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Ultra-fast genome comparison for 
large-scale genomic experiments
Esteban Pérez-Wohlfeil   , Sergio Diaz-del-Pino & Oswaldo Trelles

In the last decade, a technological shift in the bioinformatics field has occurred: larger genomes can now 
be sequenced quickly and cost effectively, resulting in the computational need to efficiently compare 
large and abundant sequences. Furthermore, detecting conserved similarities across large collections of 
genomes remains a problem. The size of chromosomes, along with the substantial amount of noise and 
number of repeats found in DNA sequences (particularly in mammals and plants), leads to a scenario 
where executing and waiting for complete outputs is both time and resource consuming. Filtering steps, 
manual examination and annotation, very long execution times and a high demand for computational 
resources represent a few of the many difficulties faced in large genome comparisons. In this work, 
we provide a method designed for comparisons of considerable amounts of very long sequences that 
employs a heuristic algorithm capable of separating noise and repeats from conserved fragments in 
pairwise genomic comparisons. We provide software implementation that computes in linear time 
using one core as a minimum and a small, constant memory footprint. The method produces both 
a previsualization of the comparison and a collection of indices to drastically reduce computational 
complexity when performing exhaustive comparisons. Last, the method scores the comparison to 
automate classification of sequences and produces a list of detected synteny blocks to enable new 
evolutionary studies.

Due to technological advances in the past few decades, sequencing whole genomes is becoming cheaper at an 
exponential rate1. As a result, an increasing collection of whole sequenced genomes is becoming publicly availa-
ble, ranging in size from less than two hundred thousand base pairs2 to more than 22 * 109 base pairs3. Sequenced 
genomes are increasing not only in number but also in breadth: larger eukaryotic genomes, such as those of 
mammals and plants, are being sequenced. These newly incorporated sequences are slowly completing our 
understanding of organismal evolution, answering questions such as “Which organism arose first?” and “Which 
evolutionary events caused species divergence?”. However, to improve our understanding of these topics, new 
data are being included in databases, but doing so comes at a price: the more genomes and larger genomes trend 
is aggravating a scenario where it is unthinkable to perform genomic experiments without the aid of extensive 
computational resources, but furthermore, even current computational methods are being left behind with the 
increasing complexity.

Currently, most of the handling, exploration and curation of genomic information (such as identifying coding 
regions or generating pairwise synteny maps) is performed manually and curated with platforms dedicated to 
this purpose, which often include a repository of precomputed genome comparisons. For instance, NARCISSE4, 
Genomicus5 and SynFind6 provide such data along with other tools for exploration purposes such as genome 
browsers and karyotype analysers7. Although these resources contain high-quality curated information, they 
usually rely on previously computed data and typically do not allow users to run new experiments on demand. As 
a result, when new experiments are supported by these platforms, it is common to employ restricted comparison 
methodologies such as gene-based approaches (see CoGe8) to lower computational demands. However, these 
approaches are often based on the BLAST9 algorithm, which was not initially designed for large pairwise genome 
comparisons.

Locally performing large genome comparisons will often require long running times and most likely starva-
tion of computational resources. Tools such as GECKO10, CGALN11 and MUMMER12 were created for large-scale 
comparisons of genomic sequences. However, computing a pairwise chromosome comparison usually takes from 
several minutes to hours depending on the length of the sequences, number of repetitions, and other factors, and 
the elapsed time increases quadratically when all chromosomes from two species are compared (i.e., n ∗ m com-
parisons). Furthermore, the previously mentioned algorithms spend most of their computation time processing at 
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a certain degree of exhaustiveness, producing results such as complete alignments or collections of high-scoring 
segment pairs (HSPs). However, in the case of all vs. all comparisons, more than 400 chromosome comparisons 
(e.g. 20 * 20 chromosomes) can be involved. The resulting comparisons for a large deal of the dataset will often be 
composed of repeats and noise, with a low degree of conserved syntenies. Thus, it seems natural to incorporate a 
prior, heuristic step that analyses whether a particular comparison is of interest and reduces the computational 
complexity of performing the exhaustive comparison.

Our proposal focuses on a pre-processing, visualization and classification system to effectively determine 
whether conserved similarities exist across a collection of genomic sequences, therefore enabling the analysis 
without requiring long computation times. Within this framework, several post-processing tasks can be per-
formed, such as detecting synteny blocks and large-scale genome rearrangements (LSGRs), tracing common 
ancestors of related organisms and placing new biological sequences on hierarchical trees.

