tumour as these are the ones that are likely to be of prognostic signif-
icance11–13. These areas can be referred to as the TIL regions where both tumour and lymphocytes are co-localized 
(as illustrated in Fig. 1). Numerous studies have reported the correlation of TIL density with improved overall 
survival (OS) and longer disease-free survival14,15. It has been shown that the quantification of spatial patterns of 
TILs in the tumour regions can have prognostic value significantly supplementing or even superseding the TNM 
staging in certain settings16,17. However, the currently used method of visual TIL quantification is subjective with 
inter- and intra-observer variability and lack of diagnostic reproducibility18. Therefore, it is imperative to develop 
an automated method for objective quantification of TILs in OSCC to address these challenges.

Digitization of histology slides has recently ignited interest from computer scientists to develop techniques for 
the automated analysis of digitized multi-gigapixel whole slide images (WSIs) of tissue slides19–23. The approval of 
digitized WSIs as a primary histopathological diagnosis tool by the US Food and Drug Administration (FDA)24 
has further boosted this interest. The digitization of WSIs offers unique opportunities to quantify vast amounts 
of information about morphological and spatial architectural patterns in WSIs and to discover novel prognostic 
and predictive histological markers to potentially improve cancer treatment25. For instance, it has recently been 
shown by Saltz et al.16 that a digital marker based on TIL spatial patterns carries prognostic significance for mul-
tiple cancer tissue types.

In this paper, we present a novel method to obtain an automated TIL abundance score and explore its prog-
nostic significance for Disease Free Survival (DFS) of OSCC patients. The proposed approach, as illustrated in 
Fig. 2, comprises of three main components: WSI segmentation into biologically significant tissue phenotypes, 
identification and quantification of TILs, and their prognostic analysis. First, WSI segmentation into biologically 
significant tissue phenotypes is modelled as an image patch based tissue classification problem. Different tissue 
regions such as tumour, lymphocytes, and stroma in the WSI are classified using a deep convolutional neural 
network (CNN). Second, a tumour -lymphocyte co-localization based binary classifier is developed using statis-
tical co-localization measures for detecting the presence or absence of TILs in OSCC tissue slides. The extent of 
lymphocytic infiltration, which we term as the TIL Abundance (TILAb) score, in tumour region is quantified by 
a combination of lymphocyte-to-tumour ratio and their statistical co-localization. Finally, the prognostic signifi-
cance of the TILAb score for DFS is investigated by employing univariate and multivariate analysis. To the best of 
our knowledge, there is no existing method for automated quantification of TIL Abundance from digitized WSIs 
and the downstream analysis of OSCC patient survival. We show that the TILAb score is a strong prognostic indi-
cator of DFS in OSCC patients in agreement with previous findings based on manual TIL quantification26. Our 
main contributions in this paper are as follows:

•	 A methodology for segmentation of biologically significant regions in OSCC tissue is presented which 
includes segmentation of tumour areas, lymphocytes, stromal regions, and artefacts in a WSI.

•	 We propose a novel scoring of TIL abundance, termed as the TILAb score, to quantify the extent of lym-
phocytic infiltration in the tumour region which is a combination of lymphocyte-to-tumour ratio and their 
statistical co-localization in a WSI.

•	 The reproducibility and objectivity of the TILAb score are investigated in two different ways: First, by ana-
lyzing the consistency between statistical co-localization based TIL detection and a pathologist’s detection. 
Second, by evaluating the prognostic significance of TILAb score for DFS of OSCC patients.

Materials and Methods
Ethical approval was obtained from the institutional review board (Ref. No. 17-02-17-10) at Shaukat Khanum 
Memorial Cancer Hospital and Research Centre (SKMCH&RC) and National Bioethics Committee (No.4-87/17/
NBC-234-Exempt/NBC/2592), Pakistan. All methods and experiments were carried out in accordance with rel-
evant guidelines and regulations. Exemption from written consent was granted by the IRB at SKMCH&RC and 

WSI TIL Region Tumour Lymphocytes

Figure 1.  An example image of TIL region (black) in a Whole Slide Image. High resolution view of tumour 
(red) and lymphocyte (green) regions are shown in separate images.
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NBC on grounds that the data and images used in the study were already in existence and were collected and 
reported in an anonymized way ensuring confidentiality of participants. The study did not involve any interven-
tion or interaction with the participants. The research involved no more than minimal risk to the participants and 
involves no procedures for which written consent is normally required outside of the research context and the 
waiver did not adversely affect the rights and welfare of the participants.

