
1Scientific RepoRts |          (2019) 9:9663  | https://doi.org/10.1038/s41598-019-45832-6

www.nature.com/scientificreports

A Characterization of the DNA Data 
storage Channel
Reinhard Heckel1, Gediminas Mikutis2 & Robert N. Grass  2

owing to its longevity and enormous information density, DNA, the molecule encoding biological 
information, has emerged as a promising archival storage medium. However, due to technological 
constraints, data can only be written onto many short DNA molecules that are stored in an unordered 
way, and can only be read by sampling from this DNA pool. Moreover, imperfections in writing 
(synthesis), reading (sequencing), storage, and handling of the DNA, in particular amplification via PCR, 
lead to a loss of DNA molecules and induce errors within the molecules. In order to design DNA storage 
systems, a qualitative and quantitative understanding of the errors and the loss of molecules is crucial. 
In this paper, we characterize those error probabilities by analyzing data from our own experiments 
as well as from experiments of two different groups. We find that errors within molecules are mainly 
due to synthesis and sequencing, while imperfections in handling and storage lead to a significant loss 
of sequences. the aim of our study is to help guide the design of future DNA data storage systems by 
providing a quantitative and qualitative understanding of the DNA data storage channel.

Recent years have seen an explosion in the amount, variety, and importance of data created, and much of that 
data needs to be archived. As an example, CERN, the European particle research organization has spent billions 
of dollars to generate more than 100 petabytes of physical data which it archives for analysis by future generations 
of scientists. However, standard storage media such as optical discs, hard drives, and magnetic tapes only guar-
antee data lifetimes of a few years. This has spurred significant interest in new storage technologies. Fueled by the 
excitement about its longevity and enormous information density, Deoxyribonucleic acid (DNA), a molecule that 
carries the genetic instruction of living organisms, has emerged as a promising archival storage medium.

At least since the 60 s, computer scientists and engineers have dreamed of harnessing DNA’s storage capa-
bilities1,2, but the field has only been developed in recent years: In 2012 and 2013 groups lead by Church3 and 
Goldman4 stored about a megabyte of data in DNA and in 2015 Grass et al.5 demonstrated that millenia long 
storage times are possible by information theoretically and physically protecting the data. Later, in the same year, 
Yazdi et al.6 showed how to selectively access files, and in 2017, Erlich and Zielinski7 demonstrated that DNA 
achieves very high information densities. In 2018, Organick et al.8 scaled up those techniques and successfully 
stored and retrieved more than 200 megabytes of data.

DNA is a long molecule made up of four nucleotides (Adenine, Cytosine, Guanine, and Thymine) and, for 
storage purposes, can be viewed as a string over a four-letter alphabet. However, there are several technological 
constraints for writing (synthesizing), storing, and reading (sequencing) DNA. The perhaps most significant one 
is that in practice it is difficult to synthesize strands of DNA significantly longer than one-two hundred nucleo-
tides. While there are approaches that generate significantly longer strands of DNA, those are based on writing 
short strands of DNA and stitching them together9, which is currently not a scalable approach. As a consequence, 
all recently proposed systems3–8,10 stored information on DNA molecules of one-two hundred nucleotides. The 
second technological constraint is that the DNA molecules are stored in a pool and cannot be spatially ordered. 
We do not have straightforward random access to the DNA fragments in the pool, and can therefore not choose 
which DNA fragments to read (however, one can design PCR hooks to selectively amplify and sequence part of 
the DNA6,8) Accessing the information is done via state-of-the-art sequencing technologies (including Illumina 
and third-generation sequencing technologies such as nanopore sequencing). This corresponds to (randomly) 
sampling and reading molecules from the DNA pool. In practice, sequencing is preceded by potentially several 
cycles of Polymerase Chain Reaction (PCR) amplification. In each cycle, each DNA molecule is replicated by a 
factor of about 1.6–1.8, but that number depends on the PCR method and varies by sequence. The proportions of 
molecules in the pool depend on the synthesis method, the PCR steps, and the decay of DNA during storage. In 
summary, in the process of synthesizing, storing, handling, and sequencing, the following errors occur:
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 i. Molecules might not be successfully synthesized, and some might be synthesized many more times than 
others. Current synthesis technologies generate not only one but several thousand to millions copies of a 
strand, which can all contain possibly different errors.

 ii. During storage, DNA decays, which results in a loss of molecules.
 iii. Since reading amounts to drawing from the pool of molecules, we only see a fraction of the molecules that 

are in the pool. This fraction depends on the distribution of the molecules in the pool and the number of 
draws (i.e., reads) we take.

 iv. Sequencing of DNA, and in particular synthesis of DNA may lead to insertions, deletions, and substitu-
tions of nucleotides in individual DNA molecules11,12.

Given these constraints, a good abstraction of the DNA data storage channel that captures the essential parts 
of a DNA storage system is to view the input as a multiset of M DNA molecules of length L, and the output as 
sampling N times independently from the multiset, and then disturbing the sampled molecules with insertions, 
deletions, and substitutions, to account for errors within individual molecules. See Fig. 1 for an illustration. The 
sampling distribution and distribution of insertions, deletions, and substitutions determine the channel and thus 
how much data can be stored.

A statistical understanding of those distributions and the processes that lead to those distributions is cru-
cial for designing good DNA data storage systems, and in particular for designing good encoder/decoder pairs. 
Encoder/decoder pairs use error correcting codes that add redundancy in order to correct errors. To decide 
which codes to use or to develop, and how to choose their parameters (specifying the amount of redundancy, for 
example), requires an statistical understanding of the error distributions. Providing such an understanding is the 
goal of this paper.

