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Neural networks versus Logistic 
regression for 30 days all-cause 
readmission prediction
Ahmed Allam1,2, Mate Nagy3, George thoma5 & Michael Krauthammer1,2,3,4

Heart failure (HF) is one of the leading causes of hospital admissions in the US. Readmission within 30 
days after a HF hospitalization is both a recognized indicator for disease progression and a source of 
considerable financial burden to the healthcare system. Consequently, the identification of patients 
at risk for readmission is a key step in improving disease management and patient outcome. In this 
work, we used a large administrative claims dataset to (1) explore the systematic application of neural 
network-based models versus logistic regression for predicting 30 days all-cause readmission after 
discharge from a HF admission, and (2) to examine the additive value of patients’ hospitalization 
timelines on prediction performance. Based on data from 272,778 (49% female) patients with a mean 
(SD) age of 73 years (14) and 343,328 HF admissions (67% of total admissions), we trained and tested 
our predictive readmission models following a stratified 5-fold cross-validation scheme. Among the 
deep learning approaches, a recurrent neural network (RNN) combined with conditional random fields 
(CRF) model (RNNCRF) achieved the best performance in readmission prediction with 0.642 AUC (95% 
CI, 0.640–0.645). Other models, such as those based on RNN, convolutional neural networks and CRF 
alone had lower performance, with a non-timeline based model (MLP) performing worst. A competitive 
model based on logistic regression with LASSO achieved a performance of 0.643 AUC (95% CI, 0.640–
0.646). We conclude that data from patient timelines improve 30 day readmission prediction, that a 
logistic regression with LASSO has equal performance to the best neural network model and that the 
use of administrative data result in competitive performance compared to published approaches based 
on richer clinical datasets.

Heart failure (HF) is one of the leading causes for hospital admissions in the US1–4 with high numbers of read-
missions within 30 days of discharge2–4. Based on multiple hospitalization data sources, the yearly rate of 30 days 
all-cause readmission after an HF hospitalization is approximately 23–24%1,2,5, posing a huge burden on the 
healthcare system with an estimated cost of $17 billions of total Medicare expenditure4,6. Beyond the associated 
expenses and costs, readmissions have negative consequences on patients’ health status, leading to complications 
and increased risk of disease progression6. Efforts toward quality improvement such as introducing programs 
that incentivize and penalize hospitals based on the yearly readmission rate have been the focus of researchers 
and policy makers2,7. Likewise, there has been an increasing interest in developing predictive models and/or 
monitoring systems that allow for prevention and preemptive steps8,9, such as the prediction of 30 days all-cause 
readmission for patients hospitalized with HF for which many challenges remain10,11.

In this paper, we aim at exploring the systematic application of neural network models for predicting 
30 days all-cause readmission after discharge from a HF hospitalization (which we call index event below). 
Concretely, given a set of sequences of hospitalization admissions with their corresponding 30 days all-cause 
readmission outcome, we seek to predict the 30 days all-cause readmission of the last HF admission (i.e. the 
last index event) in each sequence. The sequence of hospitalization events for each patient will be referred 
to as “timeline” and “trajectory” interchangeably throughout the paper. Published approaches chiefly use 
data from the index event for predicting hospital readmission, paying less attention to a patient’s trajectory 
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leading to the current heart failure admission. Intuitively, a patient’s history may add much additional infor-
mation that may be informative of whether a patient is subject to early readmission. For example, a history 
of multiple readmissions in the past may be a risk factor for future readmissions. Consequently, one specific 
aim of this study is to examine the value of including a patient’s trajectory data in a 30 day readmission 
prediction model. To this end, we examine three approaches for modeling the problem of which two use the 

Variables HF Dataset (n = 272,778)

Socio-demographics

Age, mean (SD) 72.89 (14)

Gender female, count (%) 133765 (49%)

Pay source, count (%)

Medicare 391535 (76.4%)

Private insurance 47327 (9.23%)

Medicaid 47095 (9.19%)

Self-pay 13115 (2.55%)

Other 11859 (2.31%)

No charge 1514 (0.29%)

Hospitalization events

HF events, count (%) 343328 (66.94%)

days all-cause readmission, count (%) 81087 (23.61%)

Timeline length, mean (SD) 1.88 (1.4)

Top 5 diagnosis, count (%)

Congestive heart failure; non-hypertensive 777047 (10.29%)