In particular, we present a computational algorithm capable of extracting similarities from a pairwise genome 
comparison by indexing subsamples of inexact k-mers. Moreover, we also propose a heuristic and computa-
tional scoring metric to compute a scoring distance between sequences, which can be used to discard unrelated 
sequences in more exhaustive comparisons and hence speed up the comparison process. We show that our pro-
posed method is able to perform large comparisons of plant genomes with up to 4.23 * 109 base pairs in less than 
twenty minutes using one core and 1 GB of memory. In the case of mammalian organisms, our method can com-
pare complete families of chromosomes from species such as Homo sapiens and Mus musculus (which amounts to 
24 ∗ 21 = 504 comparisons) in less than 9 hours using only 1 core and 1 GB of memory. Our results are consistent 
and highly competitive (in terms of speed and quality) with other state-of-the-art software.

Results and Discussion
This manuscript describes a linear computational algorithm for the ultra-fast comparison of large genomic 
sequences based on inexact k-mer matching. Briefly, the method proceeds by the following steps: (1) two DNA 
sequences are received as inputs; (2) a word dictionary is built based on the query sequence; (3) the words in the 
reference sequence are matched to those in the dictionary using inexact subsampling; (4) matched words are fil-
tered based on uniqueness; (5) positional information is incorporated into a matrix representation, and the local 
optimum is found; and (6) a scoring distance is assigned to the comparison, and LSGRs are detected based on an 
iterative process. A workflow diagram of the process is depicted in Fig. 1.

Furthermore, a pipeline is provided for the exhaustive computation of conserved segments that re-uses the 
produced results. This method also outperforms current software in terms of the speed and is competitive in 
terms of quality of the results. See sections “Pipelined execution”, “Signal comparison” and “Sensitivity analysis 
and impact of the heuristic methodologies” in the Supplementary Material for a description of the methodology, 
quality assessment and further experiments. For information regarding the infrastructure employed in the com-
parisons, see “Infrastructure” in the Supplementary Material.

Figure 1.  Workflow diagram of the proposed methodology. The query and reference genomes are compared 
in an ultra-fast, pairwise, coarse-grained fashion to ultimately produce a dot plot and a scoring distance and to 
detect large-scale genome rearrangements. A k-mer dictionary is built based on the query, and the reference 
k-mers are matched using an inexact subsampling procedure. Only unique matches are kept and recorded 
in a down-scaled representation (matrix) that groups matches to form larger fragments. Last, the dot plot is 
produced, a scoring distance is assigned to the comparison, and the LSGRs are reported. Additionally, using the 
DNA blocks produced by the method, users can employ further sequence comparison programs to generate 
exhaustive alignments.
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The proposed method is implemented in the C programming language under the name “CHROMEISTER”. It 
is able to compare very large genomes (due to its complexity being linear in time and constant in space in terms 
of the size of the sequences) much faster than state-of-the-art methods while yielding significant, reusable and 
exploitable information. The following experiments have been set up to show the capabilities of the method:

•	 Similarity search.
•	 A very large pairwise comparison between the grass and common wheat genomes.
•	 A synteny map of 12 primate species comprising full genomes.

•	 Evolutionary events across multiple species. Detected synteny blocks are employed to trace evolutionary 
events across species.

•	 Comparison of computation time and memory requirements with those of other methods.

Very large pairwise comparison between the grass and common wheat (Aegilops tauschii and 
Triticum aestivum) genomes.  In general, plants are known to have sequences that are computationally dif-
ficult to compare due to their number of repeats13. We selected the fully assembled genome of two plants, namely, 
Aegilops tauschii (3.29 * 109 base pairs) and Triticum aestivum (4.23 * 109 base pairs), amounting to a search space 
of 1.39 * 1019 bp2 (see “Full genome sequences” in Supplementary Material). To the best of our knowledge, no 
such comparisons are available to serve as references. However, we reference several studies regarding the sensi-
tivity of the proposed method in the Supplementary Material under the section “Sensitivity analysis and impact 
of the heuristic methodologies”. The genome sequences were obtained from the assemblies published in14 and15, 
respectively. Figure 2 shows the dot plot-like representation of the comparison. The computation took less than 
16 minutes and 1 GB of RAM using 1 core, whereas the same comparison on NUCMER with parameters tuned 
to produce similar results took 159 minutes and 53 GB of RAM, which amounts to a speedup in terms of time 
consumption of over 10x while using 53 times less memory.