For a given channel—determined by the handling procedures, experimental designs, synthesis and sequenc-
ing tools, and storage time—the goal of an encoder/decoder pair is to maximize the number of bits per nucle-
otide, ML, while guaranteeing successful decoding. The goal when designing a DNA data storage system is to 
minimize the cost for storing data, or to maximize the number of bits per total number of nucleotides stored, 
which is typically significantly larger than the number of nucleotides in the multiset, ML. Therefore, it is impor-
tant to understand how different parameters of the channel, such as storage times and physical density (i.e., 
number of copies of the DNA molecules in the pool) affect the error distributions. To determine the best trade-off 
for maximizing density or minimizing costs, an understanding of the error statistics and how they change with 
different experimental setups is important.

The aim of this paper is to obtain a both quantitative and qualitative understanding of the DNA data storage 
channel, which amounts to quantifying the sampling distribution as well as the distribution of errors within the 
molecules, for different experimental setups, and assign, when possible, error sources to processes such as read-
ing or writing the DNA. As currently the cost of well designed experiments to analyze all those errors in a fully 
controlled manner is very high, we chose to use data for quantifying error statistics from the DNA data storage 
literature, as well as complement that data with data from some of our own experiments.

error sources and the Need for error Correcting Codes
We start by giving an explanation of the basic chemical processes involved, together with a short theoretical 
discussion of the potential errors. Next, we identify differences between the various performed experiments and 
assign the observed differences in error probabilities to the individual steps. This should not only give theoreti-
cians estimates of the overall expected errors, but also directions on how errors could be experimentally avoided.

Figure 1. Channel model for DNA storage systems. Only short molecules can be synthesized, and of each 
molecule a large number of copies is generated in the synthesis process. For reading, the data is first amplified 
and then sequenced. Abstractly, the input to the channel is a multi-set of M length-L DNA molecules, while the 
output is a multi-set of N draws from the pool of DNA molecules that is disturbed by insertions, substitutions, 
and deletions (marked as lowercase and boldface letters). The sampling distribution as well as the process 
inducing errors in individual molecules account for errors in synthesis, storage, and sequencing.
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errors during DNA synthesis. The currently utilized synthesis strategies work on solid surfaces (chips), 
on which one end of the DNA molecule is attached, and nucleotides are added one by one by a chemical pro-
cess13. These synthesis methods are currently able to generate up to a few millions of (typically distinct) sets of 
DNA strands per chip. Current technologies are not able to generate single DNA strands, they generate sets of 
DNA strands. Each set typically consists of millions copies (femtomoles)14, and is generated on a geometrically 
limited 2-D surface of the chip (i.e., a spot). Nucleotides are directed to these spots by light via optically sensitive 
protection groups15,16, are directed electrochemically with electrodes via pH sensitive protection groups17, or 
are directed with printing technology by using a movable printing head11. During the chemical addition of new 
nucleotides on a growing DNA strand, various errors can occur: a nucleotide may not be positioned where it 
should (resulting in a deletion), a nucleotide might be positioned where it should not (resulting in an insertion), 
and a nucleotide other than the intended one is added (resulting in a substitution). Moreover, the growing strand 
may be terminated, meaning that the chemical reactivity at the end of the growing strand is lost, and nucleotides 
can no longer be added to this strand in later steps. The probability of this termination reaction—which varies by 
technology used and also potentially by the position within the sequence11—limits the length of DNA strands that 
can be generated, since the longer the target sequence, the more sequences at a spot do not reach the target length. 
Also note that typically not all individual growing strands at the same spot (corresponding to the same target 
sequence) undergo the same error, meaning that for every target sequence variations may be present.

Depending on the chosen synthesis method, the number of DNA copies generated per spot may be unevenly 
distributed. Spots on the chip-edge may have a different synthesis yield (number of complete DNA strands syn-
thesized per sequence), so that some DNA sequences intrinsically have higher yields than others (e.g., synthesis 
limited by self-binding of sequences) and that physical imperfections on the chip surfaces limit the ideal synthesis 
on some chip locations.

All chemical synthesis methods generate single stranded DNA (ssDNA), which is chemically detached from 
the chip surface after the synthesis procedure to generate a DNA pool in aqueous solution. In order to clean up 
the synthesis pool, i.e., remove non-complete sequences, and to generate double stranded DNA, polymerase 
chain reaction (PCR) is performed. During this step utilizing biotechnological enzymes, only DNA sequences 
which have correct primers on both ends are amplified about 10,000 fold over about 15 cycles (different labs uti-
lize slightly different procedures). This process dilutes out non-complete strands (DNA strands that do not have 
primers on both ends can not be amplified).

Although PCR by itself is understood as a high-fidelity process and thus has few errors18,19. PCR is known to 
have a preference for some sequences over others, which may further distort the copy number distribution of 
individual sequences20–23. Thus, each cycle of PCR in expectation multiplies each molecule by a certain number 
which lies typically slightly below two and is sequence dependent. For example, high GC-contents (i.e., a large 
number of Gs and Cs in the sequence) can lead to a smaller expected number and thus fewer corresponding 
sequences24.

errors during DNA storage. During DNA storage, as well as during any DNA processing step, such as 
removing DNA from the chips, and during heating intervals in PCR, the DNA strands are prone to chemical 
decay of DNA, especially hydrolytic damage. The main effects of hydrolytic damage are depurination25, which 
eventually results in strands breaking26, and deamination of cytosine (C), in the C-G basepair, resulting in uracil 
(an U-G basepair)27.

Using current DNA reading technologies which involve DNA amplification stages, namely standard PCR in 
sample preparation and bridge amplification during Illumina sequencing, any DNA strand that has undergone 
strand-breakage following depurination is no longer read. This is due to the fact that broken strands do not have 
the required amplification primers on both ends of the DNA strand, are therefore not amplified, and as a conse-
quence are diluted out during the amplification stages.

