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Automated cell boundary and 3D 
nuclear segmentation of cells in 
suspension
Benjamin Kesler1, Guoliang Li1, Alexander thiemicke1, Rohit Venkat1 & Gregor Neuert1,2,3,4

to characterize cell types, cellular functions and intracellular processes, an understanding of the 
differences between individual cells is required. Although microscopy approaches have made 
tremendous progress in imaging cells in different contexts, the analysis of these imaging data sets is a 
long-standing, unsolved problem. The few robust cell segmentation approaches that exist often rely 
on multiple cellular markers and complex time-consuming image analysis. Recently developed deep 
learning approaches can address some of these challenges, but they require tremendous amounts 
of data and well-curated reference data sets for algorithm training. We propose an alternative 
experimental and computational approach, called CellDissect, in which we first optimize specimen 
preparation and data acquisition prior to image processing to generate high quality images that 
are easier to analyze computationally. By focusing on fixed suspension and dissociated adherent 
cells, CellDissect relies only on widefield images to identify cell boundaries and nuclear staining to 
automatically segment cells in two dimensions and nuclei in three dimensions. This segmentation 
can be performed on a desktop computer or a computing cluster for higher throughput. We compare 
and evaluate the accuracy of different nuclear segmentation approaches against manual expert cell 
segmentation for different cell lines acquired with different imaging modalities.

Individual cells respond to their environment, make cell fate decisions, or cause diseases when mutated. 
Understanding biological processes in detail at the molecular and cellular level in healthy and diseased tissue ulti-
mately requires that cells be analyzed at single cell resolution. Over the last few decades, microscopy techniques 
to image single cells have improved significantly, resulting in a wealth of imaging data sets1–4. However, analyzing 
these data sets quantitatively in a high-throughput manner is still an immensely difficult and often unsolved 
task5. The lack of quantitative analysis algorithms is the ultimate bottleneck in extracting more information from 
microscopy images, thus hindering mechanistic understanding of single cell behavior and its relevance to phys-
iology and disease2,6.

To address these limitations, efforts have been undertaken to develop image processing platforms to analyze 
microscopy images and segment individual cells2,4,7. These approaches require high-contrast fluorescent cellular 
markers to distinguish between the inside of the cell and the cell boundary. In many cases, cells are grown under 
low density adherent cell culture conditions, resulting in few cells that have very low contrast when imaged in 
widefield8,9. Furthermore, because of low-contrast images, cell segmentation in mammalian cells requires fluo-
rescent markers to stain the cell boundary homogenously10. However, in live as well as fixed cells, variability in 
protein expression levels, cell morphology or cell preparation for microscopy can cause heterogenous staining for 
an individual marker, making single-color stains insufficient for achieving homogenous staining and requiring 
human-assisted cell segmentation11.

Cell staining approaches utilizing multiple cell segmentation markers labeled with different fluorophores have 
been used to address this problem on the experimental side4,12,13. While the effects of heterogeneous staining can 
be minimized by this approach, the use of additional cell segmentation markers in different fluorescent channels 
reduces the number of channels available to address biological questions12,13. Additionally, this methodology is 
time-consuming due to its requirement of significant optimization and long periods of imaging. Regardless of the 

1Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, nashville, tn, 
37232, USA. 2Department of Biomedical engineering, School of engineering, Vanderbilt University, nashville, 
TN, 37232, USA. 3Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37232, 
USA. 4Quantitative Systems Biology Center, School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA. 
correspondence and requests for materials should be addressed to G.n. (email: gregor.neuert@vanderbilt.edu)

Received: 20 March 2019

Accepted: 3 July 2019

Published: xx xx xxxx

opeN

https://doi.org/10.1038/s41598-019-46689-5
mailto:gregor.neuert@vanderbilt.edu


2Scientific RepoRts |         (2019) 9:10237  | https://doi.org/10.1038/s41598-019-46689-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

staining strategy, most adherent cells are grown at low density to enable cell segmentation, resulting in few cells 
per field of view and limited single-cell statistics. Cells in suspension are easier to segment, but concentrating cells 
to ensure high density during imaging to increase cell statistics is challenging.

Computationally, attempts have been made to address image analysis challenges using machine learning and 
deep learning approaches3,9,14. Such approaches rely on large and well-curated data sets to train a complex model 
describing features in images that identify single cells. Studies report impressive results using these approaches in 
cell segmentation, but it is currently an open question how transferable models generated by these approaches are 
to new and much smaller data sets14. One recent study has reported success in utilizing relatively few annotated 
datasets to adapt deep learning networks3. Another study suggested much more data is required for cell segmen-
tation using the same deep learning approach4. Therefore, it is unclear how much annotated data will be needed 
to adapt deep learning networks. Ideally, avoiding the need for labor-intensive annotation entirely would be 
preferable. Implementing machine learning and deep learning approaches to generate new models also requires 
substantial expertise, making such methods extremely difficult for less-experienced users to adopt15.