Only the main (or “unique”) signal can be seen in Fig. 2 due to the methodology automatically filtering out any 
DNA repeat or noisy signal. The comparison shows that nearly all conserved similarity is found on the diagonals 
and that each chromosome has only one pairwise comparison where a signal is found. This result accounts for 
an ideal scenario in which the application of the method can reduce the complexity of an exhaustive comparison 
since each chromosome would need to be compared only once (yielding n comparisons) as opposed to an all vs 
all approach, which requires a quadratic number of comparisons (i.e., n * m), hence dropping the complexity from 
quadratic to linear in terms of the number of comparisons. Notably, although it seems that no synteny occurs for 
any of the other chromosomes, a very large number of repetitions are present that would still require computing 
power to process.

In the further scenario of an all vs. all comparison among several species (e.g., all chromosomes of all genomes 
from a taxonomic family), this reduction enables a significantly faster approach to obtaining the conserved syn-
tenies. Moreover, the process is completely automatic since the scoring function determines which comparisons 
have a signal and therefore removes the tedious task of manually inspecting up to thousands of comparisons by 
hand (e.g., there are 6,000 comparisons for 5 species with 20 chromosomes each since for s species and n chromo-
somes, we have + ∗ ∗s s n n( 1)1

2
 comparisons).

Figure 2.  Pairwise genome comparison between Aegilops tauschii (3.2 Gbps) and Triticum aestivum (4.2 Gbps) 
performed in under 16 minutes using 1 core and 1 GB of RAM.
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Figure 2 was constructed from a full-genome comparison (as opposed to a chromosome-by-chromosome 
comparison), which yielded a 0.28 score (with 0 indicating the exact same sequences and 1 indicating absolutely 
no similarity, see “Methods” for more on the scoring distance). Such a score is due to both genomes conserving 
most of their diagonal, but small gaps still exist along with several evolutionary events that result in scoring 
penalties.

Synteny map.  The proposed method is suitable for performing very large all versus all comparisons, from 
bacterial collections to full genomes. In this section, we illustrate a comparison featuring 12 primate full genomes. 
The sequences were obtained from the Ensembl database16. The collection includes the fully assembled genomes 
of Homo sapiens, Pan troglodytes, Pan paniscus, Gorilla gorilla, Pongo abelii, Nomascus leucogenys, Papio anubis, 
Macaca mulatta, Macaca fascicularis, Chlorocebus sabaeus, Callithrix jacchus and Microcebus murinus. These spe-
cies were selected because (1) they belong to different evolutionary branches of primates and (2) they were fully 
assembled. The order in which these sequences are presented is based on their evolutionary distance from the 
reference (H. sapiens), as depicted in17, which was determined by the maximum likelihood method based on 
34,927 base pairs sequenced from 54 amplified genes. The computation of the +n n( 1)1

2
 full genome compari-

sons took 23 hours and 21 minutes using 1 core and 1 GB of RAM, meaning that each comparison took, on aver-
age, less than 18 minutes. The synteny map is shown in Fig. 3.

Figure 3 shows how the proposed method can be used to generate very large synteny maps that enable inspec-
tion of conserved similarities and evolutionary events among multiple species. Furthermore, analysis of the sim-
ilarity map leads to several points of discussion: (1) similarity is mostly conserved across all species, although the 
number of evolutionary events increases as a function of the molecular distance; (2) closely related families such 

Figure 3.  Similarity map of twelve primate species. Full genomes were compared. From left to right and top to 
bottom, genomes are ordered using the maximum likelihood method based on amplified genes. The compared 
genomes belong to six families, i.e., Hominidae (dark purple), Hylobatidae (light purple), Cercopithecidae 
(yellow), Cebidae (green), Lemuridae (cyan) and Cheirogaleidae (blue). Each cell of the upper right matrix 
shows the dot plot corresponding to the comparison of the row and column. The list containing copyright 
permissions of the pictures used in the Figure is available in the Additional File 1.
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as the great apes (Hominidae) and the Old World monkeys (Cercopithecidae) show nearly no large-scale genome 
rearrangements except for a few inversions; and (3) although according to several techniques (such as maximum 
likelihood-based18 and mitochondrial DNA-based19 techniques), N. leucogenys is placed on the branch closest 
to Hominidae (namely, Hylobatidae), the opposite case occurs from an LSGR perspective. In fact, all of the Old 
World and New World monkeys, along with the marmoset, have fewer LSGRs than N. leucogenys with respect to 
H. sapiens (See “Detected LSGRs in the synteny map“ in the Supplementary Material). That is, except for the case 
of N. leucogenys, the comparisons exhibit a correlation between molecular distance and the number of LSGRs.