The effect of hydrolytic deamination is less extreme, and depends on the choice of enzymes utilized during 
subsequent PCR steps. Proof-reading enzymes (3′ to 5′ exonuclease, high-fidelity) have a significantly different 
effect on the errors introduced during deamination (i.e., U-G basepairs) than non-proof-reading enzymes. For 
most proof reading enzymes, the amplification reaction stalls at an U nucleotide in the first PCR cycle, and no 
complete copy of a sequence comprising a U nucleotide is formed. These incomplete DNA copies are then not 
further amplified in the next PCR cycle, due to a lack of primers on both ends of the sequence, and are therefore 
diluted out. On the complementary strand (having a G), the sequence still amplifies. In this context, the enzyme 
removes the errors which have occurred during DNA storage. However, if a DNA strand has at least one deami-
nation (C to U reaction) on both strands, the whole information stored in the sequence is lost (diluted out), as the 
amplification reaction stalls at the U nucleotide at both strands and neither are amplified (see Fig. 2). If non-proof 
reading enzymes are utilized, the U-G basepair is in half amplified to the correct C-G basepair, and in half ampli-
fied incorrectly as a T-A basepair, formally resulting in a C2T error.

In summary, storage can lead to significant loss of whole DNA molecules, as well as to substitution errors in 
the DNA molecules.

errors during DNA sequencing. The errors during DNA sequencing depend on the technology that is 
used. The currently most utilized sequencing platform is Illumina’s, and in this paper we only consider datasets 
that have been sequenced with this technology, although recently DNA data storage readout has also been per-
formed with nanopore sequencing8,28. Ilumina errors—characterized as early as 200829—are not random, but are 
strand specific29,30, and the error rates are higher at the end of a read. According to a recent study30, the substi-
tution reading error rates are about 0.0015–0.0004 errors per base. We remark that the exact number, however, 
depends on the particular dataset. Insertions and deletions are significantly less likely, specifically they are on the 
order of 10−6.
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Two properties that raise the error probability for most sequencing (and synthesis) technologies are high GC 
content and long homopolymer stretches (e.g., GGGGGG)24,31. In more detail, the paper24, [Fig. 5] reports that in 
particular the substitution and deletion error rates increase significantly for homopolymer stretches longer than 
six. Moreover, molecules with high GC content exhibit high dropout rates and PCR errors are significantly more 
likely in regions with a high GC content7,31. For example, the paper24, [Fig. 3] reports that the coverage obtained 
by common sequencing technologies such as Illumina’s HiSeq technology is significantly lower for fragments 
with GC content smaller than 20% and larger than about 75%. For reasons described in the previous section, any 
DNA strand that is broken, or for any other reason, does not have correct sequencing primers on both ends of the 
DNA strand can not be read by Illumina sequencing technologies, as the initial phase of the Illumina sequencing 
procedure involves bridge-amplification32.

the need for error correcting code and implications of this work on their design. In view of the 
relatively low error levels encountered in DNA synthesis and sequencing (see Section 4.1), one may be tempted 
to store data in DNA without error correction coding, relying purely on the intrinsic data redundancy of the 
system: during synthesis every designed DNA strand is synthesized in many copies (often millions) and standard 
sequencing technologies read each designed DNA strand a multitude of times (often 100 fold read coverage). As 
DNA synthesis is orders of magnitude more expensive than DNA sequencing, it is not surprising that the first two 
attempts of storing 1 MB of data in DNA did not use a principled way of error correction3,4 but as a consequence 
were unable to retrieve the stored data without manual intervention. The intrinsic data redundancy enables cop-
ing with statistical DNA read and write errors by data clustering and averaging if the number of reads and the 
number of redundancy copies is sufficiently large, but it fails at systematic errors: specific DNA sequences may be 
hard (or impossible) to synthesize or sequence, which include long base repetitions as well as hairpins/loops and 
other forms of higher-order structure33. As this paper shows, both statistical and systematic errors lead to a loss 
of sequences that make data redundancy a necessity for enabling perfect information retrieval. This is typically 
accomplished with error correcting codes5.

In addition to the described problem of systematic and statistical errors, a main advantage of DNA data stor-
age, namely its enormous data capacity (theoretically up to 455 EB/g3) is offset significantly if the system relies 

Figure 2. Deamination of cytosine results in the transformation of cytosine to uracyl. Most proof-reading PCR 
enzymes cannot copy past an uracyl. As a consequence any strand containing a de-aminated cytosine is not 
amplified (b). If both strands of a dsDNA molecule contain uracyl moieties, all information originally contained 
in the molecule is lost (diluted out) during PCR (c). If non-proof reading enzymes are used for PCR (e.g. taq 
polymerase), any uracyl is misinterpreted by the enzyme as a thymine, introducing an adenine on the growing 
complementary strand, resulting in C2T and G2A errors.
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heavily on high physical redundancy of the sequences. This is not only true during the actual storage of the data 
as DNA, but also into how much DNA has to be fed into a sequencing experiment in order to allow sufficient 
data variability. Consequently, it is also advantageous to use error correction within individual DNA sequences. 
As Section 4.1 shows, errors within a sequence are in the 1–2% range per nucleotide. With common DNA strand 
lengths of 60–180 nucleotides, this means that statistically nearly every read strand has an error, and most strands 
have 2–3 errors. Relying on repetition alone, and assuming statistical errors, each designed strand would have to 
be read many times in order to precisely determine the correct sequence. This task is additionally complicated 
by the nature of DNA sequencing, which corresponds to randomly drawing sequences from a pool of sequences 
resulting in a coupon collector problem and requiring a significant increase in DNA read coverage. Currently 
applied DNA error correction schemes for DNA data storage5 can correct any 2–3 substitution errors by adding 
5–10 nucleotides to every sequence. This results in an increase of less than 10% of increased synthesis cost, which 
in most cases offsets the aforementioned problems of needing to read every sequence several times.