Coronary atherosclerosis and other heart disease 547890 (7.25%)

Residual codes 305406 (4.04%)

Cardiac dysrhythmias 298823 (3.95%)

Chronic kidney disease 254593 (3.37%)

Top 5 procedures, count (%)

Diagnostic cardiac catheterization; coronary arteriography 106428 (14.95%)

Respiratory intubation and mechanical ventilation 57202 (8.03%)

Blood transfusion 52251 (7.34%)

Diagnostic ultrasound of heart (echocardiogram) 41076 (5.77%)

Hemodialysis 38083 (5.35%)

Table 1. Overview of HF dataset.

Model name AUC CI - low CI - high

CNN 0.619 0.616 0.622

CNN-Wide 0.632 0.629 0.635

RNN (Convex_HF_lastHF) 0.635 0.632 0.638

RNN (LastHF) 0.636 0.633 0.638

RNN (Uniform_HF) 0.631 0.628 0.634

RNN (Convex_HF_NonHF) 0.627 0.624 0.630

RNNSS (Convex_HF_lastHF) 0.621 0.618 0.624

RNNSS (LastHF) 0.625 0.623 0.628

RNNSS (Uniform_HF) 0.617 0.614 0.619

RNNSS (Convex_HF_NonHF) 0.625 0.622 0.628

Neural CRF (Pairwise) 0.634 0.631 0.637

Neural CRF (Unary) 0.631 0.629 0.634

CRF Only (Pairwise) 0.628 0.625 0.631

CRF Only (Unary) 0.630 0.627 0.633

RNNCRF (Pairwise) 0.642 0.640 0.645

RNNCRF (Unary) 0.638 0.635 0.641

MLP 0.628 0.625 0.631

Logistic regression l2-norm regularization 0.637 0.634 0.640

Logistic regression l2-norm regularization (LASSO) 0.643 0.640 0.646

Table 2.  Trained models’ performance based on the area under the ROC curve (AUC). CI: confidence interval. 
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temporal information encoded in the patients’ trajectories (sequence labeling and sequence classification), 
and one that does not (index event classification). Particularly, we implemented multiple neural network 
models with varying architectures and objective functions such as recurrent neural networks (RNN), and 
convolutional neural networks (CNN) as examples of sequence labeling and classification approaches, and 
multilayer perceptron (MLP) along with logistic regression as baseline models representing the index event 
classification approach. We conducted these studies with a large administrative claims dataset, which lacks 
the detailed clinical information found in datasets typically used for this problem. As claims data are readily 
available and can be robustly harmonized, they pose less privacy concerns and are ideally suited for tacking 
the HF readmission problem.

Figure 1. Performance analysis of the tested models. Panels A–E report the average ROC curve of the best 
models. The optimal cutoff  is based on the average Youden-Index of each model for all 5-folds. Standard 
deviation of the optimal cutoff position is reported on the graph. Panel F reports the cumulative average AUC 
performance as a function of patients’ timeline length.
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Results
The HF dataset included 272,778 patients (49% female) with a mean (SD) age of 72.89 years (14). The total number of 
HF admissions was 343,328 (66.9% of all admissions) of which 81,087 (23.6%) were 30 days all-cause readmissions, 
corresponding to the official rates published by HCUP2. Among the last HF hospitalizations in patients’ timelines, 
45,183 (16.6%) resulted in readmissions. Table 1 reports a general overview of the characteristics of the dataset includ-
ing socio-demographics, hospitalization events, top diagnosis and procedures and the payment source. Table 2 reports 
the models’ performance in predicting the 30 days all-cause readmission for the last HF event in every patient’s timeline. 
Starting from RNN, the models trained with loss functions incorporating/emphasizing the loss from last HF event 
(i.e LastHF and Convex_HF_LastHF) achieved higher performance 0.636 and 0.635 AUC respectively compared to 
other loss function definitions. Moreover, RNN models with all four loss definitions achieved higher performance 
than RNNSS counterparts. For models incorporating CRF, the RNNCRF model achieved the highest performance 
with 0.642, followed by Neural CRF 0.634 and CRF only model achieving 0.63 with the first two models using pairwise 
potentials and the last one using unary potential. For convolutional models, CNN-Wide achieved better performance 
0.632 compared to conventional CNN with 0.619. The MLP model achieved 0.628 placing it as the lowest performing 
model among the classes of neural models. The baseline model LR with l1-norm regularization (LASSO) achieved 
higher performance 0.643 compared to LR with l2-norm regularization 0.637. Models’ performance analysis is reported 
in Fig. 1 where panels A–E display the average ROC curve of the models across all 5-folds. Panel F in Fig. 1 compares 
the cumulative average AUC performance of the best models as a function of the patients’ timeline length. The analysis 
of feature importance is reported in Fig. 2, which shows the normalized coefficients of the trained LASSO models aver-
aged across all folds. For the best neural model (RNNCRF), we report the analysis of feature importance using a similar 
approach to the one in12. In short, we iterated over all features attached to the last HF event, and computed the proba-
bility of readmission with a feature present or absent. Computing the difference between both probabilities allowed us 
to quantify a feature’s importance across the five folds. In the Supplementary Material section, we present additional 
variations on this technique. Overall, the average overlap (using Jaccard similarity) of the top-100 features between 
LASSO and the RNNCRF model is 51% and 55% for increase and decrease of readmission probability, respectively.