We propose an alternative approach, called CellDissect, that overcomes these limitations both experimen-
tally and computationally to improve image segmentation. The approach involves first optimizing sample 
preparation. By utilizing single-cell dissociation and cell fixation approaches alongside repurposed commer-
cial “well-in-a-well” technology (IBIDI, µ-Slide Angiogenesis), CellDissect’s experimental workflow results in 
high-contrast widefield images with high cell density (Fig. 1A). This is paired with nuclear staining, which allows 
for segmentation of the nucleus and assists cell boundary segmentation without the use of multiple markers or 
fluorescent channels. In addition, we demonstrate that live yeast cells can be also segmented with CellDissect 
(Fig. S1). CellDissect’s nuclear and cellular segmentation algorithms then process these images with minimal user 
input through MATLAB or a graphical user interface (GUI) to generate highly accurate nuclear segmentation 
in 3D and cellular segmentation in 2D without the need for computational expertise or large, curated datasets.

Results
Since we observed low-contrast cell boundaries in adherent cells or cell aggregates, while boundaries of 
single-cell suspensions tended to be more distinct, we hypothesized that suspension and single-cell dissociation 
could improve data quality for cells not already in single-cell suspensions. This idea became the first step in our 
CellDissect approach, in which adherent cells (Fig. 1B, top) and cell aggregates (Fig. 1B, bottom) are trypsinized 
to dissociate into single-cell suspensions. Cells are subsequently fixed with formaldehyde and permeabilized with 
ethanol, the DNA is stained with DAPI, and the cells are mounted on commercial microwell plates to ensure high 
cell density for imaging (Fig. 1B, right). The CellDissect approach ensures that single fixed cells are in suspension 
and form round spheres that generate a strong refraction pattern from cell membranes upon widefield illumi-
nation (Figs. 1B and 3B). This characteristic is critical to identify the cellular boundary with CellDissect if cells 
are not naturally in a single-cell suspension, and it eliminates the need for a fluorescent cell boundary marker. 
Another advantage is that a standard widefield fluorescent microscope available in many cell biology facilities can 

Figure 1. Sample preparation and computational requirements for automated cell segmentation. (A) Overview 
of experimental and computational workflow. Predefined minimum and maximum nuclear and cytoplasmic 
area for different cell types are selected and only need to be modified once for a specific cell type and imaging 
condition. (B) Cells can be adherent, in suspension, or exist as cell aggregates before trypsin treatment. After 
trypsinization and dissociation, single cells are imaged at high density on a microscope regardless if they were 
previously adherent or in suspension. Scalebar at 10x is 17.53 µm and at 100x 5.07 µm.
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Figure 2. Automated nuclear segmentation of 3D image stacks. (A) Maximum projected cell nuclei with 
variable DAPI intensities (top). Distribution of integrated DAPI intensities within an image (bottom). (B) 
Workflow of the nuclear segmentation code after providing cell type-specific definitions of minimal and 
maximum nuclear area. (C) Increasing threshold result in an increase and then decrease in connected regions 
(top row). Binary images from the top are analyzed for connected regions within a cell type specific size range 
(bottom row). (D) Threshold binary images in the top row are added resulting in a pseudo image of large and 
small connected regions (Added Images). (E) Separation of connected objects before and after individual 
investigation of nuclei to maximize objects fitting size parameters. (F) Low and High estimate of nuclear area 
after watershed algorithm labels individual nuclei resulting in segmented nuclei. (G) Boundary of the nucleus 
is determined individually by first radially identifying the fluorescent intensity of pixels in and around the 
nucleus (top, green circle). For each cell a threshold in the maximum cumulative fluorescent intensity (blue 
line) was determined using the High estimate of nuclear area to robustly identify the nuclear boundary in 3D 
across all cell types and imaging conditions (bottom). (H) Nuclear segmentation in 3D from the bottom to 
top presented as series of images. (I) Nuclear segmentation accuracy (F1-score) quantification of 3D nuclear 
segmentation comparing fully automated adaptive threshold algorithm CellDissect (blue), maximum nuclei 
threshold algorithm (orange) and manual thresholding (yellow) in comparison to manual segmentation in four 
different cell lines and two different imaging magnifications. Mean and standard deviations are computed from 
quantifying 3–4 images by three independent human experts (left) or 3 replicas by one human expert (right).
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be used without modifications. Our CellDissect approach is suitable if the scientific question does not require to 
know the exact cell shape in 3D or the cell-to-cell context in a cell culture plate or tissue. After image acquisition, 
the computational workflow in CellDissect (Fig. 1A) consists of defining minimum and maximum nucleus and 
cell sizes for a specific cell type that can be determined by using a GUI. This step needs to be performed once for a 
specific cell type and microscope setup. After these parameters have been determined in a small number of cells, 
correct nuclear segmentation in 3D (Fig. 2) is followed by cell boundary segmentation in 2D (Fig. 3).