From the error rates estimated here (see Section 4.1) we see that the inner and outer code error correcting 
schemes proposed in literature, typically allowing for 1–3 error corrections per sequence, and a loss of 2–10 
complete sequences, are able to perfectly recover the information, and are also within the economic specificities 
of the DNA read and write costs, using current DNA synthesis and sequencing technologies (i.e. high yield array 
synthesis and Illumina Dye Sequencing). However, if DNA data storage is to become a common DNA archiving 
technology, costs and accessibility of read and write technologies will have to advance significantly. This will most 
probably result in lower levels of precision, making error correcting schemes even more important to enable 
perfect data recovery.

Material and Methods
We estimate the error probabilities of the DNA data storage experiments performed by three different research 
groups and discuss the allocation of the errors to individual parts (writing, storage, reading) of the DNA storage 
model. In this section, we describe the data sets we consider, and the estimation of error probabilities.

Figure 3. (a) Error probabilities of all molecules, (b) Error probabilities of the molecules that have the correct 
length (thus the number of insertions is equal to the number of deletions). (c) Error probabilities of molecules 
that do not have the correct length. In the five datasets, 56.6%, 57.7%, 56.7%, 83%, and 78.6% have the correct 
length. In the molecules that have the correct length, the substitution errors dominate by far. (d) Estimates of 
the reading errors.

Figure 4. Conditional error probability for mistaking one nucleotides for another (e.g., A2C means mistaking 
A for C). Since those are conditional error probabilities (conditioned on a substitution error having occurred), 
the bars sum to one.
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Data sets. We analyze datasets from our group as well as datasets from Goldman’s4 and Erlich’s groups7. 
Each dataset was obtained by synthesizing DNA molecules, storing the molecules, and sequencing them. For 
each dataset, we are given the channel input consisting of the DNA molecules to be synthesized, and the channel 
output, in the form of forward and backward reads from Illunmina sequencing technology. For each dataset, 
we obtained DNA molecules by stitching the one-sided reads together using the FLASH34 algorithm. We set the 
maximal overlap of the reads to the target length, which is known in each experiment, the minimal overlap to 
87% of the target length, and finally, the maximum allowed ratio between the number of mismatched based pairs 
and the overlap length to 20%.

The datasets differ in the number of strands synthesized, the target length of each of the sequences, the synthe-
sis method, the expected decay due to thermal treatment (modeling accelerated aging), measured in the percent 
of the original DNA that remains intact after heat treatment, the physical redundancy, which is the expected 
number of copies of each strand in the pool of DNA, the number of PCR cycles, which is the total number of 
PCR cycles conducted from synthesis to sequencing, and finally the read coverage which is number of reads per 
strand that has been synthesized. We briefly summarize how the datasets have been obtained below, and the key 
parameters in Table 1.

•	 Goldman et al.4 synthesized 153,335 DNA molecules, each of length 117, containing no homopolymers. 
DNA was synthesized using the Agilent Oligo Library Synthesis (OLS) Sureprint technology process, and 
sequenced with Illumina HighSeq 2000 by taking forward and backward reads of length exactly 104.

•	 Erlich and Zielinski7 synthesized 72,000 DNA molecules, each of length 152, containing no homopolymers 
longer than two. DNA was synthesized with Twist Bioscience technology, and sequenced with Illumina Miseq 
V4 techonlogy, taking forward and backward reads of length exactly 151. We also consider data from the 
dilution experiment in7, which varies the physical redundancy by factors of ten starting from approximately 
107 by diluting the DNA (Erlich D1–7).

•	 Grass et al.5 synthesized 4991 DNA molecules, each of length 117, containing no homopolymers longer than 
three. DNA was synthesized with Customarray, and the DNA was read after storing it for a negligible amount 
of time and read again after thermal treatment corresponding to four half-lifes. Both dataset have rather high 
physical redundancy and are therefore denoted by High PR and High PR 4t1/2. The DNA was sequenced with 
Illumina Miseq. 2 × 150 bp Truseq technology.

•	 In another dataset from our group, we synthesized again 4991 DNA molecules, each of length 117, containing 
no homopolymers longer than three. In contrast to High PR and High PR 4t1/2, we diluted the DNA so that 
the physical redundancies are low. We again sequenced the original DNA (High PR) as well as DNA after 
thermal treatment corresponding to four half-lifes; the resulting datasets are denoted by Low PR and Low 
PR 4t1/2.

estimation of overall error probabilities. In order to estimate the errors within sequences, we consider 
the aligned reads (obtained from the two single sided reads as explained in the previous section “Data sets”), and 
for those reads, we estimate the substitution, insertion, and deletion probabilities. Towards this goal, for each 
aligned read m, we find a molecule morig in the set of original sequences which minimizes the edit (Levenshtein) 
distance to, and take the substitution, insertion, and deletion probabilities as the average number of substitutions, 
insertions, and deletions per nucleotide required for aligning m and morig. We aggregate the corresponding sta-
tistics for all molecules, as well as for molecules that do have the correct target length and do not have the correct 
target length (Fig. 3(a–c)). Note that molecules that do not have the correct target length necessarily contain 
deletion or insertion errors.

estimation of reading error probabilities. The overall error consists of errors due to synthesis, storage 
and sequencing. Out of those error sources, the sequencing error is the only error that can be estimated inde-
pendently due to two-sided reads. The goal of this section is to estimate the sequencing error and to understand 
which proportion of errors reported in Fig. 3(a–c) can be attributed to synthesis and which to sequencing.