Discussion
This work highlights the advantages and limitations of deep learning in the domain of HF readmission prediction. 
As a first result, we observe that the inclusion of past hospitalization data improved prediction performance. In 
the medical field, this amounts to a unique opportunity to allow machines to base their predictions not only on 
the current status of a patient, but also on the patient’s history, and, if possible, on the comparative analysis to all 
patient data (present and historical) in a hospital system. Our data supports this notion, showing that the detailed 
past history, reflected in a timeline of patient hospitalization events, indeed carries additional information that 
boosts prediction performance. Not all models are born equal though, and for our study, we find that a scheduled 
sampling approach for RNN did not improve timeline-based predictions compared to vanilla RNN. Interestingly, 
pairing the RNN with a graphical model (CRF) resulted in the best performing neural model, an observation that 
mirrors previous results in the field of NLP13,14. Similarly, neural CRF performed better than CRF alone, hinting at 

Figure 2. Top-50 features in LASSO models contributing to the increase of log-odds of readmission. The 
coefficients were normalized using the maximum absolute value of the models’ trained weights.
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the importance of adding nonlinear features to graphical models. While the actual performance numbers, with a 
maximal ROC score of 0.642 AUC (95% CI, 0.640–0.645), are inline with published machine-learning predictions 
of HF readmission10,11, it should be noted that they are based on administrative data, rather than rich EHR data 
as used in earlier studies. As such, our numbers represent the lower bound of achievable performance and deep 
learning on EHR data may eventually beat existing performance numbers for readmission prediction, as it did 
in other areas such as diagnosis and disease prediction15,16. Nevertheless, the exact approach for attaining better 
performance remains an open research question. One obvious avenue is to use multi-modal learning, incorporat-
ing several clinical data sources (including images), to offset the inherent issues with textual medical data, such 
as sparsity, missingness, and incompleteness. Our second result addresses the question of deep learning versus 
logistic regression for readmission prediction. Our face-off shows that logistic regression with regularization 
matches the best neural network performance. Our study attempted to compare these two approaches as fairly as 
possible, allowing both methods to perform hyperparameter optimization in the training phase, and giving logis-
tic regression, which uses data from the last hospitalization event only, access to a patient’s hospitalization history 
by adding timeline summary data (such as number of HF events and number of admission events in the history) 
as an additional feature of the hospitalization event. Nevertheless, the LASSO model had a couple of advantages 
over the neural models by (1) having access to the whole training set during the hyperparameter optimization, 
and (2) using l1-norm regularization that served as feature-selection procedure while training the model. In con-
trast, the neural-based models had a very large set of hyperparameters to choose from (such as number of layers, 
dimensions of hidden vectors, etc.) that made it infeasible to explore the full hyperparameter space. We therefore 
opted for a random selection process for network configurations and optimization settings, and tested those 
against a subset of the training data only. Interestingly, and supporting our results, research by Rajkomar et al.17 
on a more general hospital readmission problem (not focused on HF) also showed that logistic regression with 
regularization (LASSO) is competitive compared to an RNN model. Finally, our study sheds light on which fea-
tures from the current or past hospitalizations are essential in readmission prediction. Features such as number of 
hospitalization events, length of stay, thrombophlebitis/thromboembolism and discharge against medical advice 
are among the highest contributing features to the log-odds of readmission (see Fig. 2). Generally, diagnoses and 
administered procedures pertaining to heart problems, such as contrast aortograms, result in increased readmis-
sion probability, as does the number of comorbidities. Interestingly, particular payment sources (Medicare and 
Medicaid) are associated with increased, while self-pay is associated with decreased readmissions.