However, it is beyond the scope of this manuscript to answer these questions; instead, we offer and describe a 
new tool capable of producing this type of highly aggregated and coarse-grained information in a few hours using 
one core, thus providing the means to obtain new findings and perform novel research.

Evolutionary events across multiple species.  In this section, we illustrate how the developed method 
can be employed in evolutionary studies. In particular, a simple synteny block-tracing algorithm is devised based 
on the location of large collections of HSPs. That is, given an all vs. all comparison among several species, with 
CHROMEISTER, it is possible to trace conserved blocks across species. In this example, we choose a conserved 
block from a particular species and trace it, and whenever an overlapping conserved region is found, another 
tracing procedure is launched from that particular block to examine the remaining species. The order in which 
executions are launched does not affect the outcome, as species can be interchanged freely. Therefore, a tree-like 
representation is generated that is rooted in the initial block and origin species, with every internal node being 
an overlapping match with another species. In this particular case, we employ H. sapiens chr. 6 as the root of the 
tracing algorithm and trace it to a 5-species depth.

As shown in Fig. 4, an initial block of conserved HSPs from H. sapiens chr. 6 first split into two blocks in P. 
abelii chr. 6, which then split into two different chromosomes from M. musculus, namely, chromosomes 13 and 
17. These two blocks reunite in chromosome 20 from Equus caballus and are finally detected on chromosome 23 
from Bos taurus. The order (rooted from H. sapiens) has been determined according to the vertebrate mitochon-
drial phylogeny described in19. Note that in Fig. 4, only the blocks fully traced from the root (H. sapiens) to the 
leaf (B. taurus) are shown, i.e., there is a larger synteny block between chromosome 6 of H. sapiens and P. abelii, 
but it does not reach the leaf.

For further details on how the tracing of blocks was performed, see “Block tracing” in the Supplementary 
Material.

Comparison of computation time and memory requirements with those of other methods.  In 
this section, we compare the performance of the proposed method with that of other state-of-the-art software in 
terms of time consumption and memory requirements. To make the comparison as fair as possible and to yield 
the same levels of sensitivity, both CGALN and NUCMER were tuned to run faster and produce coarse-grained 
results (see “Software Parameters” in the Supplementary Material). The sequences employed were selected based 
on increasing size and ranged from single chromosomes (e.g., B19-C9 stands for B. taurus chr. 19 and Canis 
familiaris chr. 9) to complete genomes composed by all chromosomes (for example, see HC-MC). Further details 
on the compared sequences can be found in the Supplementary Material (see “Full genome sequences” and 
“Additional Table 1”).

Several observations can be made from Table 1. Note that in the case of CHROMEISTER, the runtime is line-
arly correlated with the search space, whereas in the case of CGALN or NUCMER, other factors must be consid-
ered (for instance, BC-BC takes longer than A1-T1), such as the number of repetitions and total number of seeds 
and hits matched. In terms of performance, CHROMEISTER is the fastest (up to 11 times faster than NUCMER 
for the largest dataset), using linear time in terms of the size of the sequence input and a constant memory foot-
print. In contrast, CGALN results in incomplete executions after 100 hours of computing time for the last three 
datasets. NUCMER is able to finish all executions in competitive time but requires a much larger amount of RAM 
(up to 50 times more) than CHROMEISTER. Moreover, such memory usage poses computational limits, both 
for regular, desktop computers, and even in the case of supercomputers when several executions are to be run in 
parallel.

Figure 4.  Tree-tracing representation of the evolutionary study. Large groups of HSPs are shown as synteny 
blocks on each chromosome. Traversing lines from one chromosome to another represent synteny in terms of 
conserved HSPs. Crossed lines imply that a reversion occurred.
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Finally, it is important to note that CHROMEISTER detects the main DNA segments and therefore does not 
report repetitions, as in the case of NUCMER or CGALN. This difference has a clear impact on performance due 
to algorithmic improvements that can be made and in terms of sensitivity since repeated regions are discarded. 
For a sensitivity comparison, please see the section “Sensitivity analysis” in the Supplementary Material. In addi-
tion, a comparison of fine-grained alignments between the methods and the CHROMEISTER pipeline is also 
available in the section “Pipelined execution”.