We estimate the sequencing error as follows. For each dataset, we consider the reads that have been successfully 
aligned, as those are the reads on which the overall error probability estimates (see Fig. 3a–c)) are based on. Out of 
those N reads, we consider the two single sided reads r1k and r2k, k = 1, …, N, and find the best alignment that does 

Name
Strands
synth.

target
length

synthesis
method

decay
retained

physical
redundancy

PCR
cycles

sequencing
method

read
coverage

Goldman 153335 117 Agilent 100 22172 22 HighSeq 2000 519

Erlich 72000 152 Twist B. 100 1.28107 10 Miseq V4 281

Erlich D1–7 72000 152 Twist B. 100 1.28107−1.28 40+ Miseq V4 281–503

High PR 4991 117 Customa. 100 3.9103 65 Miseq 2 × 150 372

High PR 4t1/2 4991 117 Customa. 6.25 3.9104 65 Miseq 2 × 150 456

Low PR 4991 117 Customa. 100 1.2 68 Miseq 2 × 150 461

Low PR 4t1/2 4991 117 Customa. 5.75 17.9 68 Miseq 2 × 150 396

Table 1. Parameters of the datasets analyzed in this paper. Custom Array uses electrochemical synthesis, and 
Twist and Agilent use material deposition as processes for the synthesis.
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not penalize gaps at the beginning and at the end of the sequences. We then count the number of substitutions, sk, 
and number of deletions, dk, plus number of insertions, ik, that are necessary to align the two reads. We then divide 
that number by the sum of the length of the two single sided reads len(r1k) + len(r2k), and average it over all reads 
to obtain an estimate of the substitution and insertion plus deletions error probabilities that occur during reading 
(for example, the substitution error probability estimate is ∑ = +N k

N s
r r

1
1 len( ) len( )

k

k k1 2
). This estimate would be the error 

we obtain when choosing the nucleotide from one of the two single sided reads at random, in case there is a mis-
match in the alignment. Since we ignore the quality information of the reads, this is a suboptimal way of obtaining 
a single sided read from the two sided reads, thus the corresponding error probabilities can be viewed as an upper 
bound on the reading error probability that is achieved by aligning the single sided reads. Note that our claim that 
this is an estimate of the read error probabilities also assumes that the single sided reads are independent.

Results
We characterize errors on a molecule level (substitutions, insertions, and deletions) as well as the distribution of 
molecules that we observe on the output of the channel.

errors within molecules. We start with reporting the substitution, deletion, and insertion errors in indi-
vidual molecules. As discussed in the introduction, those errors are mainly due to synthesis and sequencing. In 
Fig. 3 we report results for Goldman’s and Erlich’s dataset, and the High PR dataset, as those datasets differ in the 
synthesis method. Moreover, we report results for our heat treated DNA, High PR 4t1/2, as decay of DNA intro-
duces substitution errors as well, (as discussed previously).

The majority of the reads in each dataset have the correct target length. As depicted in Fig. 3, out of the 
reads that have correct target length, in all datasets, the substitution errors dominate by far. In the overall error 
probabilities, the deletions dominate (at first sight, in Erlich’s data, this seems to be different, as the number of 
insertions is similar to the number of deletions. However, this is only an artifact of how Erlich’s reads are filtered: 
all single-sided reads have length 150, and the target length is 152. Therefore, reads that would align to shorter 
molecules are filtered out and are not accounted for in the estimates). Comparing this to the estimated reading 
error probabilities, we can conclude that likely most of the deletions (and insertions) that we see in the overall 
reads are due to synthesis, while the substitution errors are likely dominated by synthesis and sequencing and are 
also impacted by DNA decay and PCR. This is consistent with what we expect from the literature, which found 
that at sequencing, substitution errors are significantly more likely than deletions and insertions.

In Fig. 4 we examine the substitution errors in more detail by computing conditional error probabilities for 
mistaking a certain nucleotide for another. The results show that, for example, mistaking T for a C and A for a G 
is much more likely than other error probabilities. These two transitions can be explained by the vulnerability of 
cytosine to deamination and the consequent formation of an uracyl. During PCR amplification—either prior to 
sequencing, or as part of the sequencing process itself—and, if non-proofreading polymerases are used, uracyls 
are misinterpreted as thymines by the polymerase and adenines are introduced on the complimentary strand (see 
Fig. 2). While cytosine deamination is a hydrolysis reaction (involving water as reactant), it can proceed during 
many of the DNA processing steps, including chemical cleavage of the DNA molecules from the synthesis chip, 
PCR cycling itself (involving high temperatures), DNA handling and storage. As a result, DNA samples that 
have undergone decay due to storage show increased C2T and G2A errors. Interestingly, and considering the 
large experimental differences between the individual datasets (different synthesis, different PCR polymerases, 
different Illumina sequencing kits, different storage/handling), the observed error levels only display marginal 
variances, depicting the robustness of the technologies involved.

Figure 5. The distribution of the number of reads per each given sequences that has been synthesized, along 
with the physical redundancy (PR) and PCR cycles (PCRC). The percentage in the picture corresponds 
to the percentage of molecules that are not observed in the sequenced data. Erlich’s and Goldman’s data is 
approximately negative binomial distributed, whereas High PR and Low PR have a long tail and peak at zero. 
The reading coverage of all datasets is approximately the same. Likely, the difference in distribution of (a) and 
(b) to (c) and (d) is due to the significantly more cycles of PCR in (a) and (b), while the difference of (a) and (b) 
is due to low physical redundancy and dilution.
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Distribution of molecules. In the coming subsections we discuss the distribution of the molecules that we 
observe at the output of the channel. The distribution of molecules is a function of the proportions of the mole-
cules in the pool, as well as the sequencing process itself and the number of reads. The proportion of the molecules 
in the pool prior to sequencing depends on the original physical redundancy determined by the synthesis method 
and potential amplification steps, as well as the decay of the DNA which causes a loss of molecules, and on ampli-
fication and potential dilution steps during processing the DNA and for preparation of the sequencing step.

