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Development of a Reproducible 
Prognostic Gene Signature to 
Predict the Clinical Outcome in 
Patients with Diffuse Large B-Cell 
Lymphoma
Mohamad Zamani-Ahmadmahmudi1 & Seyed Mahdi Nassiri2

Alongside various clinical prognostic factors for diffuse large B-cell lymphoma (DLBCL) such as the 
international prognostic index (IPI) components (ie, age, tumor stage, performance status, serum 
lactate dehydrogenase concentration, and number of extranodal sites), prognostic gene signatures 
have recently shown promising efficacy. However, previously developed signatures for DLBCL suffer 
from many major inadequacies such as lack of reproducibility in external datasets, high number of 
members (genes) in a signature, and inconsistent association with the survival time in various datasets. 
Accordingly, we sought to find a reproducible prognostic gene signature with a minimal number of 
genes. Seven datasets—namely GSE10856 (420 samples), GSE31312 (470 samples), GSE69051 (157 
samples), GSE32918 (172 samples), GSE4475 (123 samples), GSE11318 (203 samples), and GSE34171 
(91 samples)—were employed. The datasets were randomly categorized into training (1219 samples 
comprising GSE10856, GSE31312, GSE69051, and GSE32918) and validation (417 samples consisting 
of GSE4475, GSE11318, and GSE34171) groups. Through the univariate Cox proportional hazards 
analysis, common genes associated with the overall survival time with a P value less than 0.001 and a 
false discovery rate less than 5% were identified in 1219 patients included in the 4 training datasets. 
Thereafter, the common genes were entered into a multivariate Cox proportional hazards analysis 
encompassing the common genes and the international prognostic index (IPI) factors as covariates, 
and then only common genes with a significant level of difference (P < 0.01 and z-score >2 or <−2) 
were selected to reconstruct the prognostic signature. After the analyses, a 7-gene prognostic signature 
was developed, which efficiently predicted the survival time in the training dataset (Ps < 0.0001). 
Subsequently, this signature was tested in 3 validation datasets. Our signature was able to strongly 
predict clinical outcomes in the validation datasets (Ps < 0.0001). In the multivariate Cox analysis, 
our outcome predictor was independent of the routine IPI components in both training datasets 
(Ps < 0.0001). Furthermore, our outcome predictor was the most powerful independent prognostic 
variable (Ps < 0.0001). We developed a potential reproducible prognostic gene signature which was able 
to robustly discriminate low-risk patients with DLBCL from high-risk ones.

Diffuse large B-cell lymphoma (DLBCL) as the most common type of lymphoma in adults accounts for approxi-
mately 30% of all cases of lymphoma1,2.

Development of prognostic gene signatures was started in a study conducted by Alizadeh et al.3, who proposed 
2 distinct subtypes of DLBCL (ie, germinal center B cell-like [GCB] and activated B cell-like [ABC]) based on 
gene expression profiling. The authors indicated that the overall survival (OS) time was significantly higher in 
patients with GCB-DLBCL than in those with ABC-DLBCL. In a study by Rosenwald et al.4, another molecular 
subtype of DLBCL (type 3), which did not express the gene characteristics of either GCB or ABC DLBCL, was 
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added to the previous subtypes. In addition, the authors proposed a 17-gene signature which could predict OS 
after chemotherapy. Via gene expression profiling and supervised machine learning, a 13-gene predictive model 
was reconstructed in 58 patients with DLBCL5. Surprisingly, their results revealed that the clinical outcome was 
not significantly different between 2 groups of patients based on the 90-gene model proposed by Alizadeh et 
al.3. Via a statistical method based on Bayes’ rule, a classifier comprising 27 genes was developed to subtly assign 
patients with DLBCL to ABC and GCB subgroups and a concluding 14-gene model was proposed as the final sub-
group predictor6. Lossos et al.2, seeking to develop a predictive model using prognostic genes previously identified 
as single prognostic genes or as a member of prognostic signatures, suggested a 6-gene model among 36 genes as 
the final prognostic signature. Finally, a 108-gene model was created using a combination of 3 gene-expression 
signatures—namely “germinal-center B-cell,” “stromal-1,” and “stromal-2”—by Lenz et al.7. This large signature 
could predict survival in CHOP-treated or R-CHOP treated patients.