Patient selection.  Patients with OSCC diagnosed between 2010–11 at SKMCH&RC were selected from the 
electronic medical records (hospital information system). SKMCH&RC follows a multidisciplinary approach, 
therefore all patients were treated by both a radiation oncologist and by a H&N surgeon. Cases included both 
primary and recurrent tumours that underwent complete tumour resection with or without lymph node dis-
section and for which at least three year survival data were available. After the initial review of data, 60 patients 
were selected out of 155 oral cancer cases as per the study protocol (see Fig. S2 in the Supplementary Materials). 
The cases excluded were those with either an incomplete resection and those where survival follow up was less 
than 3 years. A final cohort of 60 malignant cases and 10 controls were finalized where the control cases did not 
suffer from OSCC. Formalin fixed paraffin embedded blocks were retrieved and representative slides from each 
case were reviewed by the study pathologists (AL and SM) and confirmed to be OSCC. In addition, slides were 
also reviewed for additional histopathological features such as patterns of invasion, TILs and perineural invasion. 
For this study, oral cavity cancers were defined as carcinomas of the mouth including lip, tongue, cheeks, floor 
of the mouth, hard and soft palate, whereas tumours of the salivary glands were excluded. After compilation of 
the clinical and pathologic information, including American Joint Committee on Cancer (AJCC) 7th edition 
stage, clinical and pathological information was retrieved from the electronic medical records, as summarized in 
Table 1. De-identified, tissue slides were digitally scanned in University Hospitals Coventry & Warwickshire using 
Omnyx Integrated Digital Pathology system at 40× magnification with a resolution of 0.275 μm per pixel. There 
were 193 tissue sections in 70 digitally scanned WSIs as many WSIs contain multiple tissue sections.

Patient characteristics.  Our study cohort consists of 70 cases including 60 OSCC and 10 control cases. DFS 
information was available for all the malignant cases where survival time was calculated from the date of surgery. 
DFS was censored at the date of first recurrence or death, whichever occurred first, or the date of last contact for 
the patients alive and without recurrent disease. The follow up period ranged from 3.8 years to a maximum of 6.10 
years at the time of data retrieval (2017). Median DFS was 58 months (range, 4–86 months) and median age 50 
years (range, 25–75 years). Approximately 32% (n = 19) of patients suffered from disease recurrence whereas 22% 
(n = 13) had died by the time of data retrieval. About 60% (n = 36) of the patients were male, while 42% (n = 25) 
are at stage I/II and remaining are at stage III/IVa. Further details of all clinical parameters are given in Table 1.

Pathologist annotations.  We split our OSCC cohort into two equal sized subsets, one for modelling and 
the other for test. Six cases from the modelling set were considered for validation of the proposed tissue region 
classifier. An oral and maxillofacial pathologist (SAK) reviewed all the digitized WSIs and marked the ground 
truth at two different level of abstraction: TIL presence or absence on all the slides, and tumour /lymphocytic 
regions on the modelling subset. At high level, the presence or absence of TILs in 193 tissue section from all WSIs 
was marked where 111 were TIL positive (T+) and 82 TIL negative (T−). For the classification of biologically 
significant regions, more than half million regions (belonging to different classes such as tumour, lymphocytes, 
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Figure 2.  Flow diagram of the proposed method. Colour represents the respective class.
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and stroma) were marked in all WSIs of the modelling cohort. The annotations were then used for training and 
validation of the proposed method.

Whole slide image analysis.  Whole slide images are multi-gigapixel images and cannot be used directly 
for image analysis tasks particularly training a deep learning based classifier. Therefore, we divide the WSIs into 
small regions (patches) for processing. A deep learning based classifier (see next section) is applied on the patches 
to identify whether the patch contains tumour, lymphocytes or other histological primitives. However, the regions 
where the lymphocytes are infiltrating the tumour may not be confined within a patch. Besides, there is con-
siderable variation in the size of TIL regions, making the quantification of TILs a non-trivial task. We address 
this issue by adopting the widely accepted definition of TILs, i.e., lymphocytes that lie in the neighbourhood of 
tumour areas. The patch labels predicted as lymphocytes or tumour are then used to compute a statistical meas-
ure of co-localization, which is further incorporated into the computation of the proposed score of lymphocytic 
infiltration, i.e. the TILAb score.