In conclusion, using a large administrative data set, we show that neural network models and logistic regres-
sion (LASSO) have comparable performance on HF readmission prediction and that patient timeline data boosts 
prediction performance.

Methods
Dataset. The HF dataset was derived from the Healthcare Cost and Utilization Project (HCUP), Nationwide 
Readmission Database (NRD), issued by the Agency for Healthcare Research and Quality (AHRQ)18. It includes 
patients’ discharges (i.e. hospital claims) of all-payer hospital inpatient stays over the 2013 period that are con-
tributed by twenty one states and accounting for 49.1% of all US hospitalizations18. Each claim in the dataset is 
associated with a corresponding patient who is identified by a uniquely generated linkage number (“visitlink”) 
that tracks the patient’s visits across hospitals within a state. Each claim represents a summary of an inpatients 
hospitalization event, including information about the hospitalization event such as the time of admission and 
discharge, the diagnosis, procedures, comorbidity and chronic conditions, length of stay, along other clinical 
fields associated with the event (a detailed description of the data elements can be found at19). Moreover, as each 
claim is linked to a patient identifier, it also includes patient’s socio-demographic information such as age, gen-
der, income category and place location based on the National Center for Health Statistics (NCHS) classification 
scheme for US counties.

Timeline/trajectory building and processing. We built timelines/sequences out of the claims, allowing us to pre-
serve the temporal progression and the history of hospitalization events for every patient. Patients were included 
in the HF dataset if they met the following conditions:

 1. had at least one hospitalization event between January and November period with HF as the primary 
diagnosis (i.e. congestive heart failure; code = 108) as determined by Clinical Classification Software (CCS) 
that groups International Classification of Diseases, Version 9 (ICD-9) codes20

 2. were ≥18 years old when they had an HF hospitalization event

Formally, we denote each claim (i.e. hospitalization event) by a feature vector xt describing the characteristics 
and attributes of the hospitalization event and the corresponding patient. Moreover, we denote its corresponding 
label by yt ∈ {0,1}, representing the 30 days all-cause readmission. The readmission outcome was computed based 
on the AHRQ HCUP 30-day readmission measure (see Appendix A in21).

To determine if yt = 1 (i.e. the hospital admission of the future claim/event +xt 1 occurs within 30 days from the 
current event xT), we traverse the patient’s timeline (temporally-ordered hospitalization events) from left to right 
and check if:

 1. the current event xt is an index event (i.e. an event where HF is the primary diagnosis as indicated by CCS 
diagnosis grouper; code = 108) and

 2. the difference between the admission of the next event +xt 1 and the discharge of current event xt is ≤30 
days (i.e. Δt ≤ 30 days)
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Figure 3 depicts the labeling process of a patient’s timeline. Notice the final event will always be the last HF 
event in a patient’s timeline for which we can determine its readmission label.

Dataset features. Each claim/event in a patient’s timeline was represented by a feature vector xt encoding the 
characteristics of the hospitalization event and the corresponding patient. The feature vector included most of the 
fields included in the NRD databases describing every inpatients hospitalization event such as the time of admis-
sion and discharge, the diagnosis, procedures, comorbidity and chronic conditions, length of stay, along other 
clinical fields associated with the event. A detailed description of all the used features is found in the 
Supplementary Material.

Models and notation. Sequence labeling and classification. In this section, we introduce the sequence labe-
ling approach to 30 days all-cause readmission prediction. Generally, given a patient’s temporally ordered 
sequence of claims = … …x x xx [ , , , , ]t T1 , represented by a d-dimensional feature vector ∈xt

d, we seek a 
labeling y= [y1, …, yt, …, yT] representing the 30 days all-cause readmission outcomes where yt∈{0,1} and T is the 
patient-specific sequence length (i.e. equivalent to Ti where i refers to the i-th patient in training dataset). Given 
a training set = =D x y{( , )}train i i i