Conclusions
In this manuscript, we have developed a heuristic method for quickly determining conserved similarities in very 
large genome comparisons using unique and inexact hits. We have also shown that the time complexity of the 
method is linear in terms of the size of the input sequences, whereas the space complexity is constant, making 
the method suitable for virtually any comparison of nucleotide sequences. In particular, the method described is 
intended to extract conserved diagonals across species by applying probabilistic filters that remove traces of noise 
and repeated DNA segments. However, the purpose of the algorithm is not limited to its primary use (detection 
of conserved diagonals) but extended to other analyses and studies, such as the following:

	 1.	 In terms of data exploration, the method can be used to quickly obtain a previsualization dot plot of a 
large set of sequences, which helps the researcher obtain a quick overview and even perform basic quality 
control steps.

	 2.	 Regarding multiple sequence alignment (MSA), the method can be employed to generate the anchoring 
distance matrix to guide hierarchical MSA by using the coverage-based scoring system.

	 3.	 In terms of search space, the method is suitable for strongly pruning the search space that arises from the 
sequence comparison since noise and DNA repeats are removed. This pruning enables the algorithm to 
keep only information (which can be used in later post-processing stages) about the synteny blocks. For 
instance, the algorithm is well suited as a prior step to a whole-genome alignment experiment.

	 4.	 For evolutionary studies, the proposed method is able to detect LSGRs throughout collections of species, 
which can be used to trace evolutionary events, as shown in the example cases.

	 5.	 For phylogenetic studies, the method can be employed to incorporate LSGRs into combined phylogenies.

The extension of capabilities of the proposed method is performed by pipelining an exhaustive comparison 
that takes advantage of the information generated in the fast comparison and hence reduces running times and 
enables further post-processing, such as detection of syntenies and evolutionary events. Furthermore, the pipelin-
ing method enables extremely large comparisons on the order of several gigabases to be performed quickly, using 
regular desktop computers and with a high degree of exhaustiveness.

From the computational perspective, the proposed method is linear in time and constant in space with respect 
to the input sequences. These features imply that the runtime increases linearly with the size of the sequences 
while the memory requirements remain constant. Furthermore, its parallelisation becomes immediate through a 
map-reduction strategy (see Supplementary Material, section “Parallel execution”).

Additionally, we have proposed a simple, coverage-based scoring distance that is able to evaluate a comparison 
based on the cleaned conserved signal, which can be used for evaluation purposes, particularly to discard com-
parisons where no similarity can be found and hence avoid expensive and exhaustive computational processing. 
This metric can also be aggregated to generate other indicators of the quality of comparisons.

Methods
In the following sections, we introduce the working methodology of the proposed algorithm. In particular, the 
following subsections are considered:

Dataset Search Sp. (bp2)

CGALN NUCMER CHROMEISTER

Time 
(m)

RAM 
(MB)

Time 
(m)

RAM 
(MB) Time (m)

RAM 
(MB)

B19-C9 . ∗4 03 1015 1.63 755 2.13 812 0.89 994

HX-MX . ∗2 07 1016 5.93 2,032 5.14 2,221 1.29 998

BC-BC . ∗1 18 1017 141.26 583 13.61 5,814 2.42 1,022

M2-O1 . ∗1 54 1017 17.04 3,618 15.14 6,436 2.84 1,017

A1-T1 . ∗2 57 1017 DNF DNF 11.40 8,357 2.84 1,022

HC-MC . ∗8 69 1018 DNF DNF 168.86 46,091 13.77 1,022

AC-TC . ∗1 39 1019 DNF DNF 176.80 52,021 15.96 1,022

Table 1.  Comparison of the best performances of CGALN, NUCMER and CHROMEISTER. The datasets are 
sorted by search space size. Columns from left to right: the sequences compared, search space size, time (in 
minutes) and memory consumption (megabytes) for each method. The acronym “DNF” stands for “did not 
finish”, which represents more than 100 hours of computing time. The time reported by NUCMER indicates that 
the program used more than one CPU; therefore, the adjusted time is shown.
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•	 Previous definitions. Several definitions will be made to handle descriptions with a higher degree of rigor.
•	 Inexact k-mer indexing. The process of indexing inexact k-mers is described regarding the hashing function 

used to index them.
•	 Heuristic filtering. The filtering method used to separate repeats and noise from conserved similarities is 

described in this subsection.
•	 Scoring function. The scoring function employed to classify genomic sequences depending on their closeness 

is explained.
•	 Implementation. Computational details regarding the deployment of the algorithm are described.