Tissue region classifier.  A tissue section in a WSI contains many different types of cells and regions, such 
as tumour cells, lymphocytes, and stromal regions (i.e. fibroblasts, endothelial cells, blood vessels, muscle, fat 
and red-blood cells). A WSI may also contain slide preparation and scanning artefacts, such as tissue folding 
and blurring, which need to be ignored. Therefore, we classify OSCC tissue sections into biologically significant 
regions. Tumour and lymphocyte rich regions are important for the detection and quantification of TILs. Precise 
classification of stromal regions along with other lymphocytic regions is necessary to discriminate between 
TILs and regular lymphocytes that do not lie within the vicinity of tumour regions. The fourth and final class 
of regions consists of scanning and tissue artefacts, which are labelled as non-regions of interest (Non-ROIs). 
We select a reasonably small patch size (128 × 128 pixels at 20×) such that we do not require precise pixel-level 
tissue segmentation. Figure 3 shows three samples of each of the 4 class labels: tumour, lymphocytes, stroma, and 
Non-ROIs.

Deep learning models have significantly improved the state-of-the-art in many natural image based problems 
such as visual object detection and recognition27,28 and scene labeling29. Most popular deep learning networks for 
the classification task are ResNet30, DenseNet31, Inception32, Xception33 and MobileNet34. Each network shows 
competitive results on one of the largest image classification datasets, ImageNet28. We train these networks for 
tissue classification task to get a strong baseline model. We extracted 400,000 patches for training and 100,000 
patches for validation from WSIs. Both training and validation datasets have equal numbers of patches for each 
class. During training, we leverage online data augmentation with random rotation of 0, 90, 180 or 270 and ran-
dom flipping. We select the best model of each classifier after training it for at least 125,000 optimization steps 
with RMSProp optimizer. During testing, the patch classifier takes non-overlapping patches from a WSI and out-
puts probabilities of all classes for each patch, resulting in a probability map at the WSI level. The probability maps 
are converted into prediction maps by selecting the class with the highest probability for each patch (Fig. 2). The 
prediction map at the WSI level is eventually used for TIL identification and for computation of the TILAb score.

TIL quantification.  Objective quantification of TILs is a non-trivial task as it depends on the co-localization 
of both tumour and lymphocytic regions. In ecology, co-localization of different species is used to understand 
their community structure35,36. Tumour and lymphocytes in TIL regions could be considered as two different 
interacting species in the histological landscape. We consider WSI areas containing tumour and/or lymphocytes 

Clinical Parameters Full Cohort Modelling Set Test Set

No. of Patients 60 30 30

Age (years) 49.77 ± 10.99 50.57 ± 9.77 48.97 ± 12.03

Survival (months)
Overall 54.78 ± 17.91 56.00 ± 17.75 53.47 ± 17.96

Disease Free 48.87 ± 22.51 50.00 ± 22.44 48.00 ± 22.55

Gender
Male 36 17 19

Female 24 13 11

Node-Stage
I/II 25 17 8

III/IVa 35 13 22

Grade
I/II 48 23 25

III 12 7 5

Growth Patterns
Type 1/2 21 13 8

Type 3/4 39 17 22

TILs
Absent/Mild 32 17 15

Moderate/Severe 28 13 15

Patient Status
Alive 47 24 23

Dead 13 6 7

Disease Recurrence
Yes 19 9 10

No 41 21 20

Table 1.  Summary of clinical parameters of the OSCC Cohort.
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and investigate the utility of co-localization score of tumour and lymphocytes in the WSI. For this purpose, a WSI 
is divided into m × n equal sized grids, such that the grid size is greater than the size of input patch for the region 
classifier. The co-localization score M in terms of the Morisita-Horn37 index is then defined as follows,
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t represent the percentage of lymphocytic and tumour regions in the (i, j)th grid-cell, respectively 
(Fig. 4). If a grid-cell does not contain any tumour and lymphocytic region, then it would not contribute towards 
the co-localization score. However, if a grid-cell only contains one type of region, either tumour or lymphocyte, 
then it only contributes to the denominator of the equation thus results in a relatively small value of the 
co-localization score. If all the grid-cells contain only unique type of regions, then the co-localization score 
become zero. This score ranges from 0 to 1 and the score is maximum when each of the grid-cells has exactly the 
same number of tumour and lymphocyte patches, as shown in Fig. 4.

We also consider the Shannon diversity index38 to quantify the co-localization of tumour and lymphocytic 
regions in a WSI. It computes the diversity of two classes in a given region that is also aligned with the above 
definition of TILs. For m × n grids of equal sizes in a WSI, the Shannon diversity index, S, is defined as follow,

Tumour Lymphocytes

Stroma Non-ROI

Figure 3.  Exemplar patches of tumour, lymphocyte, stroma, and Non-ROI (artefacts) classes.