Nuclear segmentation in three dimensions. Traditionally, cells are segmented by using a fixed intensity 
threshold16–19. Although this has been sufficient to segment yeast cells, mammalian cells exhibit large variation in 
their nuclear DNA resulting in variable DAPI intensities (Fig. 2A). If the goal is to precisely segment the nucleus, 
then the intensity of each individual nucleus needs to be considered. In order to ensure segmentation of cells with 
different DAPI intensities, in CellDissect we propose an adaptive thresholding approach (Fig. 2B). Here we gen-
erate binary images from maximum intensity projected DAPI images with increasing thresholds and filter objects 
based on size (Fig. 2C). This size filtering depends on the user-defined minimum and maximum nuclear size, 
which helps eliminate most instances of nuclei being blended together due to a low threshold (since it results in an 
abnormally large object) as well as noise or bright subsections of nuclei that are smaller than a complete nucleus 
(Fig. 2D). To separate connected nuclei, we investigate each object to determine if removing layers of the added 
binary image results in separate nuclei fitting the size requirements (Fig. 2E). This methodology allows one to 
identify the maximum number of individual nuclei in each image, and two different masks are generated during 
this process (Fig. 2F). The first is a mask that results from removing the greatest number of layers while retaining 
the greatest number of nuclei, which becomes an underestimate of the nuclear area (Fig. 2F, top). The second is 
a mask resulting from removing the least number of layers while still retaining the maximum number of nuclei, 
which results in a slight overestimate of the nuclear area for each nucleus (Fig. 2F, bottom).

After the initial identification of the maximum number of nuclei, each nucleus is thresholded individually to 
determine the correct nuclear boundary (Fig. 2G). The individual threshold is identified by utilizing the over-
estimate of nuclear area in the previous step to identify a threshold in the cumulative distribution of the DAPI 
signal for each nucleus independently. Although the slight overestimate of nuclear area often results in some noise 
being included in the initial nuclear determination, this is largely corrected by a subsequent processing step that 

Figure 3. Automated cell boundary segmentation. (A) Workflow of the automated cell boundary segmentation. 
(B–G) Images showing individual processing steps: (B) Maximum projected widefield image using several 
images with clear cell boundaries is used to generate a (C) background image using disk smoothing. (D) After 
background subtraction, the maximum projected widefield image is overlaid with the segmented nuclei. (E) 
A watershed algorithm is applied resulting in segmented cells with cells on the image boundary removed (F). 
(G) Overlay of widefield (grey), DAPI (blue), nuclear (yellow) and cytoplasmic (magenta) segmented mESC. 
Scalebar 13.3 µm (H) Cell segmentation accuracy (F1-score) quantification of 2D cell segmentation comparing 
fully automated adaptive threshold algorithm CellDissect (blue), maximum nuclei threshold algorithm (orange) 
and manual thresholding (yellow) in comparison to manual segmentation in four different cell lines and two 
different imaging magnifications. Mean and  standard deviations are computed from quantifying the 3–4 images 
by three independent human experts (left) or 3 replicas by one human expert (right).
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removes all but the largest connected volume in 3D. Our CellDissect approach allows for automated and precise 
3D nuclear segmentation (Fig. 2H). Finally, we compare the accuracy of three nuclear thresholding algorithms 
that we developed and tested, which are (1) the adaptive thresholding algorithm CellDissect (blue bar), (2) an 
algorithm that uses a fixed threshold that maximizes the number of segmented nuclei (orange bar) and (3) a 
manually chosen fixed threshold (yellow bar), to the original images using human experts (Fig. 2I). We scored 
false positive cells and nuclei as those that were detected computationally but not segmented correctly (>20% 
error). False negatives were cells or nuclei that were not identified computationally but were identified by a human 
expert. Applying the CellDissect approach to several cell types measured at different magnifications resulted 
in high accuracy (F1-score) in nuclear segmentation when compared to the ground truth of cell segmentation 
from several researchers (Fig. 2I). The F1-score is defined as the harmonic average of precision and sensitivity20. 
Precision shows how many of the computationally segmented objects are segmented correctly. Sensitivity shows 
how many of the total objects are segmented correctly. Fixed thresholds yielded good results in determining the 
number of S. cerevisae (S.c.) and S. pombe (S.p.) yeast nuclei per image. However, fixed thresholds performed 
extremely poor in identifying the correct number of nuclei in mammalian cells. We overcame this problem with 
our adaptive thresholding approach CellDissect (Fig. 2C–E). In addition, defining an individual DAPI intensity 
threshold for each cell was essential to correctly segment the nuclear boundary in 3D (Fig. 2G,H). In summary, 
we have demonstrated with CellDissect, for a range of different cell types and imaging modalities, that using 
multiple thresholds increases the number of nuclei identified and is essential to correctly identifying the num-
ber of mammalian nuclei with F1-scores of up to 0.98 which is significantly better than previously reported 
by CellProfiler4 (Fig. 2I). In addition, individual thresholding of nuclei is essential to correctly identifying the 
nuclear boundary and ensuring 3D nuclear segmentation for all the different cell types.