Previous definitions.  In this section, we introduce definitions, expressions and mathematical distributions 
to model a scenario for DNA comparison. In particular, DNA words, the matching of these matches from one 
sequence to another and the distributions that govern these matches are defined.

Consider a finite alphabet =S A C G T{ , , , }. A word w is defined as any finite string of letters in the alphabet 
S, i.e., w is generated by the regular expression [ACGT]+. The set of all words w over S will be denoted U (the 
universe). We will define a sequence s as a word of size n, that is, =s n. The collection of words w of size k con-
tained in s is denoted = …C w w w{ , , , }m1 2 , where m = n − k + 1, which accounts for all possible overlapping 
words of fixed size k in the sequence s.

We will define the collection of similar segments between two sequences sa and sb as ⊆ ×H C Ca b a b, , which 
accounts for the words shared (wi, wj) by Ca and Cb (also known as “hits”). The distribution of the set Ha,b is highly 
dependent on the two sequences sa and sb that produce it since more similar sequences will produce more simi-
larities, whereas distant sequences will produce fewer similarities. The k size of the words will also strongly affect 
the set Ha,b (for a detailed analysis of the word distributions, see20).

Moreover, we will further re-define, from a coarse-grained perspective, Ha,b to be the composition of three 
other distributions, namely:

•	 Wa,b is the distribution of the random hits between sa and sb. Given a sufficiently large na and nb (lengths of the 
two sequences, respectively), the probability of finding random hits follows a binomial distribution (assuming 
uniformity of the letters in the sequences) 




×



B C C ,a b

k1
4

. For further clarification of this distribution, see 

the section “Distribution of hits” in the Supplementary Material. Hence, Wa,b is the distribution of pure ran-
dom noise (therefore originating by chance).

•	 Ra,b is the distribution of any hit such that its words wi, wj are scattered repeatedly (i.e., frequency greater 
than one) across both sequences sa and sb and/or their complexity (measured as the longest unique substring 
contained in a word w, see21) is considered to be low based on biological standards. Furthermore, from a 
coarse-grained perspective, this distribution accounts for any repeatable element, such as tandem repeats, 
low-complexity regions, and interspersed repeats.

•	 Ta,b is the distribution of the signals conserved between sa and sb such that ∪=T H W R\( )a b a b a b a b, , , , . That is, 
hits whose words wi,wj are unique (i.e., their frequency is one) are shared with respect to a common ancestor 
(conserved), did not originate by chance and cannot be considered repeats under biological examination.

Inexact k-mer indexing.  In this section, we describe the procedure by which the words are matched in an 
inexact fashion using heuristic subsampling of all possible matching combinations.

A perfect indexing hash function f for the universe Uk (i.e., all existing words w of size k over S) is given by the 
function:

∑

= ∗ + ∗ + … + ∗ + … + ∗

= ∗

− −

=

− ( )
(1)

f w S v w S v w S v w S v w

f w S v w

( ) ( ) ( ) ( ) ( )

( )

i
k

i
k

i
k j

i j
k k

i k
k

i
k

j

k
j

i j
k

0
,1

1
,2

1
,

1
,

1

1
,

where wi j
k
,  denotes the j-th letter of a word wi with =w ki  and function v(x) returns the integer position of x in S, 

starting from zero (i.e., v(A) = 0 and v(T) = 3). Note that function f is a bijection → ..f U N: k S{1 }k
 that creates 

perfect indexing with no collisions for Uk; thus, the number of images in the codomain is equal to that in the 
domain, which accounts for 4k. Furthermore, we will define the family of functions F as the collection of functions 