Morisita: 0 TILAb: 0 Morisita: 1 TILAb: 0.5 Morisita: 0.6 TILAb: 0.9

Lymphocyte Region Tumour Region

Figure 4.  The illustration of tumour and lymphocyte co-localization patterns, each image is divided into 4 × 4 
grids. (Left) Highly segregated appearance of tumour and lymphocytic regions. (Center) Fully co-localized 
regions. (Right) Lymphocyte rich co-localization.
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where pij
l  and pij

t represent the percentage of lymphocytic and tumour regions in the (i, j)th grid-cell. The 
co-localization computed using Shannon diversity index is relatively smaller in magnitude as compared to the 
Morisita-Horn index with the maximum value of 0.7 at the maximum co-localization point of tumour and lym-
phocytic regions (Fig. 5).

The proposed TILAb score.  The Morisita-Horn and Shannon diversity are two objective and efficient meas-
ures for quantification of co-localization. However, these methods give equal importance to all the constituent 
classes (or species), which consequently results in a symmetric co-localization score (as can be seen in Fig. 5). For 
instance, 20% lymphocytes and 80% tumour in a region will give the same co-localization score as another region 
consisting of 80% lymphocytes and 20% tumour. However, the lymphocyte proliferation in tumour is considered 
to be good prognostic indicator for patient survival. Therefore, the symmetric nature of these measures is not 
ideal for obtaining an objective TIL abundance score of prognostic importance. We proposed the TIL abundance 
(TILAb) score, T, which is a combination of the lymphocyte-to-tumour ratio and their co-localization, as defined 
below,
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where C is a co-localization measure and M or S can be used as a co-localization measure. Right half of the above 
equation shows the lymphocytes-to-tumour ratio in WSI. We normalize the range of TILAb score between 0 to 
1 by dividing it by a factor of 2. The proposed TILAb score objectively quantifies the TILs and its formulation is 
generic enough to work with both Morisita-Horn and Shannon diversity indices. Figure 5 shows the distribu-
tion of TILAb score using Morisita-Horn index based co-localization at different percentages of lymphocytes. It 
can be seen that both Morisita-Horn and Shannon diversity indices have relatively small values even with high 
lymphocytic percentage, whereas the TILAb score increases with the increase in lymphocytic infiltration (See 
Supplementary Section 1). Moreover, TILAb score remains same for different tumour and lymphocyte density 
with same ratio (See Fig. S3).

Survival analysis.  The TILAb score based statistical analysis is performed for DFS in order to demonstrate 
its prognostic significance as an independent biomarker. Kaplan-Meier39 and Cox proportional-hazards model40 
are used for survival and hazard analyses, respectively. To stratify patients into high-risk (short-term survival) and 
low-risk (long-term survival) groups, we find an optimal cut-point on the TILAb score value from the modelling 
subset where the statistical significance of the difference in DFS between the two groups is the largest. Log-rank 
test based p value is used to assess the statistical significance of the survival stratification observed between cases 
predicted to be short-term and long-term DFS where p < 0.05 is considered significant. For multivariate analysis, 
Cox proportional-hazards model is used which simultaneously evaluates the effect of several factors on survival. 
We report the hazard ratio along with lower and upper 95% confidence interval. Global statistical significance of 
the model is measured by the Wald test.
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Figure 5.  Plots of Morisita-Horn, Shannon diversity and TILAb indices for different percentages of 
lymphocyte. At each point, the percentage of tumour is equal to 1 – percentage of lymphocyte.
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Implementations.  We made use of the open source Keras and Tensorflow libraries to train our tissue region 
classifier network. All the training is done on Scan 3XS computer with Intel(R) Xeon(R) processor (E5-2690) and 
two NVIDIA TitanX 12GB GPUs. The trained model is then used to get the probability maps of WSI images. The 
lymphocytes and tumour probability maps are used to compute the TILAb score according to the Eq. (3). All the 
statistical analysis including p-values, c-index, Kaplan-Meier and Cox proportional-hazards analysis are done 
using standard R packages i.e. survival, cvAUC, ROCR, and survMisc.