Cell boundary segmentation. To segment individual cells in 2D, our CellDissect pipeline consists of max-
imum projection of widefield images, background correction, composite image generation, watershed cell seg-
mentation and object removal based on size resulting in segmented single cells (Fig. 3A). First, we project several 
maximum contrast widefield images by maximum intensity to generate the cell outline as a white ring (Fig. 3B). 
Next, we generate a background image from the cell widefield image through disk smoothing (Fig. 3C). We then 
subtract this background image to enhance the contrast in the widefield image. Next, we generate a composite 
image of the processed widefield image and the nuclear mask (Fig. 3D). This composite image is the input for 
a watershed algorithm (Fig. 3E). Elements that are too big, too small or on the image boundary are removed 
(Fig. 3F). The overlay of the processed widefield image, the DAPI image, and the segmented nuclear and cytoplas-
mic boundary is shown in Fig. 3G.

To demonstrate the robustness and throughput of our approach, we applied our CellDissect pipeline to S. 
cerevisae (S.c.), S. pombe (S.p.) yeast cells, mouse embryonic stem cells (mESCs) and human Jurkat cells with 
images taken at 100x magnification (Fig. 4A). We also applied our CellDissect approach to mESCs and Jurkat cells 
imaged at 20x magnification. These results demonstrate qualitatively how our optimized experimental cell prepa-
ration protocol results in high quality and high cell density images at different cell magnifications, which is the 
basis for imaging large numbers of single cells. In addition, we quantified accuracy (F1-score) of our CellDissect 
approach in comparison to the ground truth that was independently generated from three human experts for one 
biological replica or three biological replicas assessed by one expert (Fig. 3H). These results show quantitatively 
that Cell Dissect outperforms the other approaches regardless of cell type and magnification. Finally, we outline 

Figure 4. Application, implementation and performance of cell segmentation for different cell types from 
different organism imaged at low and high resolution. (A) Overlay of widefield (grey), DAPI (blue), nuclear 
(yellow) and cytoplasmic (magenta) segmented S. cerevisiae, S. pombe, mESC and Jurkat cells imaged at 100x 
and mESC and Jurkat cells imaged at 20x. (B) Image processing can be performed on a desktop computer or 
on a computing cluster for each individual image stack resulting in significant throughput. Segmenting one 
image takes on overage 30 minutes. For an average time course experiment consisting of 64 images of yeast cells, 
parallelization speeds up the image processing 64 fold.
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how our CellDissect methode can be utilized on a single desktop computer or on a computing cluster that pro-
cesses images in parallel to increase throughput (Fig. 4B).

Discussion
We present CellDissect, a combined experimental and computational workflow to identify individual cells and 
segment their nuclei in 3D at high accuracy, at high cell density and with high throughput. In cases where cells 
are not already in a single-cell suspension and knowledge about cell morphology, nearest neighbor interaction 
or single cell time trajectory is not required, dissociating cells into single-cell suspensions greatly improves data 
quality, uniformity and throughput (Fig. 1). This is because cells form spheres in suspension, generating a strong 
diffraction pattern and allowing these cells to be imaged in widefield with high contrast cell boundaries (Fig. 1B). 
Generating cell suspensions circumvents the problem of low contrast cell boundaries in adherent cells as well 
as the problems arising from three-dimensional cell aggregates. Although overall cell morphology changes, 
we demonstrate that nuclear volume and integrated intensity do not change between adherent and suspension 
cells (Fig. S2), and previous literature shows that trypsinization does not significantly affect cell survival and cell 
fate decisions21,22. This suggests that dissociation does not compromise the integrity of cells and their internal 
structures. In addition, cell segmentation is independent of the density of imaged cells. With this optimized 
experimental workflow in CellDissect that results in high contrast widefield images, we then improved nuclear 
segmentation by taking into consideration variable nuclear straining intensities due to differences in DNA con-
tent (Fig. 2A,B). In CellDissect, we developed an adaptive thresholding algorithm that consists of two steps. In the 
first step, we apply a range of thresholds to identify all the nuclei in the image (Fig. 2C–F). In the second step, we 
threshold each nucleus independently to account for the DAPI intensity differences, resulting in 3D segmented 
nuclei of high quality (Fig. 2G,H). A quantitative assessment by human experts of nuclear segmentation con-
firmed CellDissect’s high accuracy, outperforming manually or automatically-chosen single threshold approaches 
(Fig. 2I). CellDissect works very well for different types of cells imaged at different magnifications without the 
need for a large amount of training data or crowd sourcing approaches23.