Despite the introduction of various prognostic gene signatures, there are still many disadvantages curtailing 
the clinical use of these signatures. Indeed, the most salient disadvantage of the previously developed signatures 
is lack of reproducibility in various datasets, with many of the genes in the proposed prognostic signatures failing 
to show a significant association with survival in external validation analyses (See the Results.) Furthermore, our 
analysis showed that many of these genes failed to exhibit a consistent prognostic pattern in different datasets as 
some genes with positive associations with the survival time in a dataset were negatively associated with survival 
in another dataset (See the Results). In addition, some of these signatures are considerably large and contain large 
numbers of genes (90 genes, 27 genes, and 180 genes in signatures developed by Alizadeh et al.3, Wright et al.6, 
and Lenz et al.8, respectively), rendering the clinical application of such large signatures difficult or impossible. 
Moreover, these developed signatures have shown minimal common genes with each other. For example, there 
were no common genes in the models derived by Shipp et al. (2003) and Rosenwald et al.4. Similarly, BCL6 is the 
only common gene between signatures developed by Losses et al.2, Rosenwald et al.4, and Wright et al.6.

As another disadvantage, some of these studies used old microarray platforms, which might not be compatible 
with new platforms. For instance, some genes in Lymphochip-spotted cDNA microarrays3,4 cannot be found in 
new Affymetrix arrays.

Given all the above mentioned problems, we endeavored to develop a reproducible prognostic gene signature 
with a minimal number of genes using a strict pipeline in patients with DLBCL. Accordingly, using 4 training 
datasets, we identified common genes associated with the OS time in 1219 patients through stringent criteria. We 
reconstructed a prognostic signature with the extracted common genes and validated it externally in 417 patients 
included in 3 validation datasets. Finally, we produced a reproducible 7-gene signature, which was significantly 
associated with the survival time in both training and validation datasets and was by far the most powerful inde-
pendent prognostic factor in comparison with the prognostic components of the IPI.

Results
Extraction of the common genes associated with survival and the reconstruction of the prog-
nostic signature.  First, search was conducted to find the common genes associated with survival between 
the 4 training datasets, encompassing 1219 patients. Our analysis revealed that 12 genes consistently had signifi-
cant associations with OS at a P value less than 0.001 and an FDR less than 5% in all the datasets (Supplementary 
Table 1). The common genes included APOC1, C5orf30, CALD1, CD84, CSF2RA, GPNMB, ITPKB, LPP, PDLIM4, 
PLAU, RTN1, and RGS3. These genes showed consistent expression patterns in the 4 datasets, with 11 out of the 12 
genes being positively associated with survival and the remaining gene (C5orf30) being negatively associated with 
survival (Supplementary Table 1). These genes also emerged as members in the class predictors developed using 2 
different algorithms, which revealed that their expressions were significantly different between the 2 classes (long 
survival vs. short survival).

More robust and reliable findings were obtained by entering the common genes into the multivariate Cox 
analysis, where various components of the IPI and the common genes were considered as covariates. In this stage, 
only genes which reached a significant level were retained. Hence, genes with a P value less than 0.01 and a z-score 
greater than 2 or below −2 were selected to reconstruct the prognostic signature. Our analysis retained 7 genes—
namely APOC1, CALD1, CD84, GPNMB, ITPKB, PLAU, and RTN1—and excluded 5 genes—namely c5orf30, 
LPP, CSF2RA, PDLIM4, and RGS3 (Table 1). Although some genes such as LPP, CSF2RA, PDLIM4, and RGS3 
passed the defined criteria in 1 dataset, they did not reach a significant level in another one (Table 1). Hence, they 
were excluded for subsequent analysis.

Finally selected 7 prognostic genes were used to reconstruct the prognostic gene signature as described in 
the method section. The patients in the training datasets were categorized into 2 groups based on this signa-
ture. As shown in Fig. 1, the survival time was significantly different between the low-risk and high-risk groups 
(P < 0.0001) in training datasets. In GSE10846, the rates of OS at 5 years in the low-risk and high-risk groups were 
75% and 43%, respectively. Likewise, in GSE31312, the rates of OS at 5 years in the low-risk and high-risk groups 
were 75% and 48%, correspondingly. These value for low-risk and high-risk groups in GSE32918&69051 were 
63% and 43%, respectively. The hazard ratio was significantly lower in the low-risk group than in the high-risk 
group in GSE10846 (HR = 0.39 [0.27–0.54]), GSE31312 (HR = 0.46 [0.33–0.63]) as well as in GSE32918&69051 
(HR = 0.51 [0.35–0.75]) (Ps < 0.0001) (Table 2).