N
1, the goal is to learn a model (i.e. function map f) by minimizing an objective 

function L(f, Dtrain) that measures the discrepancy between every sequence’s target labels y
i
 and its corresponding 

predicted label sequence ŷ
i
 in the training dataset. A common approach is to use a parametrized function f(θ) 

such that learning the best function map (i.e. training a model) translates into finding the optimal weights θ 
where θ = argminθL(f, Dtrain). With the choice of a differentiable function, the optimal weights θ are obtained 
through an iterative process by using the gradient of the objective function ▽θL(f, Dtrain), scaling it with step size 
η, and subtracting the result from the current weights at each iteration. Intuitively, the weights update equation

ηθ θ= − ∇θ
+ L f D( , ) (1)k k

train
1

k

is directing the new weights toward the steepest descent (i.e. the direction which minimizes L(f, Dtrain)) at each 
update iteration k. Sequence classification is similar to sequence labeling but instead of assigning labels/classes 
to each event in the sequence, we assign one single label/class to the whole sequence. Thus, in the sequence labe-
ling setting, the trained model will predict an outcome for every event in the sequence, while in the sequence 
classification setting, the model predicts the class of the whole sequence. In this work, the difference between 
both approaches is mainly in the training phase (learning the labels of all events versus one single label for the 
sequence), while during the testing phase, both models are used to predict the outcome/label of the last HF event. 
The latter is directly provided through sequence labeling. In sequence classification, we are using the label of the 
last HF event as a substitute for the sequence label and a training loss that is associated with that event. To sum-
marize, we use the term “labeling” and “classification” to differentiate between models incorporating the labels 
of previous events in the training/learning of the model versus optimizing only on the last HF event label. In all 
cases, the testing/decoding phase is equivalent and is focused on the prediction of the label/class of the last HF 
event.

Objective function. We defined the loss at each time step for an i-th sequence by the cross-entropy loss

∑= − ×
=

| |
ˆl y log y( )

(2)t
i

c

V

t c
i

t c
i( )

1
,
( )

,
( )label

where Vlabel is set of admissible classes, |Vlabel| is the number of classes, yt,c ∈ {0,1} is equivalent to 𝟙[yt = c] (i.e. a boolean 
indicator that is equal to 1 when c is the reference/ground-truth class at time t), and ŷt c,  is the probability of the class c at 
time t. Four realizations/definitions of objective functions were tested in this study. Given that our focus is on the 30 
days all-cause readmissions for the last HF hospitalization event, the first loss (Convex_HF_lastHF) was defined by a 
convex combination between the average loss from all HF events in patient’s timeline and the loss from the last HF 
event. The convex combination is parametrized by parameter α that was determined using a validation set inspired by 
the work done in16. The second loss function (LastHF) used the loss computed only from the last HF event while the 
third (Uniform_HF) uniformly averaged the loss from all HF events in a patient’s timeline. Lastly, the forth objective 

Figure 3. A toy example of a patient’s timeline with 30 days all-cause readmission labeling.
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function (Convex_HF_NonHF) was based on a convex combination between the average loss contributed by all HF 
events in patient’s timeline and the average loss from the non HF events.

The objective function for the whole training set Dtrain was defined by the average loss Li across all the 
sequences in Dtrain plus a weight regularization term λ applied to the model parameters represented by θ (i.e. 
l2-norm regularization)

∑=
=

L
T

l1
(3)i

i t

T

t
i

1

( )i

∑ λθ θ= + || ||
=

L
N

L( ) 1
2 (4)i

N

i
1

2
2

In addition to the l2-norm regularization, we also experimented with dropout22 by deactivating neurons in the 
network layers using probability pdropoout.