Results
Tissue region classification.  In order to get a strong baseline multi-class Tissue Region Classifier 
(TRC) model, we employ five state-of-the-art convolutional neural network models (ResNet5030, DenseNet31, 
Inception32, Xception33 and MobileNet34), denoted as TRC-1 to TRC-5 respectively. Table 2 gives the quantita-
tive performance of these TRCs for multi-class patch level classification on the validation dataset; details of the 
comparative performance analysis can be found in Table S1 in the Supplementary Materials. Among the five clas-
sifiers, MobileNet (TRC-5) shows superior performance as compared to the other networks. It is a light-weight 
network that leverages separable convolutions to reduce the number of required parameters and computations, 
resulting in consumption of relatively less memory and computational resources and making it an attractive 
choice for the processing of multi-gigapixel whole slide images. For evaluation of proposed approach, we used 
both the best performing (TRC-5) and the least performing (TRC-1) tissue region classifiers for downstream 
analysis.

Sample visual results for tissue region classification obtained with TRC-5 are shown for illustration in Figs 6 
and S4, where tumour, lymphocytic, stromal and non-ROI regions are shown in different colours â€“ see detailed 
confusion matrix in Fig. S5 in the Supplementary Materials. Lymphocytic regions are classified with the highest 
accuracy whereas tumour and non-ROI regions show slight overlap. In general, TRC-5 gives the best classifica-
tion performance, as can also be seen in the Precision-Recall curve in Fig. S6, which shows relatively high values 
of True Positive Rate (TPR) and low values for False Positive Rate (FPR) for both tumour and lymphocyte areas.

TIL quantification and TILAb score.  The score for co-localization of tumour and lymphocytes for each 
tissue section is computed using the Eq. (1). The TILAb score at WSI level is also computed according to Eq. 
(3) and later used for the survival analysis. Figures 7 and S7 show the co-localization scores of different tissue 
segments in the WSI along with the WSI level TILAb score. For evaluating the TILAb score’s performance with 
manual marking, tissue segments on a WSI are marked for the presence (T+) and absence (T−) of TILs by an 
expert pathologist (SAK). Five different performance measures are used to evaluate the performance of the pro-
posed method, as shown in Table 3. Co-localization score based on the best performing region classifier (TRC-5) 
achieved 88.96% Area Under the Curve (AUC). It is pertinent to mention that the least performing region classi-
fier (TRC-1) also performed reasonably well with 87.54% AUC.

Survival analysis.  The prognostic significance of TILAb score for DFS is investigated using Kaplan-Meier 
(KM) curves and Cox hazard analyses by conducting univariate and multivariate analysis of digital, clinical, 
and pathological parameters. We propose the TILAb score based prognostic model to predict the binary out-
come of DFS. The prognostic model finds the optimal cut-off point for TILAb score on the modelling subset 
and uses that cut-off on the test subset for binary prediction. The proposed TIL quantification method con-
tains one hyper-parameter which is the size of a grid-cell. We experimented with eight different neighbour-
hood sizes on tissue section to investigate their impact on survival analysis. The size of the smallest grid-cell 
is 0.28 mm × 0.28 mm and we used a fixed step size of 0.14 mm for increment in grid-cell size, up to the largest 
grid-cell of size 1.2 mm × 1.2 mm. Table 4 shows that our proposed TILAb score is statistically significant for all 
sizes with both best and least performing tissue region classifiers (TRC-1 and TRC-5). However, the standard 
non-normalized Morisita-Horn and Shannon diversity measures show significant results only for the smallest 
grid-cell size when using the best performing region classifier (TRC-5). This indicates the significance of TILAb 
score for DFS analysis. Moreover, the high concordance indices (c-indices) of the prognostic models are also evi-
dence of the predictive ability of proposed models. Tables 5 and S2 (in Supplementary Materials) lists the c-index 
value for both DFS and OS models. Models for DFS achieve high c-index value as compare to the models for OS. 
On the other hand, models with different colocalization methods (TILAb-MH, TILAb-SD) show similar results 
within DFS and OS. Kaplan-Meier curves in Fig. 8 show that the proposed TILAb score is significantly associated 
with long term (low risk) DFS of OSCC patients (p = 0.00062). However, the lymphocytic percentage in a WSI 
without any correlation with tumour does not show any statistical significance. The proposed digital TILAb score 
has higher statistical significance as compared to the manual TIL score given by expert pathologists (SM and AL) 
after visual inspection. Kaplan-Meier curves for other clinical and pathological parameters are shown in Fig. S8.