Further analysis revealed that our developed prognostic signature was independent of routine IPI components 
in both training datasets (GSE10846: HR = 0.39 [0.26–0.59], GSE31312: (HR = 0.49 [0.34–0.72]) (Ps < 0.0001). 
Our outcome predictor was the most powerful prognostic variable in the multivariate Cox proportional hazards 
analysis (Table 3). Among the various components of the IPI, only age was able to predict the outcome in both 
datasets (Ps < 0.01) (Table 3).
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External validation of the prognostic gene signature.  Next, the outcome predictor was checked to 
determine whether it could externally predict the outcome in the patients with DLBCL. Our results indicated 
that the developed signature was significantly associated with the clinical outcome of DLBCL in all the valida-
tion datasets, containing 417 patients, at a P value less than 0.0001 (Fig. 1). In GSE34171, our signature stratified 
the patients with distinct outcomes—with corresponding 5-year OS rates of 94% and 53% in the low-risk and 
high-risk groups, respectively. Additionally, in GSE4475, our signature divided the patients into 2 distinct out-
comes—with corresponding 5-year OS rates of 60% and 20% in the low-risk and high-risk groups, respectively. 
In GSE11318, the rates of OS at 5 years in the low-risk and high-risk groups were 60% and 35%, correspondingly 

Gewne Probe-set Coefficient HRA z score P value Deleted

GSE10846

APOC1 204416_x_at −0.29 0.75 −3.2 0.0016

C5orf30 221823_at 0.34 1.41 2.3 0.0217 Yes

CALD1 201615_x_at −0.18 0.83 −3.8 0.0001

CALD1 201616_s_at −0.34 0.71 −4.2 0.0000

CALD1 201617_x_at −0.24 0.78 −3.6 0.0003

CALD1 212077_at −0.29 0.75 −3.2 0.0015

CALD1 214880_x_at −0.25 0.78 −2.9 0.0037

CD84 211192_s_at −0.17 0.84 −3.1 0.0020

CSF2RA 207085_x_at −0.20 0.82 −3.0 0.0031 Yes

CSF2RA 210340_s_at −0.34 0.71 −4.9 0.0000 Yes

CSF2RA 211286_x_at −0.24 0.78 −2.9 0.0036 Yes

GPNMB 1554018_at −0.23 0.79 −3.4 0.0008

GPNMB 201141_at −0.34 0.71 −3.4 0.0006

ITPKB 235213_at −0.30 0.74 −4.2 0.0000

LPP 202821_s_at −0.20 0.82 −3.4 0.0007 Yes

LPP 202822_at −0.13 0.87 −1.2 0.2170 Yes

LPP 224811_at −0.07 0.93 −0.7 0.4820 Yes

LPP 235000_at −0.24 0.79 −2.3 0.0216 Yes

PDLIM4 211564_s_at −0.10 0.90 −1.9 0.0579 Yes

PDLIM4 214175_x_at −0.09 0.92 −1.4 0.1698 Yes

PLAU 205479_s_at −0.41 0.67 −2.7 0.0067

RGS3 203823_at −0.42 0.66 −2.7 0.0066 Yes

RTN1 203485_at −0.27 0.76 −3.7 0.0003

RTN1 210222_s_at −0.25 0.78 −2.7 0.0072

GSE31312

APOC1 204416_x_at −0.32 0.73 −4.0 0.000

C5orf30 221823_at 0.07 1.07 0.6 0.521 Yes

CALD1 201616_s_at −0.19 0.83 −2.5 0.013

CALD1 201617_x_at −0.32 0.72 −4.3 0.000

CALD1 214880_x_at −0.68 0.51 −4.7 0.000

CD84 211192_s_at −0.28 0.75 −2.9 0.004

CD84 230391_at −0.34 0.71 −3.7 0.000

CSF2RA 207085_x_at −0.02 0.98 −0.2 0.882 Yes

CSF2RA 210340_s_at −0.11 0.89 −1.0 0.315 Yes

CSF2RA 211286_x_at −0.10 0.90 −0.8 0.423 Yes

GPNMB 1554018_at −0.24 0.78 −2.9 0.003

ITPKB 235213_at −0.26 0.77 −3.1 0.002

LPP 202822_at −0.19 0.83 −2.6 0.010 Yes

LPP 241879_at −0.29 0.75 −3.9 0.000 Yes

PDLIM4 214174_s_at −0.26 0.77 −3.0 0.003 Yes

PLAU 205479_s_at −0.25 0.77 −3.2 0.003

PLAU 211668_s_at −0.38 0.69 −2.9 0.004

RGS3 203823_at −0.17 0.84 −1.2 0.227 Yes

RTN1 203485_at −0.26 0.77 −3.5 0.000

Table 1.  Analysis of multivariate Cox proportional hazards analysis of the common genes associated with 
survival time. AHazard ratio. Genes with a P value < 0.01 and z score >2 or <−2 were selected to reconstruct 
prognostic signature.
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(Fig. 1). The hazard ratios for GSE4475, GSE11318, and GSE34171 were 0.32 (0.19–0.54), 0.51 (0.35–0.76), and 