Recurrent neural network (RNN). Recurrent neural networks (RNN) is a connectionist model that is well suited 
for modeling sequential and temporal data with varying length23–25. A basic RNN is similar to feed-forward neu-
ral network but with additional support for cyclical connections (i.e. recurrent edges among the hidden layers at 
different time steps)24,25. RNN computes a hidden vector at each time step (i.e. state vector ht at time t), represent-
ing a history or context summary of the sequence using the input and hidden states vector form the previous time 
step. This allows the model to learn long-range dependencies where the network is unfolded as many times as the 
length of the sequence it is modeling. To compute the outcome ŷt, an affine transformation followed by non-linear 
activation function σ is applied to the state vector ht. The non-linear operator σ can be either the sigmoid function 
applied to a scalar input or its generalization the softmax function applied to vector. As a result, the outcome ŷt 
represents a probability distribution over the set of possible labels at time t. Gradient descent (i.e. “vanilla” gradi-
ent descent as in Eq. 1 or any variant) is used for optimizing the weights of the network while the gradient is 
computed using back propagation through time26. Although RNNs are capable of handling and representing 
variable-length sequences, in practice, the learning process faces challenges due to the vanishing/exploding gra-
dient problem24,27,28. To overcome these challenges, gradient clipping29 and gated memory cells approach as in 
long short-term memory (LSTM) and gated recurrent unit (GRU)30–32 were proposed replacing the conventional 
nodes in the hidden layer and hence updating the computation mechanism of the hidden state vector ht.

RNN with scheduled sampling (RNNSS). Another variation of the RNN model that we experimented with is 
using a scheduled sampling approach (“teacher forcing”)33 while training the RNN model. The approach trains a 
model using predicted labels from the model itself, in addition to the (true) reference labels. The process starts by 
training based on the true labels and, as the training progresses, progressively based on the predicted labels33. The 
choice between using true labels versus predicted labels is controlled by a probability parameter ε. The authors 
in33 proposed a scheduling where ε is initially set to 1 (i.e. the model uses only the true labels) with subsequent 
decrease in ε as the training progresses. In this work, we explored the use of linear, exponential, and inverse 
sigmoid scheduling decay. Moreover, we trained the RNN-based models using the four definitions of the loss 
function detailed in the Objective function section.

Conditional random fields (CRF). Although RNN models are suited for modeling temporal data, the outcome/
label prediction for each event is preformed independently from each other. That is: the labeling decision is done 
locally (i.e. without considering any association/correlation between neighboring labels). In other words, there is 
a need for a joint modeling approach that is global by considering the whole sequence of labels when performing 
the optimization and inference. Linear-chain CRF suits this requirement well by modeling the probability of the 
whole labeled sequence (i.e. outcome sequence) given the input sequence. It is a class of undirected discriminative 
graphical models that uses a global feature function within a log-linear model formalism, making it well suited 
for structured prediction34,35. In this study, we applied CRF in two occasions with two variations (i.e. definition 
of potential functions).

CRF with RNN. We first experimented with combining the RNN model with a CRF layer by feeding the com-
puted features from the RNN layer as inputs to the CRF layer as in13. We denote the output features of the RNN 
layer by = z z zz [ , , , ]T1 2  representing the sequence of output features computed from the input sequence x 
(both sequences have equal length). The potential functions in the CRF layer were computed using z along with 
label sequence y in two variations:

 1. RNNCRF (Unary) that computed unary potential by using only the RNN output feature vector to generate 
an output vector with dimension equal to the number of classes |Vlabel| for each zt. The pairwise potential is 
modeled using a transition parameters matrix A(yt−1, yt) of size |Vlabel| × |Vlabel| representing the transition 
score from one outcome class to another.

 2. RNNCRF (Pairwise) that computes pairwise potentials using both the RNN output feature vectors and the 
labels sequence such that it generates an output vector of size |Vlabel| × |Vlabel| at every time step t similar to 
the approach reported in14.
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We provide further details regarding the CRF model formulation and potential function computation in the 
Supplementary Material section.

CRF & Neural CRF. We also tested a CRF approach without the RNN block. The first used CRF only (i.e. 
first-order linear chain CRF) model using the two variations of potential functions (i.e. unary and pairwise). The 
second model is combining CRF with neural model (i.e. using non-linear transformation for computing features) 
similar to the approach in36 using the same two potential function variants. The objective function for models 
that incorporated CRF was defined by the negative conditional log-likelihood L(θ) plus an l2-norm weight regu-
larization term,

∑θ θλ
=





 − |





 + || ||

=
L

N
log p y x( ) 1 ( ( ))

2 (5)i

N

i i
1

2
2

Estimating the optimal weights θ is typically done by applying a variant of gradient descent algorithm (as 
described in Eq. 1) where the sum-product algorithm (i.e. performing a variation of the forward-backward algo-
rithm37) is used. Decoding the sequence (i.e. finding the optimal labeling y

optimal
) is done through a variant of 

Viterbi algorithm38,39.