The nuclei that were initially determined are used as seeds to segment cell boundaries (Fig. 3). Qualitative 
comparison between widefield images and the segmented images demonstrate the high accuracy of CellDissect’s 
image segmentation (Fig. 3H). We then applied our CellDissect approach to other cell lines imaged at different 
magnifications (Fig. 4A) and continued to observe a very high accuracy in nuclear and cell segmentation of all 
cell types using the F1-score metric in comparison to the ground truth generated by several humans (Fig. 3H). 
CellDissect is written in a modular manner that is amenable to processing images either on a desktop computer 
or in parallel on a computing cluster to increase throughput (Fig. 4B). This essentially makes the throughput of 
CellDissect dependent on the number of processors available to the user. Using this throughput, we quantified 
nuclear and cellular characteristics of thousands of cells, determined how these differed between the cell lines we 
used (Figs. S3 and S4) and how they changed or stayed the same for mESCs upon trypsinization (Fig. S2). The 
settings for both applications are generated through a GUI that can be adapted to different cell lines and micro-
scope modalities23–25. These results show highly accurate nuclear and cell segmentation without the need for large 
training data sets. In addition, high accuracy in nuclear and cell segmentation is achieved by only using widefield 
imaging and DAPI stained nuclei. Recently developed cell segmentation approaches using deep learning indicate 
that cell segmentation is possible at high quality but most often requires very large data sets of images and signif-
icant hardware infrastructure to infer model parameters3,9,14.

In summary, by utilizing the experimental workflow in CellDissect, we prepare high quality single-cell sus-
pensions that are subsequently imaged at high density, resulting in high quality images. These images are then 
analyzed by the computational workflow in CellDissect, that consists of reliable segmentation of nuclei and cells 
at high accuracy for a range of cell types and magnification without the need for large training data sets.

Materials and Methods
Experimental methods. Cell culture. The Saccharomyces cerevisiae (S. cerevisiae) strain BY4741 (MATa 
his3∆1 leu2∆0 met15∆0 ura3∆0) was used and cultured as previously described26.

The Saccharomyces pombe (S. pombe) strain 972h- was used. Three days before the experiment, S. pombe 
cells were streaked out on a YES (0.0002% each of adenine, histidine, leucine, lysine, uracil (w/v), 0.25% yeast 
extract) + 3% glucose plate from a glycerol stock stored at −80 °C. The day before the experiment, a colony from 
the YES plate was inoculated in 5 ml YES + 3% glucose media (pre-culture) and grown at 32 °C. After 6–12 h, the 
optical density (OD) of the pre-culture was measured and the cells were diluted in new YES + 3% glucose media 
to reach an OD of 0.8 the next evening.

For imaging at 20x, the mouse embryonic stem cell (mESC) cell line 16.727 was grown with 1 million seeded 
cells on 75 cm2 tissue culture flasks with vented caps (Falcon 353110) gelatinized with EmbryoMax 0.1% Gelatin 
Solution (Millipore ES-006-B) for 30 minutes at 37 C and plated with 2 million C57Bl/6 mouse embryonic fibro-
blasts as feeder cells (Gibco A34960) and with serum + LIF media composing of: DMEM with high glucose (Life 
Technologies 11960-044), 15% ES Cell qualified FBS (Gibco 16141-061), 25 mM HEPES (Gibco 15630-030), 1x 
MEM NEAA (Life technologies 11140-050), 1x (100 U/mL) Penicillin-Streptomycin (Gibco 15140-122), 100 μM 
2-mercaptoethanol (Life Technologoies 21985-023), 500 U/mL LIF (EMD Millipore ESG1106), 1x GlutaMAXTM 
(Gibco 35050-061), and 1x (1 mM) sodium pyruvate (Gibco 11360-070). Cells were grown at 37 °C in a 5% CO2 
humidity-controlled environment for two passages before experiments.

For imaging at 100x, mESCs were thawed onto an MEF plate with conditioned media serum + LIF media as 
described for the 20x. The next day, media was changed with 2i media composed of: DMEM with high glucose 
(Life Technologies 11960-044), 25 mM HEPES (Gibco 15630-030), 0.5x MEM NEAA (Life technologies 11140-
050), 1x (100 U/mL) Penicillin-Streptomycin (Gibco 15140122), 100 μM 2-mercaptoethanol (Life Technologies 
21985-023), 1000 U/mL LIF (EMD Millipore ESG1106), 0.25x GlutaMAXTM (Gibco, Catalog#: 35050-061), and 
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1x (1 mM) sodium pyruvate (Gibco 11360-070), 20 μg/mL human insulin (Sigma I9278-5ML), 1 μM (Sigma 
PD0325901), 3 μM (Sigma CHIR99021), 1000 U/mL LIF (EMD Millipore ESG1107). After three days, the cells 
were passaged onto a plate gelatinized with 0.1% gelatin without feeders and grown for another passage.