We are particularly interested in the fraction of sequences observed at least once, since this parameter is rele-
vant for designing coding schemes. Specifically, as shown in the paper35, the number of bits that can be stored on a 
given number of DNA sequences depends on the fraction of molecules observed at least once, or in more detail, the 
fraction out of the molecules that are given to the synthesizer and are read at least once when sequencing the DNA.

Distribution of the molecules in control sets and PCR bias. We start by analyzing Erlich’s and Goldman’s data as 
well as our High PR and Low PR datasets. The main difference in the experiments that generated those datasets 
is the number of PCR steps as well as the physical redundancy of the molecules. The synthesis method in some of 
the experiments differs as well, but the reading coverage and sequencing method in all the experiments are com-
parable. In Fig. 5, we depict the distribution of the number of reads per molecule that has been synthesized, along 
with the physical redundancy (PR) and the number of PCR cycles (PCRC). We find that Erlich’s and Goldman’s 
data follows approximately a negative binomial distribution, whereas our datasets (High PR and Low PR) have a 
long tail and peak at zero.

Since the reading process is essentially the same for all datasets (Illumina sequencing), the difference of Erlich’s 
to Goldman’s to our original DNA (High PR) can in principle be attributed to either a maldistribution of the num-
ber of molecules generated during synthesis and/or to PCR amplification bias.

However, a significant maldistribution of the number of molecules can be ruled by considering Fig. 5(d) and 
noting that only 34% of the sequences are lost, even though the physical density is around one, and thus the 
number of DNA fragments in the dataset is approximately equal to the number of distinct fragments that have 
synthesized. In more detail, the corresponding dataset has been obtained by taking a small sample from the 
original synthesized DNA, which contains many copies of each fragment. Suppose the number of copies in the 
original DNA are very far from being uniformly distributed. Then, if we draw a small subset corresponding to a 
physical redundancy of about one, we would expect to lose a significantly larger proportion of fragments. As a 
consequence, we can conclude that the synthesized molecule distribution is not very far from uniform, leaving 
PCR bias as an possible explanation, as explained next.

In each PCR cycle, every sequence is amplified with a sequence-specific factor that is slightly below two20–23. 
This leads to significantly different proportion of the sequences in the original pool of DNA in particular when 
the process is repeated many times, i.e., when the number of PCR cycles is large. For example, if a sequence has 
PCR efficiency 80%, whereas another one has efficiency 90%, then after 60 PCR cycles, the proportions change 
from 1/1 to (1.8/1.9)60 = 0.039. Thus, a large number of PCR cycles leads to a distribution with a long tail; later we 
report results from an computational experiment demonstrating this effect. This effect is further confirmed by 
the dilution experiment from Erlich (Fig. 6), where every dilution step consequently requires more PCR cycles 
until the PCR process saturates.

Finally, note that the Low PR dataset has a significantly larger fraction of lost sequences, see Fig. 5(d), com-
pared to the High PR dataset in Fig. 5(c). That can be explained by the low physical redundancy in combination 
with the PCR amplication bias, as discussed in more detail in the next section.

Low physical redundancy and loss of sequences. Very low physical redundancy, obtained by taking a subset of 
a pool of DNA sequences with large physical redundancy, leads to a loss of sequences which in combination 
with PCR bias (as discussed in the previous section), results in a read distribution that has a long tail and many 
molecules with few or no reads. This can be seen by comparing Fig. 5(c) with Fig. 5(d). To see that the loss of 
sequences can be partly attributed to generating a pool with low physical redundancy, consider a pool of DNA 
sequences where each sequence has about the same amount of copies, and that number is large so that the phys-
ical redundancy is large. Suppose we obtain a pool of DNA with very low physical redundancy (say about one, as 
in Fig. 5(d)) by taking a random subset of the large pool, via pipetting. If the DNA sequences are mixed up well 
in the pool, that process corresponds to drawing a subset of the pool uniformly at random. Then, the expected 
fraction of distinct sequences in the subset is about 1−e−r, where r is the physical redundancy. In other words, at a 
physical redundancy of 1, about 36% of the sequences will be lost. Below, we present a computational experiment 
demonstrating this effect. Moreover, sequencing a pool of DNA with low physical redundancy requires more PCR 
steps, which, as discussed in the previous section, due to PCR bias, leads to a distribution that has a long tail and 
further contributes to a loss of sequences.

In order to investigate the effect of low physical redundancy further, we next consider the data from an experi-
ment carried out by Erlich and Zielinski7, in which the authors varied the physical redundancy from 1.28107–1.28 
copies per molecule synthesized by factors of 10, by consecutively diluting the DNA. In Fig. 6, we depict the 
corresponding distribution of the molecules. As we can see, initially, when the physical redundancy is large, the 
molecules are approximately negatively binomial distributed. As the physical density becomes low (about 1000 
and lower) the fraction of molecules that are not seen becomes increasingly large, and as it becomes very low, a 
large fraction of the molecules is not seen at the output, and the distribution has an extremely long tail, for exam-
ple, at physical density 1.28, there is one sequence that is observed 98800 times at the output.