0.10 (0.02–0.45), respectively (Ps ≤ 0.001) (Table 2).

Final prognostic signature and subtype of diffuse large-B-cell lymphoma.  Our findings revealed 
that the survival time was significantly different between the 2 risk groups, constituted based on our signature, 

Figure 1.  Kaplan-Meier survival analysis of the final 7-gene prognostic signature in the training and validation 
datasets. The final signature was found to be significantly associated with overall survival at a P value < 0.0001 in 
both training and validation datasets.

P value HRA 95% CIB

Training datasets

GSE10846 0.000 0.39 0.27–0.54

GSE31312 0.000 0.46 0.33–0.63

GSE69051&32918 0.000 0.51 0.35–0.75

Validation datasets

GSE4475 0.000 0.32 0.19–0.54

GSE11318 0.001 0.51 0.35–0.76

GSE34171 0.000 0.10 0.02–0.45

Table 2.  Statistics of Cox proportional hazard analysis of the final prognostic signature in the training and 
validation datasets. AHazard ratio, BHazard ratio 95% confidence interval. Significant P values were bolded.

Variable

GSE10846 GSE31312

P value HRA 95% CIB P value HR 95% CI

Our signature 0.000 0.39 0.26–0.59 0.000 0.49 0.34–0.72

Sex (male vs. female) 0.677 0.9 0.64–1.3 0.15 1.3 0.91–1.8

Age (≥60 vs. <60 years) 0.000 2.0 1.4–3.1 0.003 1.7 1.2–2.4

Molecular subtype

GCB-like vs. type 3 0.396 0.8 0.43–1.4 0.754 0.9 0.51–1.6

ABC-like vs. type 3 0.082 1.6 0.94–2.8 0.538 1.2 0.68–2.1

ECOGC (≥2 vs. <2) 0.000 2.2 1.5–3.2 0.033 1.5 1.0–2.2

Stage (III/IV vs. I/II) 0.15 1.3 0.90–2.0 0.01 1.7 1.1–2.5

LDHD 0.000 1.1 1.0–1.2 0.114 1.4 0.92–2.1

NESE (≥2 vs. <2) 0.322 1.4 0.71–2.9 0.003 1.7 1.2–2.5

Table 3.  Multivariate analysis of the final prognostic signature and common prognostic variables in DLBCL 
(the IPI components). AHazard ratio, BHazard ratio 95% confidence interval, CECOG performance status, 
DLactate dehydrogenase, DNo. of extranodal sites. Our signature was by far the most powerful independent 
prognostic factor. Significant P values were bolded.
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when applied in all the molecular subtypes of DLBCL—namely ABC-like, GCB-like, and type 3 (Ps ≤ 0.001) 
(Fig. 2). Hence, this outcome predictor was able to subdivide the patients within each subgroup into distinct risk 
groups.

Our results also showed that the expressions of CALD1, ITPKB, PLAU, and RTN1 were significantly dimin-
ished in the subtype with inferior survival (ie, ABC-like) compared with the subtype with better survival (ie, 
GCB-like) in both datasets (ie, GSE31312 and GSE10846) (Ps < 0.05) (Fig. 3). In GSE31312, the expression of 
GPNMB was significantly lower in the ABC-like subtype than in the GCB-like subtype (Ps < 0.05) (Fig. 3).

Extraction of a revised prognostic gene signature from the final prognostic gene signa-
ture.  The final signature was revised after the validation step. The goal of this step was to minimize the number 
of the genes to obtain a more practical signature which could be technically simple and applicable for routine 
clinical use. Our analysis showed that a combination of 3 genes—namely APOC1, RTN1, and PLAU—was able 
to divide the patients into high-risk and low-risk groups with distinct survival times in both training and valida-
tion datasets (Ps < 0.0001) (Fig. 4). The rates of OS at 5 years in the low-risk and high-risk groups for all datasets 
were approximately similar to ones in final prognostic signature (Fig. 4). Furthermore, the hazard ratios were 
significantly higher in the high-risk group than in the low-risk group (Ps ≤ 0.001) (Table 4). The hazard ratio of 
the revised prognostic signature was slightly higher than that of the final prognostic signature (Tables 2 and 4).