Jurkat, Clone E6-1 (ATCC® TIB-152™), cells were cultured at 0.5-1* 106 cells/ml in RPMI 1640 
media (Corning, Catalog#: 15-040-CV) containing 10% Heat inactivated FBS (Gibco 16140-071), 1x 
Penincillin-Streptomycin (Gibco, Catalog#: 15140-122) and 1x GlutaMAXTM (Gibco 35050-061) at 37 °C in a 5% 
CO2 humidity controlled environment.

Cell Fixation. S. cerevisiae were fixed in 4% formaldehyde as previously described26.
S. pombe cells were fixed with 1% formaldehyde for 15 minutes at room temperature, quenched with 150 mM 

glycine for 5 minutes at room temperature and set on ice for 5 minutes afterwards. They were then washed twice 
with 2x SSC and then permeabilized with 70% ethanol overnight.

mESCs were dissociated after washing with 1x PBS using accutase when cultured in 2i media and 0.05% 
trypsin when in serum + LIF media. The cell suspension was centrifuged for 5 minutes at 200 g, washed with 1x 
PBS, and then fixed for 8–10 minutes at room temperature with a 3.7% formaldehyde solution in 1x PBS. The cells 
were washed twice with 1x PBS and then permeabilized with 70% ethanol at 4 °C for at least one hour.

Jurkat cells were fixed in their media described above with 2% formaldehyde for 10 minutes at room tempera-
ture. They were centrifuged for 3 minutes at 1000 × g and then permeabilized with 100% methanol on ice.

DAPI staining. The washing and staining procedure was the same for all cells and has been previously 
described26, though their centrifugation times and speeds were different and matched what was described above.

Microscopy. Cells were imaged with a Nikon Ti-E microscope and Micromanager software28 using epifluores-
cence for DAPI and widefield with light for cell boundary detection. Live-cell time-lapse microscopy was per-
formed in flow chambers by taking widefield and RFP fluorescent images. Microscopy on fixed cells was done 
in z-stacks for the DAPI stained nuclei and widefield images for cell boundary detection. Yeast cells were on 
75 × 25 mm Corning microslides (2947–75 × 25) with 22 × 22 glass coverslips (12-542-B). Mammalian cells were 
on the ibidi 15 μ-Slide Angiogenesis (81506) in wells coated with 0.01% poly-D-lysine (Cultrex 3439-100-01) for 
10 minutes.

Computational methods. Size and slice determination (GUI). The directory and details of images to be 
analyzed were input into the GUI. The first image from the directory was loaded, and ellipses were drawn to 
approximate the maximum and minimum nuclear and cellular sizes within the image. Individual slices for the cell 
boundary were looked at by eye, and a range was determined for when there were bright boundaries in the image.

Nuclear Determination. For adaptive nuclear thresholding, 100 evenly-spaced thresholds between the mini-
mum intensity and maximum intensity were calculated. For each threshold from the 10th to the 100th, a binary 
image of DAPI signal above the threshold was generated. MATLAB function “bwareaopen” filtered out objects 
that were too small or large based on the previously defined minimum and maximum nuclear sizes. All the binary 
images were added together, and each individual object was labeled using “bwlabeln”. It was determined for each 
individual object if more objects (within the size ranges) would result from removing layers from the binary 
images added together. Two new binary images resulted: 1) an image with a lower estimate of the nuclear area 
in the maximum intensity (dapi_label). For this, the maximum number of layers were removed that still had the 
maximum number of objects that fit the size restrictions. 2) An image with a higher estimate of the nuclear area in 
which the minimum number of layers were removed for maximum object number (dapi_label_low1).

For comparison, a single threshold was automatically determined. Thresholds were calculated, binary images 
were generated, and objects were filtered by size as described above. The threshold resulting in the maximum 
number of nuclei was applied, and this binary image was saved as both dapi_label and dapi_label_low1 for further 
processing steps.

As another comparison, a manually determined DAPI threshold was also used. A DAPI intensity threshold 
was picked by eye to identify the maximum number of individual nuclei (not blended together) in the image. This 
threshold was applied, and the resulting binary image was saved as both dapi_label and dapi_label_low1.

Nuclear Segmentation. Each object in dapi_label_low1 was investigated individually by determining a circle 
around the center of the object with a radius 1.3 times what would be expected from a circle matching the maxi-
mum nucleus size. The maximum intensity projection from the DAPI channel was determined inside this circle. 
Other nuclei in dapi_label_low1 within the circle other than the nucleus in the center were ignored. The cumu-
lative distribution function (cdf) of DAPI intensity inside the circle was determined, and the area of the nuclear 
object in dapi_label_low1 was divided by the area of the circle and subtracted from 1 to find a threshold for the 
nucleus for the cdf. The corresponding intensity value was determined and applied to the circle in 3D (now a 
cylinder) to determine the nucleus. The other nuclear objects in dapi_label_low1 within the cylinder were again 
ignored. The objects in each slice were filled in with the MATLAB function “imfill”, and only the largest connected 
volume in 3D was kept. Nuclei too close to the image border were removed.