Again, this can be attributed to the effect of sampling a small set of sequences from a pool of DNA, as well as 
to the fact that an increasingly larger number of PCR steps is required for sequencing, thus the effect of PCR bias 
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becomes more pronounced (In the experiment by Erlich and Zielinski7, all samples undergo 40 PCR cylces, how-
ever, it is to be expected that the PCR reaction saturates approximately 3.3 cycles later for every 10 fold dilution).

errors due to storage. Finally, we examine the effect of storage on the errors by considering the data from 
our accelerated aging experiments. See Fig. 7 for the corresponding distributions of the molecules. We find that, 
in each experiment, the number of molecules that are not seen is significantly larger in the aged DNA in the 
respective dataset compared to the corresponding non-aged dataset. Specifically, as shown in Fig. 7, the number 
of molecules that are not seen at the output in the dataset High PR is 1.6% and increases to 8% after 4 half-lifes 
(High PR 4t1/2), and in the dataset Low PR it is 34% and increases to 53% after 4 half-lifes (Low PR 4t1/2). Note that 
the original DNA and the aged DNA were both diluted so that the decayed samples and non-decayed samples 
required a comparable number of PCR cycles for PCR saturation.

As the storage related DNA decay process can be best described as a first order reaction, the resulting DNA 
concentration is expected to decay exponentially5. At one half-life of DNA decay (corresponding to about 500 
years for DNA encapsulated in bone36), half of the DNA has decayed and is no longer amplifiable via PCR. To gen-
erate DNA with an equivalent thermal history, we have utilized accelerated aging. As non-decayed DNA is diluted 
prior to amplification and reading to achieve equivalent PCR cycles for the decayed and non-decayed samples, 
the experiment Low PR versus Low PR 4t1/2 singles out the effect of aging, since other experimental factors, such 
as synthesis, amplification and sequencing are kept constant. Figure 7 shows that storage has an effect on the 

Figure 6. The distribution of the number of reads per each given sequences that has been synthesized for 
Erlich’s dilution experiment, which varies the physical density from approximately 1.28107–1.28 copies per 
molecule synthesized. The percentage in the picture corresponds to the percentage of molecules that are not 
observed in the sequenced data. The distribution has an increasingly long tail (not depicted), e.g., at physical 
density 1.28, there is one sequence that has 98800 reads/sequence. While all samples went through the same 
amount of cycles, a less concentrated sample requires more cycles until the process reaches saturation in PCR, 
even if all samples go through the same number of cycles. Thus, the number of PCR cycles in the figure can be 
understood as PCR cycles in which the DNA is effectively amplified.

Figure 7. The distribution of the number of reads per sequence before and after storage. The percentage in the 
picture corresponds to the percentage of molecules that are not observed in the sequenced data. The number 
of PCR cycles is comparable (65–68 cycles) in all four experiments. In both experiments, the number of lost 
sequences increases significantly from the original DNA to the aged one.
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distribution of sequences in the pool, most importantly resulting in an decreased number of sequences that are 
read at least once. Consequently it can be concluded that DNA decay due to storage alters the distribution of the 
molecules in the pool, which may be attributed to a sequence dependence of the decay process37–40.

We also found that aging only has a marginal effect on the insertions and deletion probabilities, but increases 
the substitution error probabilities substantially, as discussed previously.

Impact of pCR bias and processing DNA at low physical redundancy: A computational experiment.  
In this section, we perform a simple experiment demonstrating that PCR bias and processing DNA at low phys-
ical redundancies significantly impacts the distribution of the reads. The corresponding results contribute to 
interpreting and understanding the experiments discussed in the previous sections.

Towards this goal, we generate a random pool of DNA by taking M = 20,000 sequences, and generate copies of 
those fragments by drawing from a Gamma distributed with shape parameter 8 and scale parameter 16. Thus, the 
expected physical density in the pool is 8⋅16 = 128. We artificially sequence from this pool at physical redundancy 
300 by taking 300M draws with replacement. See Fig. 8(a) for the corresponding distribution of molecules. Note 
that this implies that the reads are approximately Poisson-Gamma distributed. Specifically, they are approximately 
distributed as a mixture of Poisson distributions, with the mean parameter γ of the Poisson distribution being 
Gamma distributed). A Poisson-Gamma mixture distribution in turn is equivalent to a negative binomial distri-
bution, which has been found to model empirical sequencing distributions well. While this justifies our model 
for generating a random pool of DNA, the particular distribution of the molecules in the pool is not crucial for 
illustrating how PCR bias impacts the distribution of the molecules, and the conclusions of the computational 
experiments discussed next are not sensitive to the particular distribution of the molecules in the pool; for exam-
ple they continue to hold if the molecules in the pool are uniformly distributed.

PCR bias. We start by simulating the impact of PCR bias. In theory, a single PCR step generates exactly one copy 
per molecule. In reality, PCR amplifies each fragment on average by a factor that is tightly concentrated around a 
value slightly smaller than two20–23. In our first experiment, we model the efficiency E of PCR as a Gaussian ran-
dom variable with mean 1.85 and standard deviation 0.07. We then amplify each molecule by a factor E NPCR, 
where NPCR is the number of PCR cycles. The corresponding distributions, obtained by artificially sequencing as 
explained above, after 22 and 60 such PCR steps, are depicted in Fig. 8(b,c). Note that after a moderate number of 
PCR steps (22), the distribution is still approximately negative binomial, albeit with a longer tail. After many PCR 
steps (60), however, a significant proportion of molecules is not seen and the distribution has a long tail, since the 
proportions of the molecules in the pool changes drastically, with some frequencies being much more frequent 
than others.

Note that this experiment assumes that the PCR efficiency is strand specific and constant at each cycle of PCR. 
While this has been found to be true in the literature20–23, we point out that we would observe the same effect even 
if the PCR efficiency would not be strand specific or would slightly vary at each cycle. To see that, we perform 
the same experiment, but now, at each cycle of PCR, we draw a strand specific DNA efficiency from a Gaussian 
distribution with mean 1.85 and standard deviation 0.25. While this is chemically implausible, it shows that the 
findings from the previous experiment are not sensitive to the assumption of each molecule being duplicated with 
exactly the same strand-specific factor. The corresponding reading distributions, after 22 and 60 such “molecule 
independent” PCR steps is shown in Fig. 8(d,e).