Classifiers Accuracy Sensitivity Specificity F1-Score AUC

TRC-1 (ResNet5030) 94.04 88.19 96.03 88.08 97.88

TRC-2 (DenseNet31) 95.40 90.80 96.94 90.78 98.56

TRC-3 (Inception-v332) 95.84 91.91 97.25 91.70 98.86

TRC-4 (Xception33) 95.94 92.16 97.32 91.88 98.83

TRC-5 (MobileNet34) 96.31 92.66 97.55 92.62 98.91

Table 2.  Quantitative performance of five different tissue region classifiers on validation dataset of 105 patches.

https://doi.org/10.1038/s41598-019-49710-z


8Scientific Reports |         (2019) 9:13341  | https://doi.org/10.1038/s41598-019-49710-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

Results of the univariate analysis of prognostic significance of digital, clinical and pathological parameters 
on the test subset are shown in Fig. 9. We employed Cox proportional hazards method for univariate analysis 
for both quantitative and categorical predictor variables. The clinical parameters do not show any significant 

Figure 6.  Tissue region classification results by TRC-5 where tumour, lymphocytic, stromal and non-ROI 
regions are represented by red, green, blue and black colours, respectively.

5 mm 5 mm

0.2388
0.0763
0.4686
0.1183

TILAb = 0.2283

ba

Figure 7.  (a) Whole slide image at low resolution (1.5×) with tumour and lymphocytic region predictions 
overlaid in red and green colours, respectively. (b) Tumour -lymphocyte co-localization map along with co-
localization score for each tissue section in upper right corner and WSI level TILAb score. Colour codes map 
the co-localization score to respective tissue sections.
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correlation with DFS, with the confidence interval range of hazard ratios (lower and upper 95% bounds) being 
quite large, except for age. The pathological parameters show better association with DFS as compared to clini-
cal parameters especially tumour grade and manual quantification of TILs. Among digital scores, the proposed 
TILAb score is shown to be statistically significant (p = 0.0065) with hazard ratio of 0.0001 (1.446 × 107 − 0.0769). 
We also investigate the prognostic value of the TILAb score in the context of other pathological parameters such 
as grade, stage and patterns, as shown in Table 6. For this purpose, we conduct the multivariate Cox proportional 
hazards analysis using the TILAb score adjusted by other histological features, as shown in Table 6. TILAb score 
is significant when combined with pathological features. Additionally, TILAb score is also significant when com-
bined with grade, stage or pattern.

Discussion and Conclusion
The presence of lymphocytes in the vicinity of tumour cells has been reported to carry high prognostic value14,15. 
Quantification of TILs can not only significantly supplement the clinical cancer staging information but could be 
used as an accurate predictor of disease progression8–10. The abundance of TILs in a tissue slide (or its digitized 
WSI) indicates the host immune response against cancer and/or response to treatment. The density and spatial 
arrangement of TILs is correlated with improved overall survival (OS) and longer DFS. However, the manual 
quantification of TIL abundance is subjective, leading to inter-/intra- observer variability and lacking diagnostic 
reproducibility.

We propose a deep learning based approach for identification and quantification of TILs in OSCC cases. 
A digital score of TIL Abundance is computed and its prognostic potential is investigated for DFS in OSCC 
patients. The biologically significant regions in tissue such as tumour, lymphocytes, and stroma are classified 
using convolutional neural network. Several techniques are available in literature for detection and classification 
of histological structures in WSI images19,41–45. However, very few are used for downstream prognostic analysis 
for DFS. In this study, the results of tumour and lymphocytic region classification are used to compute the TIL 
abundance score (TILAb) followed by its evaluation as a prognostic marker. For tissue region classification, we 
experiment with different state-of-the-art CNN based image classifiers. We have chosen the classifiers giving the 

Classifiers Accuracy Sensitivity Specificity F1-Score AUC (95% CI)

TRC-1 80.19 85.45 74.51 81.74 87.54 (80.95–94.12)

TRC-5 79.05 79.69 78.05 82.26 88.96 (82.68–95.13)

Table 3.  Performance of tissue section classification into TIL positives and negatives.

Region 
Classifier

Quantification 
Methods 1 2 3 4 5 6 7 8

TRC-1

Morisita-Horn (MH) 0.1590 0.1610 0.1560 0.3250 0.2340 0.4760 0.4760 0.4760

Shannon Diversity (SD) 0.1590 0.1610 0.1610 0.3250 0.2190 0.6550 0.4760 0.4760

TILAb-MH 0.0146 0.0258 0.0146 0.0012* 0.0258 0.0006* 0.0020* 0.0006**
TILAb-SD 0.0146 0.0146 0.0258 0.0146 0.0258 0.0258 0.0006** 0.0006**

TRC-5

Morisita-Horn (MH) 0.0416 0.0666 0.1030 0.1800 0.0666 0.1800 0.2340 0.1790

Shannon Diversity (SD) 0.0416 0.0666 0.0666 0.1160 0.0666 0.1800 0.2340 0.1790

TILAb-MH 0.0191 0.0191 0.0077* 0.0077* 0.0258 0.0236 0.0020* 0.0038*
TILAb-SD 0.0191 0.0359 0.0146 0.0258 0.0110 0.0146 0.0020* 0.0020*

Table 4.  Comparison of the different TIL quantification methods based on their prognostic significance 
(logrank test based p-values) at different grid-cell sizes (smallest to largest). [a] Significance codes: 0.05, 0.01*, 
0.001**.