∪= =
∞F f x( )z

z
1  where = ∑ ∗ ∗=

−f w S v w belongs j z( ) ( ( ) ( , ))i j
k z

j
k j

i j
k

, 1
1

, , and the operation belongs j z( , ) returns 
1 if there exists a natural number x such that = ∗j z x (that is, j is a multiple of z) and otherwise 0. Therefore, the 
collection of functions F contains all indexing functions f(x)z that use either all letters, half of the letters, or a third 
of the letters and so on (intermittently) to compute the hash of w. That is, the higher the z value of the f(x)z func-
tion is, the larger the number of collisions will be. Ideally, every skipped letter would increase the number of col-
lisions by =S 4 since wi j

k
,  can take up to 4 different values at position j. Using any of the functions f(x)z with z > 1 

will produce inexact indexing, enabling the detection of long, imperfect matches that also incorporate positional 
information within a k-mer. As opposed to using smaller k-mers, inexact k-mers are not as prone to the genera-
tion of random noise in a comparison. Therefore, any indexing function taken from the family F (with z > 1) will 
enable heuristic subsampling of all possible inexact k-mer matches. Determining whether k-mers are similar but 
inexact at one position requires 3k comprobations in a brute force approach. The complexity of doing so grows 
exponentially with the length of k and the number of inexactitudes allowed. Thus, by using the F family of 
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functions, the search for inexact k-mers is performed in O(1) time heuristically (see Supplementary Material for 
more details).

Heuristic filtering.  In this section, we describe the methodology by which repetitions and noise are filtered 
out of the main signal.

Given a sufficiently large k and an indexing function f, the hits produced by the distribution Wa,b (i.e., random 
hits) can be ignored, as the probability of finding random matches between sets of words C and C′ of length k and 
set sizes m and m′ (respectively) is − − ′1 ((1 ) )m m1

4k
 (see Supplementary Material, section “Random perfect 

hits”), amounting to p = 0.0005419 for the case of mammalian chromosomes of up to 100 million base pairs and 
k = 32.

To remove the noise generated by Ra,b, only the unique hits in Ha,b are kept. By definition, a repetition is any 
word wi whose frequency is greater than one. Therefore, removing all hits (wi, wj) from Ha,b where wi appears 
more than once will effectively remove all possible repeats belonging to the distribution Ra,b. However, exact 
words tend to be rarer as k becomes larger (due to millions of years of evolution, see22), and a small k can produce 
random noise. To overcome this scenario, a hybrid approach is employed: a large k of 32 with a heuristic indexing 
function (z > 1, as explained before), which enables finding long, unique words with still some degree of variabil-
ity. The impact of z on the number of unique inexact hits found (and therefore employed to detect similarity) is 
analysed in the Supplementary Material.

Nonetheless, this approach is not sufficient to determine the conserved similarities since even distantly related 
organisms a and b will have a substantial number of small conserved signals (e.g., basic functioning genes, see23). 
To extract the conserved similarities, it is necessary to group (cluster) the hits that belong to long, shared portions 
of the genome (i.e., HSPs) instead of just conserved genes. To do so, downsampling is applied, i.e., the position 
of hits is heavily scaled down to force hits belonging to an HSP to fall in the same position, hence increasing the 
concentration of hits in regions where syntenies are to be found. This approach is similar to two-dimensional 
positional clustering of the hashes identified during the matching steps (see, for example, MOSAIK24, which 
employs positional clustering of hashes to consider candidate regions to be aligned).

Formally, consider an HSP to be a subset of the collection of words Ca and Cb, that is, for some starting 
positions i, j and for a given length, the words wi and wj in Ca and Cb, respectively, are equal (notice that not all 
words have to be equal, i.e., mismatches can occur). Then, it is clear that linear downsampling will map hits near 
position i together into a new position i′ if a uniform surjective mapping function is used since clusters will form 
from nearby hits that belong to conserved signals. The very same outcome is observed for j. Therefore, a larger 
number of hits will be mapped to positions i′ and j′ if an HSP exists, which enables it to be detected as a conserved 
signal. Figure 5 shows an example comparison of an exact word-matching procedure and the heuristic method 
described. Note that in the exact procedure, the conserved HSPs are outnumbered by repeats and thus remain 
undetected. However, in the heuristic procedure, only the conserved HSPs are kept, while repeats are removed.

Scoring function.  In this section, the function used to score a pairwise comparison between two sequences 
is described. Such a function is presented as a heuristic discriminant of related from unrelated comparisons.