Similar to the final prognostic gene signature, the revised prognostic signature was also independent of the 
IPI factors (Ps ≤ 0.001). This revised signature was by far the most powerful independent prognostic factor only 
in GSE31312 (HR = 0.47 [0.33–0.67]), but not in GSE10846 (HR = 0.61 [0.42–0.89]) (Table 5). In GSE10846, the 
hazard ratio of the revised signature was higher than that of the final signature in multivatiate analysis (0.61 vs. 
0.39) (Tables 3 and 5).

Figure 2.  Kaplan-Meier survival analysis of the final 7-gene prognostic signature in three molecular subtypes 
of DLBCL (ie, ABC-like, GCB-like, and type 3). The survival time was significantly different between two risk 
groups constituted based on final signature in each molecular subtypes (Ps ≤ 0.001).

https://doi.org/10.1038/s41598-019-48721-0
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Evaluation of the prognostic genes of 3 previously published signatures in GSE10846 and 
GSE31312.  As shown in Supplementary Table 2, except for PLAU and ITPKB, the majority of the other genes 
in the prognostic signatures proposed by Lossos et al.2, Rosenwald et al.4, and Wright et al.6 had no consistent 

Figure 3.  Comparison of the expression of our predictor components in three molecular subtypes of DLBCL 
(ie, ABC-like, GCB-like, and type 3). Upper and bottom panels indicate GSE10846 and GSE31312 datasets, 
respectively. Asterisk indicates significance compared with the ABC-like subtype (P < 0.05).

Figure 4.  Kaplan-Meier survival analysis of the revised final prognostic signature in the training and validation 
datasets. The revised final signature was found to be significantly associated with overall survival at a P 
value < 0.0001 in both training and validation datasets.

P value HRA 95% CIB

Training datasets

GSE10846 0.000 0.57 0.42–0.78

GSE31312 0.000 0.46 0.34–0.65

GSE69051&32918 0.000 0.53 0.30–0.78

Validation datasets

GSE4475 0.000 0.35 0.21–0.58

GSE11318 0.001 0.53 0.37–0.78

GSE34171 0.000 0.11 0.02–0.47

Table 4.  Statistics of Cox proportional hazard analysis of the revised final prognostic signature in the training 
and validation datasets. Significant P values were bolded. AHazard ratio, BHazard ratio 95% confidence interval.

https://doi.org/10.1038/s41598-019-48721-0
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associations with the survival time in the multivariate Cox analysis, where these genes were associated with 
long survival in one dataset and with short survival in another. Additionally, in case of consistent associations, 
the association was principally not significant in both datasets (Ps > 0.05) or it was significant in only 1 dataset 
(mainly GSE31312) (Supplementary Table 2).

Discussion
In the present study, we sought to develop a gene-based prognostic predictor which could accurately predict the 
survival time in patients with DLBCL. Finally, we succeeded in constructing a 7-gene prognostic signature which 
robustly and reliably predicted the clinical outcome in our training and validation groups. As presented above, 
although the previously published prognostic signatures for patients with DLBCL can predict survival in their 
corresponding studied patients, they fail to predict the outcome in external groups of patients. Hence, we pre-
sumed that reconstruction of a prognostic signature from the genes commonly associated with the survival time 
in different groups of patients might resolve this problem. When mining the literature, we found that in studies 
with workflow similar to that in our investigation, an FDR below 10% or 15% was reasonable for the selection 
of significant genes. We mostly selected the common genes among genes significantly associated with survival 
with an approximate FDR of 0 (Supplementary Table 1), which means that the probability of a false positive was 
approximately 0.

We used the gene signatures of APOC1, CALD1, CD84, GPNMB, ITPKB, PLAU, and RTN1 to reconstruct 
the final outcome predictor. Among them, APOC1, GPNMB, and PLAU were previously defined as members of 
the stromal-1 signature in a 108-gene model comprising 3 gene-expression signatures termed “germinal-center 
B-cell”, “stromal-1”, and “stromal-2” developed by Lenz et al.8. In addition, ITPKB and PLAU appeared in the out-
come gene signatures of DLBCL proposed by Wright et al.6 and Rosenwald et al.4, respectively. Chiming in with 
our findings, these genes were associated with a long survival time in all these studies.