Grid-Cell

TRC-1 TRC-5

TILAb-MH TILAb-SD TILAb-MH TILAb-SD

C-Index Lower CI Upper CI C-Index Lower CI Upper CI C-Index Lower CI Upper CI C-Index Lower CI Upper CI

1 0.8700 0.7489 0.9911 0.8700 0.7489 0.9911 0.8650 0.7297 1.0000 0.8650 0.7297 1.0000

2 0.8700 0.7497 0.9903 0.8650 0.7416 0.9884 0.8450 0.7093 0.9807 0.8450 0.7079 0.9821

3 0.8550 0.7265 0.9835 0.8500 0.7182 0.9818 0.8400 0.7020 0.9780 0.8500 0.7167 0.9833

4 0.8400 0.6999 0.9801 0.8500 0.7182 0.9818 0.8450 0.7086 0.9814 0.8450 0.7086 0.9814

5 0.8450 0.7086 0.9814 0.8450 0.7065 0.9835 0.8350 0.6921 0.9779 0.8400 0.6999 0.9801

6 0.8300 0.6825 0.9775 0.8350 0.6894 0.9806 0.8400 0.6999 0.9801 0.8350 0.6908 0.9792

7 0.8300 0.6825 0.9775 0.8300 0.6825 0.9775 0.8350 0.6934 0.9766 0.8250 0.6750 0.9750

8 0.8200 0.6696 0.9704 0.8250 0.6725 0.9775 0.8400 0.6992 0.9808 0.8500 0.7160 0.9840

Table 5.  C-Indices (with 95% CI) of TRC-1 and TRC-5 based prognostic models for DFS at different grid-cell 
sizes (smallest to largest).
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highest (TRC-5) and the lowest (TRC-1) patch level classification accuracy for further analysis of TIL detection, 
computing the abundance score and survival analysis. The results obtained by both of the classifiers are statisti-
cally significant.

Detection of clinically significant histopathological regions is followed by the detection and quantification 
of TILs. In this regard, Saltz et al.16 have studied the correlation between TIL spatial organization and molecular 
characteristics in histology images. They have used CNN for detection of lymphocytes in tissue regions, which 
they referred to as TILs. In contrast, we considered only those lymphocytes as TILs that have infiltrated into (or 
are co-localized with) tumour regions. Moreover, Saltz et al. used affinity propagation algorithm to identify/
quantify the local spatial patterns in the detected lymphocytes for survival analysis. In this work, the infiltration 
of lymphocytes in the tumour region is quantified by employing normalized versions of statistical co-localization 

Figure 8.  Kaplan Meier (KP) curves for disease free survival of OSCC on test subset. Top row contains the KP 
curves for pathological parameters (stage, grade, and manual TIL quantification) whereas bottom row shows the 
KP curves of digital parameters (Lymphocyte percentage in WSI, TILAb score using TRC-1 and TRC-5). The 
optimal cut-point values for digital parameters are 0.017, 0.124 and 0.137, respectively.
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Figure 9.  Univariate analysis for clinical (red), pathological (green) and digital (blue) parameters. Hazard ratios 
are represented by a filled circle whereas edges of each line represent the lower and upper confidence interval of 
0.95%. p-value using Wald test is shown on the right end for each parameter. Digital parameters are computed 
using TRC-5 predictions.
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measures of Morisita-Horn37 and Shannon Diversity38 indices. Recently, some studies have used ecological meas-
ures like Morisita-Horn and Getis-Ord46 for quantifying immune-cancer co-localization and hotspot analysis. For 
instance, Maley et al.47 have reported the immune-cancer co-localization as a prognostic factor for breast cancer. 
Nawaz et al.48 have used hotspot analysis to identify the statistically significant hotspots of cancer and immune 
cells. Both of the above studies used handcrafted feature-based machine learning methods for identification of 
tumour and immune cell areas. In contrast, we have used a deep learning based approach for identifying tumour 
and lymphocyte rich regions at patch level which have been shown to be more accurate. Moreover, the normal-
ized TIL abundance score is computed as a combination of lymphocyte-to-tumour ratio and their statistical 
co-localization in a WSI. In summary, the proposed TILAb score is a digital biomarker which is based on more 
accurate classification of tumour and lymphocytic regions, is motivated by the biological definition of TILs as 
tumour infiltrating lymphocytes, and is objective and reproducible.