Cell segmentation. A maximum intensity projection of the slices defined by the user was used to start. A back-
ground image was generated with a disk smoothing filter over this image based on the minimum cell size. The 
background image was then subtracted from the maximum projected image. This image was then combined 
with processed DAPI image corresponding to the low estimate of nuclear area (dapi_label) using morphological 
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reconstruction and cells were segmented with a watershed algorithm. After image segmentation, segmented ele-
ments that were too small or large elements were removed. Cells too close to the borders were also removed.

Quantification of Precision, Sensitivity, and Accuracy. To quantify sensitivity and precision, images from the 
DAPI and transmitted light channels as well as the segmented nuclei and cells were loaded and displayed in one 
overlaid image. For each cell line, 3–4 images were collected from each of 3 biological replicas. For every image 
in one biological replica, three experts in the lab manually scored the segmentation quality as described below. 
The average and standard deviation of the F-scores from the three experts were then computed. In addition, one 
expert in the lab manually scored the segmentation quality for all three biological replicas, and the average and 
standard deviation were calculated from the replicas. Experts in our lab labeled each image for false positives and 
false negatives for both the nuclear and cellular segmentation. A false negative was defined as a lack of segmenta-
tion for an object. A false positive was defined as a segmented object with greater than 20 percent error in its area 
(positive or negative). For instances where two objects were determined as one object, one false positive and one 
false negative was counted. Objects on the edge of the image were not counted. True positives (TP) were calcu-
lated by subtracting the number of false positives from the number of segmented objects determined by the pro-
gram. Sensitivity was calculated by dividing the number of true positives by the number of false negatives (FN) 
plus true positives: TP/(FN + TP). Precision was calculated by dividing the number of true positives by the num-
ber of false positives (FP) plus true positives: TP/(FP + TP). The accuracy was calculated as the F1-score which is 
the harmonic average of the precision and sensitivity: 2(Precision × Sensitivity)/(Precision + Sensitivity).

Data Availability
The datasets and computer codes generated and/or analyzed during the current study are available in the public 
dropbox repository: https://www.dropbox.com/sh/egb27tsgk6fpixf/AADaJ8DSjab_c0gU7N7ZF0Zba?dl=0.

References
 1. Conrad, C. et al. Automatic identification of subcellular phenotypes on human cell arrays. Genome Res. 14, 1130–6 (2004).
 2. Mattiazzi Usaj, M. et al. High-Content Screening for Quantitative Cell Biology. Trends Cell Biol. 26, 598–611 (2016).
 3. Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019).
 4. McQuin, C. et al. CellProfiler 3.0: Next-generation image processing for biology. PLOS Biol. 16, e2005970 (2018).
 5. Caicedo, J. C. et al. Data-analysis strategies for image-based cell profiling. Nat. Methods 14, 849–863 (2017).
 6. Antony, P. M. A., Trefois, C., Stojanovic, A., Baumuratov, A. S. & Kozak, K. Light microscopy applications in systems biology: 

opportunities and challenges. Cell Commun. Signal. 11, 24 (2013).
 7. Sommer, C., Straehle, C., Kothe, U. & Hamprecht, F. A. Ilastik: Interactive learning and segmentation toolkit. In 2011 IEEE 

International Symposium on Biomedical Imaging: From Nano to Macro 230–233 (2011).
 8. Selinummi, J. et al. Bright Field Microscopy as an Alternative to Whole Cell Fluorescence in Automated Analysis of Macrophage 

Images. PLoS One 4, e7497 (2009).
 9. Christiansen, E. M. et al. In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images. Cell 173, 792–803.e19 (2018).
 10. Berchtold, D., Battich, N. & Pelkmans, L. A Systems-Level Study Reveals Regulators of Membrane-less Organelles in Human Cells. 