APOC1 as an inflammation-related gene was found to be positively associated with the survival time in 
patients with DLBCL7. In addition, in breast cancer cells, this gene was regarded as an important tumor suppres-
sor and cell proliferation inhibitor8. In contrast, it was reported that this gene was highly expressed in late-stage 
lung cancer9. Several studies have confirmed the potential role of ITPKB as an ideal tumor aggressiveness bio-
marker or favorable prognosis factor in DLBCL6,10,11. ITPKB (inositol-trisphosphate [IP3] 3-kinase B) was 
recently characterized as a critical tumor suppressor gene whose deficiency prompted DLBCL. Furthermore, 
ITPKB-activating agents can have curative potential10. This gene was among the gene cocktail used for the accu-
rate categorization of DLBCL samples into ABC-like and GCB-like subtypes via a nuclease protection assay11. 
GPNMB (glycoprotein non-metastatic melanoma protein B) is highly expressed in different tumor cell types 
including glioma cells12, bone metastatic breast cancer cells13,14, low-metastatic melanoma cell lines15, and mel-
anoma cells16. GPNMB was considered an important tumor suppressor in DLBCL17 and was reported to be dif-
ferentially expressed in mantle cell lymphoma (MCL)18. PLAU (Plasminogen Activator, Urokinase) and CALD1 
(Caldesmon 1)—accompanied by DCN, SPARC, FN1, MMPs, and PDGFRs—are members of genes related to 
extracellular matrix remodeling19. Concurrent overexpression of MMPs and PLAU was associated with favorable 
prognosis in patients with DLBCL4,7. Additionally, overexpression of PLAU and CALD1 was demonstrated in 
classical Hodgkin lymphoma tissues19. In contrast, high levels of MMPs and PLAU were associated with tumor 
invasion in some human solid tumors20,21. In our study, we found that RTN1 was a favorable prognostic gene in 
both final and revised signatures. A previous study confirmed upregulation of RTN1 in CXCR4− DLBCL versus 
CXCR4+ DLBCL and reported that CXCR4− and CXCR4+ subgroups were associated with a better and poorer 
survival time, respectively22.

Although we did not include c5orf30, LPP, CSF2RA, PDLIM4, and RGS3 in our final gene signature, they can 
be considered single prognostic genes. Two of these genes—namely CSF2RA and PDLIM4—were previously 
determined as members of the stroma-1 signature, developed to predict the outcome of patients with DLBCL7.

Variable

GSE10846 GSE31312

P value HRA 95% CIB P value HR 95% CI

Our signature 0.000 0.61 0.42–0.89 0.000 0.47 0.33–0.67

Sex (male vs. female) 0.824 1.0 0.67–1.4 0.118 1.3 0.93–1.8

Age (≥60 vs. <60 years) 0.000 2.1 1.4–3.2 0.004 1.7 1.2–2.4

Molecular subtype

GCB-like vs. type 3 0.469 0.8 0.44–1.4 0.585 0.9 0.50–1.5

ABC-like vs. type 3 0.025 1.8 1.1–3.1 0.554 1.2 0.67–2.1

ECOGC (≥2 vs. <2) 0.000 2.1 1.5–3.1 0.044 1.5 1.0–2.2

Stage (III/IV vs. I/II) 0.298 1.2 0.83–1.8 0.006 1.7 1.2–2.5

LDHD 0.000 1.1 1.06–1.2 0.059 1.5 0.99–2.2

NESE (≥2 vs. <2) 0.716 1.1 0.57–2.3 0.004 1.7 1.2–2.5

Table 5.  Multivariate analysis of the revised final prognostic signature and common prognostic variables in 
DLBCL (the IPI components). Our signature was by far the most powerful independent prognostic factor in 
GSE31312. Significant P values were bolded. AHazard ratio, BHazard ratio 95% confidence interval, CECOG 
performance status, DLactate dehydrogenase, DNo. of extranodal sites.
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In the current study, we developed a potential reproducible prognostic gene signature which was able to 
robustly discriminate low-risk patients with DLBCL from high-risk ones. In addition, we reconstructed a 3-gene 
signature from the final prognostic signature. Although the revised signature was not as powerful as the final 
signature, it was able to efficiently predict the outcome in both training and validation groups and was considered 
an independent prognostic parameter. Not only can these signatures be drawn upon in clinical approaches in 
tandem with other routine prognostic factors, but also they can be deemed molecular targets with a critical role 
in the biology of cancer.