DNA storage at low physical redundancy. A common viewpoint is that when storing data on DNA, we can inter-
act with the DNA by reading the DNA many times, or taking copies of the DNA as we please, without significantly 

Figure 8. The effect of PCR bias and interaction at low physical redundancy on the distribution of the 
molecules; the y-axis are the number of molecules, and the x axis in each figure is the number of reads 
per sequence, and varies from 1–2500 in each figure; the longer tails of the distributions have been cut off. 
The specific frequency values on the y-axis are not important and are therefore intentionally not show. 
The percentage value in the figures correspond to the percentage of molecules that are not observed in the 
sequenced data. Panel (a) shows the distribution of copies obtained by “sequencing” the original pool, and 
panels (b) and (c) show the distribution after 22 and 60 cycles of PCR, where we took the PCR efficiencies 
as Gaussian distributed with mean 1.85 and standard deviation 0.07. Panels (d) and (e) depict results from 
the same experiment, but the efficiencies for each molecule are now different in each cycle and are Gaussian 
distributed with mean 1.85 and standard deviation 0.25. Finally, panels (f) and (g) show the distribution after 
repeated interaction with a pool of small (100) physical redundancy. The results show that both PCR bias as well 
as interaction (i.e., repeatedly taking copies of the DNA) at low physical densities leads to a significant loss of 
fragments.
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changing the pool. However, at low physical redundancy, such interactions with the DNA change the distribution 
of the sequences in the pool significantly, and in particular lead to a significant loss of sequences. To demonstrate 
this effect, we next consider a computational experiment that repeatedly takes a subset of the DNA, and then 
applies perfect PCR (without a bias) to re-obtain a pool of the original size. This corresponds to making copies 
of a pool of DNA or reading the pool at low physical redundancy. We generate a pool consisting of 100 copies of 
M = 20,000 distinct DNA molecules, corresponding to a physical redundancy of 100. We then take a small part 
of the pool and perfectly amplify that part. In particular, we choose one tenth of the pool uniformly at random, 
and then amplifying each sequence by a factor of 10. We then read at coverage 300 by taking 300 M draws with 
replacement from the pool, as before. The results after 5 and 10 such interaction steps are depicted in Fig. 8(f,g). 
The results show that repeated interaction with the pool at very low physical densities can lead to a significant loss 
of the fragments. In contrast, interaction at high physical redundancy does have very little effect on the distribu-
tion (not shown here).

Discussion
In this paper, we characterized the error probabilities of the DNA data storage systems, and assigned, when possi-
ble the error sources to processes such as reading and writing the DNA. The key findings are as follows.

Errors within sequences are mainly due to synthesis, sequencing, and to a smaller extent to decay of DNA. 
Synthesis introduces mainly deletion errors, and potentially a few insertions. If next generation sequencing tech-
nology is used for reading, then sequencing introduces additional substitution errors, but only very few inser-
tions or deletions, if at all. Long term storage leads to additional substitution errors, due cytosine deamination. 
However, the majority of the reads has no substitution or deletions errors, thus the errors within sequences are 
relatively small.

PCR bias significantly changes the distribution of the reads, and a large number of PCR cycles leads to a dis-
tribution with a very long tail, which in turn increases the number of sequences that are never read. PCR bias is 
particularly apparent when storing DNA at low physical redundancy.

Storing DNA at low physical redundancy is desirable—amongst a variety of other important parameters such 
as longevity, cost, read-and write speeds—since it results in a large information density. However, interacting with 
DNA at low physical redundancy by copying the pool or sequencing parts of the pool changes the corresponding 
read distributions and results in a significant loss of sequences. Also, low physical redundancies ask for more 
PCR cycles, making the system more prone to PCR bias. Hence, if data is stored at low physical redundancies, the 
anticipated interactions have to be taken into account in the design of the system, in particular the parameters 
of the error-correcting scheme. Distortion at low physical redundancy may not be observed when working with 
high physical redundancies, and it is desirable to further understand the sequence dependency of these processes 
(especially polymerase efficiency and DNA decay) in order to improve the design of DNA storage systems.

The consequences of our key findings for designing DNA storage systems, in particular error correcting 
schemes for DNA data storage systems, are as follows. DNA storage systems typically use so called outer and 
inner codes to correct errors. The outer code adds redundancy in the form of additional sequences in order to be 
able to recover lost sequences, and the inner code adds redundancy within each sequence, in order to be able to 
correct errors on the sequence level (for example substitution errors). Our error characterization shows that an 
outer code is absolutely crucial in order to account for the loss of entire sequences since such loss is unavoidable. 
The parameters of the code, i.e., the number of erasures that it can correct should be chosen based on the expected 
number of lost sequences, which in turn depends on the storage time, physical redundancy, and the interactions 
anticipated with the DNA (such as PCR steps, number of copies). Since the error probability within sequences 
is generally very low (most reads are error-free), there are three sensible approaches to dealing with them: (i) 
Errors on a sequence level can be, at least partly, corrected with an inner code. (ii) The reads can algorithmically 
be combined, in order to obtain an estimate of each sequence. Due to redundant reads some of the errors within 
sequences can thus be potentially be corrected. (iii) The outer code can also correct the reads that are erroneous. 
Of course, the three approaches can be combined, for example one can use an inner code to correct some errors, 
and correct errors that the inner code cannot correct with the outer code, or one can only algorithmically com-
bine the fragments, and again correct the remaining errors with the outer code. The design choice can be based 
on the error probabilities that are anticipated from the estimates reported in this paper.
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