The prognostic significance of this score for DFS is investigated by employing univariate and multivariate 
analyses using clinico-pathological parameters. We analyse the prognostic significance of the TILAb score using 
Cox proportional hazard model. The TILAb score shows good statistical significance in both univariate (Table 4) 
and multivariate (Table 6) analyses (p < 0.05). Therefore, the TILAb score can be used as an independent prog-
nostic parameter in OSCC patients. The Kaplan-Meier curves showed the ability of TILAb score to stratify patents 
into long-term (low risk) and short-term (high risk) DFS (p = 0.0006). Although the main focus of the paper 
is on DFS, besides DFS the prognostic significance of TILAb score for overall survival is also investigated. The 
Kaplan Meier curves are shown in Fig. S9 in the supplementary material which illustrates that the TILAb score 
gives good separation for overall survival too. To highlight the independence of the proposed model on initial 
image selection, the 3-fold cross validation with random initial image selection is used for DFS. The KM curves 
and associated p-values, shown in Fig. 10, illustrate that the proposed models (TRC-1 and TRC-5) are prognos-
tically significant for different sets of training and test splits. Moreover, to show the robustness of our method, 
the C-indices (with 95% confidence intervals) of prognostic models for disease free survival and overall survival 
are also computed and shown in Tables 5 and S2 respectively. The results of the proposed method are also in 
agreement with previous findings based on manual and immunohistochemistry based TIL quantification26,49,50 
in OSCC. Fang et al.50 analysed the prognostic significance of tumour infiltrating immune cell in OSCC. The 
immune cells were identified by their specific markers (CD8, CD4, T-bet, CD68 and CD57). High CD8 (T-cells) 
and CD57 (NK-cell) expression were significantly associated with longer survival.

Hematoxylin & Eosin staining is routinely used in pathology labs around the globe in clinical practice for 
cancer diagnostics. Automated methods for extracting information related to TILs from the whole slide images 
can help in treatment planning according to the immune response. The proposed framework for automated quan-
tification of TILs, computation of their abundance score, and its prognostic analysis of patient survival using 
OSCC histology images is the first of its kind. Even though the total number of cases involved in this study is 
limited (n = 70), some other studies have reported results on smaller cohorts51 (n = 48) or using tissue microar-
rays52 (TMAs), which contain much smaller snapshots of tumour /lymphocytes characteristics as compared to 
the whole slide images. Having said that, the results of this study need to be cross-validated on data from large 
multi-centric patient cohorts before they can be adopted in clinical practice.

In addition to the application to cancer resections and information about future behaviour, our proposed 
TILAb score can be applied to the initial biopsy specimen undertaken before surgical resection or chemoradio-
therapy. A biopsy and histological assessment is the gold standard for pre-operative diagnosis and a prerequisite 
for staging. As part of this assessment, pathologists report the presence/absence and comment on the density of 
the host lymphocytic response. The TILAb score can provide an objective quantification on this initial biopsy 
providing vital information about prognosis to the clinical team with the potential to guide treatment decisions 
and risk stratification.

p HR Lower 95% Upper 95%

A - Overall Significance (0.0334)

TILAb 0.0103 3.423e05 1.321e08 0.0887

Grade 0.3625 1.9720 0.4574 8.5003

Stage 0.2307 1.5280 0.7637 3.0587

Pattern 0.9387 1.0370 0.4105 2.6196

B - Overall Significance (0.0090)

TILAb 0.0085 6.701e5 5.232e08 0.0858

Grade 0.0745 2.3810 0.9177 6.1798

C - Overall Significance (0.0128)

TILAb 0.0061 3.267e05 2.044e08 0.0522

Stage 0.1377 1.6610 0.8499 3.2466

D - Overall Significance (0.0105)

TILAb 0.0038 2.243e05 1.610e08 0.0313

Pattern 0.1324 1.6750 0.8555 3.2803

Table 6.  Multivariate analysis of TILAb score along with other clinical parameters. TILAb score is computed 
with the Morisita-Horn as co-localization measure on TRC-5 predictions, while the p-value is computed using 
the Wald test.
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Code and Data Availability
The code of the proposed method is publicly available on github (https://github.com/TIA-Lab/TILAb-Score). We 
plan to release all the annotated data in the public domain, should this paper be accepted for publication.
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