Methods
A schematic diagram depicting the analysis pipeline in our study is presented in Fig. 5.

Training and validation datasets.  The Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) database was searched to find the gene expression profiling datasets of patients with DLBCL. Only 
datasets containing clinical metadata (especially the survival time) (11 datasets) were retained, and the rest was 
excluded. Additionally, every effort was made to select expression datasets from all types of microarray chips 
such as Affymetrix and Illumina, if possible. The datasets were downloaded in the SOFT file format and were 
subsequently transformed logarithmically using tools provided in the geWorkbench 2.5.1 package23, if necessary. 
We employed various strategies to integrate different datasets used in our study. First, most of our datasets were 
generated using Affymetrix chip and GPL570 platform (Table 6). Hence, gene expression data were generated 
using similar approaches in these datasets. Furthermore, we only analyzed genes, which are existed in all chips 
and platforms. As another step, we normalize expression data using MAS 5 algorithm in all datasets. Hence, if a 
dataset were originally normalized using another method, we downloaded that dataset in raw format and then 

Figure 5.  Schematic diagram depicting the analysis pipeline in this study.
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normalized it using MAS 5 method. More details on the clinical characteristics of the studied datasets are pro-
vided in Table 6. Some datasets with clinical metadata such as GSE57611, GSE23501, GSE93984, and GSE21846 
were deleted for a specific reason (Table 6). The datasets were randomly divided into training (n = 1219) and vali-
dation (n = 417) datasets. In brief, GSE10846 (n = 420), GSE31312 (n = 470), GSE32918 (n = 172), and GSE69051 
(n = 157) were used as training datasets, while GSE4475 (n = 123), GSE11318 (n = 203), and GSE34171 (n = 91) 
were utilized as validation datasets. Since GSE32918 and GSE69051 have originated from a similar research 
study24 and had some common samples, they were merged as a single dataset and named as GSE32918&69051. 
Number of samples for these datasets was determined after correction based on the common samples (172 sam-
ples for GSE32918 and 157 samples for GSE69051).

Identification of the common genes associated with survival in the training datasets.  The asso-
ciation between gene expression and OS was examined using the univariate Cox proportional hazards analysis. 
In this analysis, the association between a group of covariates (genes) and the response variable (the survival 
time) was evaluated. The univariate Cox analysis was performed using the BRB-Array tools developed by Dr. 
Richard Simon and the BRB-ArrayTools Development Team. In this analysis, the findings were strengthened 
by employing a strict pipeline and retaining only genes with a P value less than 0.001 and a false discovery rate 
(FDR) less than 5%. Then, the common genes which were significantly associated with OS between the training 
datasets were extracted. For this purpose, only common genes with consistent associations were selected, while 
genes with inconsistent associations (negatively associated with OS in a dataset and positively associated with 
OS in another) were excluded. We also considered therapeutic regimens in the datasets used in our survival 
analysis. Hence, in each dataset, only common genes associated with the survival between patients with distinct 
treatments were selected for subsequent analysis. Additionally, for the confirmation of whether these genes were 
commonly associated with OS in all the training datasets, a class prediction analysis was also performed using 2 
algorithms—namely support vector machine (SVM) and diagonal linear discriminant analysis (DLDA). In this 
analysis, 2 classes (ie, long survival [≥5 y] and short survival [<5 y]) were defined and thereafter classifiers, which 
could predict the 2 classes, were identified using 2 class prediction algorithms (ie, SVM and DLDA). The class 
prediction analysis was performed using the methods incorporated in BRB-Array tools.

Reconstruction of the prognostic gene signature.  The prognostic signature was developed as 
described previously2,25,26. In brief, the prognostic signature was reconstructed as a linear combination of the 
expression levels of the common genes and the z-score in the multivariate Cox regression analysis. Hence, at the 
first step, a multivariate Cox proportional-hazards regression analysis was performed for each gene, where all 
the individual components of the IPI (ie, age, stage, lactate dehydrogenase level, Eastern Cooperative Oncology 
Group [ECOG] performance status, and number of extranodal sites)27 and gene expression were entered as 
covariate variables. Additionally, sex and molecular subtype (ie, ABC-like, GCB-like, and type 3) were entered as 
another 2 variables into the multivariate analysis. The multivariate analysis was solely performed on the datasets 
with the clinical IPI data (ie, the GSE10846 and GSE31312). Afterward, the log-transformed normalized expres-
sion value of each gene was multiplied by the z-score. Finally, the prediction score was calculated for each patient 
as described in the following equation:

Dataset Number of patients Chip manufacturer Platform Exclusion reason

GSE10846 420 Affymetrix GPL570 —

GSE31312 470 Affymetrix GPL570 —

GSE32918 172 Illumina GPL8432 —

GSE69051 157 Illumina GPL14951 —

GSE4475 123 Affymetrix GPL96 —

GSE11318 203 Affymetrix GPL570 —

GSE34171 91 Affymetrix GPL570 —

GSE57611 37 Affymetrix GPL96

FDRs of genes 
significantly 
associated with 
survival were above 
95%

GSE23501 69 Affymetrix GPL570

FDRs of genes 
significantly 
associated with 
survival were above 
95%

GSE93984 60 Affymetrix GPL570
FDRs of significant 
associated genes with 
survival were above 
95%

GSE21846 29 Agilent GPL1708

FDRs of genes 
significantly 
associated with 
survival were above 
95%

Table 6.  Clinical characteristics of the microarray datasets used in our study.
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Subsequently, the patients were first ranked based on their prediction scores before they were classified into 2 
groups (>median value and <median value) and the survival times were compared between the groups using the 
Kaplan–Meier analysis and log-rank test at a P value less than 0.01. The survival analyses were performed using 
Survival (http://cran.r-project.org/package=survival) and SPSS 16.0 (Chicago, USA) packages.

Evaluation of the prognostic gene signature in the validation datasets.  The prognostic efficacy 
of the final developed gene signature was assessed externally in 417 patients as 3 validation datasets (GSE4475, 
GSE11318, and GSE34171). A workflow similar to the training datasets was performed. Similarly, the predic-
tor score was calculated in the validation samples based on the details provided above. Subsequently, 2 groups 
were constituted after ranking patients based on their predictor score and then the survival time was compared 
between the groups using the Kaplan–Meier analysis and log-rank test at a P value less than 0.01.

Prognostic signature and subtype of diffuse large-B-cell lymphoma.  Whether the survival time 
was significantly different between the groups constituted based on our signature in each molecular subtype of 
DLBCL (ie, ABC-like, GCB-like, and type 3) was also investigated using the Kaplan–Meier analysis. Additionally, 
the expressions of the members of the outcome predictor were compared between these subgroups using the 
one-way ANOVA test at a P value less than 0.05.

Extraction of a revised prognostic signature from the final prognostic signature.  The goal of 
this step was to minimize the number of the genes to obtain a more practical signature which could be technically 
simple and applicable for routine clinical practice. Efforts were made to find a signature with a minimal number 
of genes, which could predict the patients’ clinical outcome with a statistical power similar to that of the final 
prognostic signature. To that end, in each round, 1 gene was deleted from the final signature and then the pre-
diction ability of the remaining genes was tested using the Kaplan–Meier analysis and the log-rank test. A gene 
was considered a critical (hub) gene when its absence significantly reduced the prediction ability of the outcome 
predictor. Finally, critical (hub) genes were used to reconstruct a revised prognostic signature with the method 
applied for the final signature.

Association between the prognostic genes in the signatures of Lossos et al. (2004), Rosenwald 
et al. (2002), and Wright et al. (2003) and overall survival in the GSE31312 and GSE10846 data-
sets.  The ability of the prognostic genes in the previously published outcome predictors in the estimation of 
survival as well as the consistency of their associations with survival in the 2 big training datasets was evaluated 
by determining the association between the prognostic genes in the signatures of Lossos et al.2 (n = 6), Rosenwald 
et al.4 (n = 17), and Wright et al.6 (n = 14) and the OS time using the multivariate Cox proportional-hazards 
regression analysis in GSE31312 and GSE10846, as described above. Again, the IPI components and each gene 
were used as predictor variables and OS as the response variable.

Ethical standards.  Our study was performed using datasets deposited in GEO database. Hence, no ethical 
approval was required.

Data Availability
The datasets in the manuscript were deposited in GEO database (http://www.ncbi.nlm.nih.gov/geo/) with the 
accession number GSE10856, GSE31312, GSE69051, GSE32918, GSE4475, GSE11318, and GSE34171. Other 
supporting data are included as Supplementary Files.
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