Mol. Cell 72, 1035–1049.e5 (2018).
 11. Lyubimova, A. et al. Single-molecule mRNA detection and counting in mammalian tissue. Nat. Protoc. 8, 1743–1758 (2013).
 12. McKinley, E. T. et al. Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity. JCI Insight 2, 

e93487 (2017).
 13. Lin, J.-R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional 

optical microscopes. Elife 7, e31657 (2018).
 14. Ounkomol, C., Seshamani, S., Maleckar, M. M., Collman, F. & Johnson, G. R. Label-free prediction of three-dimensional 

fluorescence images from transmitted-light microscopy. Nat. Methods 15, 917–920 (2018).
 15. Carpenter, A. E., Kamentsky, L. & Eliceiri, K. W. A call for bioimaging software usability. Nat. Methods 9, 666–670 (2012).
 16. Bumgarner, S. L. et al. Single-Cell Analysis Reveals that Noncoding RNAs Contribute to Clonal Heterogeneity by Modulating 

Transcription Factor Recruitment. Mol. Cell 45, 470–482 (2012).
 17. Van Werven, F. J. F. J. et al. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding 

yeast. Cell 150, 1170–1181 (2012).
 18. Neuert, G. et al. Systematic Identification of Signal-Activated Stochastic Gene Regulation. Science (80). 339, 584–587 (2013).
 19. Pargett, M., Gillies, T. E., Teragawa, C. K., Sparta, B. & Albeck, J. G. Single-Cell Imaging of ERK Signaling Using Fluorescent 

Biosensors. in. Methods in molecular biology. 1636, 35–59 (2017).
 20. Lever, J., Krzywinski, M. & Altman, N. Classification evaluation. Nat. Methods 13, 603–604 (2016).
 21. Heng, B. C., Cowan, C. M. & Basu, S. Comparison of Enzymatic and Non-Enzymatic Means of Dissociating Adherent Monolayers 

of Mesenchymal Stem Cells. Biol. Proced. Online 11, 161 (2009).
 22. Tsuji, K. et al. Effects of Different Cell-Detaching Methods on the Viability and Cell Surface Antigen Expression of Synovial 

Mesenchymal Stem Cells. Cell Transplant. 26, 1089 (2017).
 23. Altan-Bonnet, G. & Mukherjee, R. Cytokine-mediated communication: a quantitative appraisal of immune complexity. Nat. Rev. 

Immunol. 19, 205–217 (2019).
 24. Hung, Y. P. et al. Akt regulation of glycolysis mediates bioenergetic stability in epithelial cells. Elife 6, e27293 (2017).
 25. Araujo, A. R. R., Gelens, L., Sheriff, R. S. M. S. M. & Santos, S. D. M. D. M. Positive Feedback Keeps Duration of Mitosis Temporally 

Insulated from Upstream Cell-Cycle Events. Mol. Cell 64, 362–375 (2016).
 26. Munsky, B., Li, G., Fox, Z. R., Shepherd, D. P. & Neuert, G. Distribution shapes govern the discovery of predictive models for gene 

regulation. Proc. Natl. Acad. Sci. 115, 7533–7538 (2018).
 27. Lee, J. T. & Lu, N. Targeted Mutagenesis of Tsix Leads to Nonrandom X Inactivation. Cell 99, 47–57 (1999).
 28. Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J. Biol. Methods 1, 10 (2014).

Acknowledgements
B.K., G.L., A.T., R.V. and G.N. are supported by NIH DP2 GM11484901, NIH R01GM115892, and Vanderbilt 
Startup Funds. Additionally, B.K. was supported by T32GM008320, RV was supported by T32LM012412 and 
A.T. is supported by an AHA predoctoral fellowship (18PRE34050016). Vanderbilt ACCRE computing cluster is 
supported by NIH S10OD023680. We would like to thank J.T. Lee for sharing mESC 16.7 cell line and K. Gould 
for sharing S. pombe 972h strain.

https://doi.org/10.1038/s41598-019-46689-5
https://www.dropbox.com/sh/egb27tsgk6fpixf/AADaJ8DSjab_c0gU7N7ZF0Zba?dl=0


9Scientific RepoRts |         (2019) 9:10237  | https://doi.org/10.1038/s41598-019-46689-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Author Contributions
B.K. and G.N. developed the image processing pipeline. B.K., G.L., R.V. and A.T. generated the images and 
analyzed the data. B.K., A.T., R.V. cultured the cells. B.K., A.T., R.V. and G.N. wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-46689-5.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-46689-5
https://doi.org/10.1038/s41598-019-46689-5
http://creativecommons.org/licenses/by/4.0/

	Automated cell boundary and 3D nuclear segmentation of cells in suspension
	Results
	Nuclear segmentation in three dimensions. 
	Cell boundary segmentation. 

	Discussion
	Materials and Methods
	Experimental methods. 
	Cell culture. 
	Cell Fixation. 
	DAPI staining. 
	Microscopy. 

	Computational methods. 
	Size and slice determination (GUI). 
	Nuclear Determination. 
	Nuclear Segmentation. 
	Cell segmentation. 
	Quantification of Precision, Sensitivity, and Accuracy. 


	Acknowledgements
	Figure 1 Sample preparation and computational requirements for automated cell segmentation.
	Figure 2 Automated nuclear segmentation of 3D image stacks.
	Figure 3 Automated cell boundary segmentation.
	Figure 4 Application, implementation and performance of cell segmentation for different cell types from different organism imaged at low and high resolution.