Once the surjective function is applied and the comparison is mapped to a lower-scale dimension, the highly 
conserved diagonals are sought. We will call the new dimension the hit matrix Hm, which is built by counting 
the found inexact hits and their scaled positions and represents a footprint of the comparison. Since conserved 
signals are diagonal in nature (i.e., hits belonging to an HSP are adjacent in terms of the diagonal in a 2D cartesian 
plane, such as in a dot plot representation), they are extracted by finding the maximum peak of concentrated hits 
per row in Hm. That is, there is no overlapping of conserved signals in Hm, as doing so would include repetitions. 
The scoring function then sums the distances between the conserved signals using the taxicab distance and scales 
it between [0, 1], with 0 indicating a perfect diagonal (i.e., identical sequences are compared) and 1 indicating 
completely different sequences with no conserved regions. Formally, the scoring function is calculated as follows:

∑= +
−

d taxicab H i H i(max( ( ), ( 1)))
(2)

raw
i

l

m m

1

Figure 5.  Three-dimensional histograms of the hits matched using either an exact procedure (left) or the 
heuristic method proposed (right). The comparison was performed between the X chromosome of the human 
and mouse genomes.
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where l is the longest dimension of Hm. Note that this distance takes into account large genome rearrangements 
such as transpositions or inversions since every gap between conserved signals is penalized. However, draw 
accounts only for the sum of the taxicab distance between the continuous conserved signals and needs to be nor-
malized. This normalization is carried out by dividing draw by the theoretical maximum distance, which accounts 
for a scenario in which conserved signals are intermittently found on opposite sides of the sequences, namely:

=d d
l (3)
raw
2

where d accounts for the normalized distance (or score) between sequences a and b. Further details on the 
aggregation of the metric for split genomes (such as those divided between chromosomes) can be found in the 
Supplementary Material under the section “Distance aggregation”.

Implementation.  The algorithm described above is intended to be used heuristically in fast, hit-based 
sequence comparison approaches. In short, the full algorithm comprises the following:

	 1.	 Indexing the unique inexact k-mers of the reference sequence.
	 2.	 Computing the hits between the reference and query sequences.
	 3.	 Removing non-unique hits.
	 4.	 Downsampling the hits matrix Hm.
	 5.	 Filtering by finding the maximum peaks.
	 6.	 Computing the distance between the sequences.
	 7.	 Detecting LSGRs.

The most demanding computational step is the indexing of k-mers (retrieval is performed in constant time 
since only unique hits are kept). To accelerate this process, indexing involves two different mechanisms. Words 
are hashed and inserted into a hash table of size 412 (determined empirically as a good trade-off between memory 
consumption and sensitivity), where each entry corresponds to the 12-nucleotide prefix of each word (similar 
seed patterns have already been explored25). A posterior search is performed by first accessing the hash table 
entry corresponding to the word prefix (O(1)) and then comparing the hash key of the stored unique k-mer with 
the target key. Downsampling is performed by linearly mapping each hit hi to a new position i′ in the hit matrix 
Hm. Note that the larger the Hm matrix becomes, the higher the resolution for mapping hits becomes; however, 
this increase occurs at the expense of space consumption, which in this case accounts for second storage memory. 
The resolution of the matrix can be chosen based on user interest since a higher resolution will allow more detail, 
whereas a lower resolution will show a more coarse-grained view of the comparison.

Since the output of the algorithm is a dot plot representation of the comparison (intrinsically a matrix of inte-
gers), the detection of LSGRs is analogous to detecting lines in an image. Extensive literature is available on this 
subject (see, e.g.)26,27, which is beyond the scope of this manuscript. In this particular case, we employed a param-
eterized growing-region algorithm that is launched for every local optimum in the matrix and for which the edge 
direction is weighted depending on the angle of nearby hits (i.e., diagonals and anti-diagonals are prioritized over 
perpendiculars). For further details, see the Supplementary Material.

Equipment and settings.  All figures (except the diagram in Fig. 1) were built from data generated from the 
proposed method CHROMEISTER. Figures 2, 3 and 4 were put together with Google Drawings and Inkscape. 
Figure 5 was generated using MATLAB. GIMP was employed in Figs 2 and 3 to improve edges visualization, 
particularly in the small sized thumbnails in Fig. 3.

Third party rights.  Figure 3 includes several photographs of Apes, Gibbons, Monkeys, etc. Copyright is 
available for all of these pictures. The only changes made to these images were partially cropping. The list contain-
ing copyright permissions of the pictures used is available in the Additional File 1.

Data Availability
All data generated or analysed during this study are included in this published article (and its supplementary 
information files).

Code Availability
All sources, scripts and executables described or employed in the manuscript can be accessed at https://github.
com/estebanpw/chromeister.
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