Convolutional neural networks (CNN). The CNN models adopt the sequence classification view by using the 2 
D arrangement of the patients’ timelines with an objective function defined only for the last HF event (i.e. the loss 
function is defined for the last HF event that we seek to predict its readmission outcome). A CNN model is a 
feed-forward neural network that typically consists of multiple layers of which convolutional layer is the building 
block. A convolutional layer is composed of filters/kernels (in our context, the kernel is a 2 D arrangement of 
weights in matrix form) that are convolved with the features of the previous layer (such as the input layer) to 
produce feature maps. More formally, a patient’s timeline was arranged in a matrix form where the sequence of 
events are stacked (i.e. concatenated) to form a matrix 


= 



X x x xT1 2 max

 of size Tmax × d where d is the 
dimension of an event vector xt and Tmax is the maximum length of a patient’s timeline in the training set – 
patients with shorter timelines are padded to have a common representation. A kernel F is a matrix of weights that 
is convolved with X to produce a feature map M such that an entry in M is computed by first taking the sum of 
element-wise multiplication of the weights in the kernel F and the corresponding input of the previous layer, then 
adding a bias term followed by non-linear operation. Typically, multiple kernels are applied and the resulting 
feature maps are stacked on top of each other forming a 3 D volume/tensor to be processed subsequently in the 
next layers. The weights in each kernel represent the shared parameters that we optimize during the training 
phase. Another type of layers in this network is a pooling layer that also includes kernels/filters but with no train-
able weights, which slides over the input feature maps based on a defined horizontal and vertical stride size and 
computes a summary score such as a maximum or average score for every region of overlap. As a result, in the 
pooling layer we can change the size of the generated feature maps by specifying the stride and padding size such 
that the size of the feature maps decreases as we progress into subsequent layers in the network (i.e. equivalent to 
subsampling). Another commonly used layer after the convolutional/pooling layers is the fully-connected layer 
(FC). FC takes an input vector from the reshaped feature maps generated in the last convolutional/pooling layers 
and applies an affine transformation followed by non-linear element-wise operation. In this work, we experi-
mented with two types of convolutional models:

 1. CNN model that describes a network inspired by commonly used models in computer vision and image 
processing research40 that makes use of multiple square convolutional and pooling kernels (i.e. 2 × 2, 3 × 3, 
5 × 5), where the generated feature maps are reduced in size as a function of the network depth (i.e. num-
ber of layers) until reaching to the fully-connected layer/s.

 2. CNN-Wide model that adapts the approach used by Kim41 for sentence classification where the convolu-
tional kernels are wide/rectangular covering the whole input feature dimension. In other words, a kernel 
in this model would have varying sizes (such as 2 × d, 3 × d, 5 × d) where the convolution is applied to the 
whole feature vector for two or more events for every possible window of events in the patient’s timeline 
(i.e. applied to matrix X). After each convolution operation, the result is a vector of feature map corre-
sponding to one kernel. In this network, the pooling layer reduces each generated feature map vector to a 
scalar (i.e. one feature) and then concatenates each one of them into one vector having number of elements 
equal to the number of applied convolutional kernels. Lastly, the resulting vector is passed into one or more 
FC layers before it is passed to the output layer.

Both CNN models use an output layer where the computed vector of activations/feature map in the penul-
timate layer are passed to generate a probability distribution over the outcome labels (as in the RNN case). The 
defined loss function in both models is the loss computed for the last HF event (see LastHF in the Objective 
function section). The overall objective function for the training set is defined in Eq. 4.

Multilayer perceptron (MLP). A final neural network-based model is the multilayer perceptrons which is also a 
feed-forward neural network (MLP). The MLP network is composed of an input layer then a set of multiple FC 
layers and lastly an output layer that generates a probability distribution over the outcome classes. The FC layers, 
as we discussed earlier, mainly consists of two operations; an affine transformation followed by non-linear 
element-wise operation to generate new feature vectors (i.e. learned representations). The difference between this 
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modeling approach and the previous ones is that MLP takes the event view of the problem by modeling the last 
index event xT only and discarding the sequence aspect of the patients’ timeline. The defined loss is computed 
based on the last HF event (i.e. LastHF definition) and the overall objective function is defined in Eq. 4.

Logistic regression (LR). Logistic regression (LR) is a commonly used model for classification problems due to 
its simplicity and model interpretability. Like MLP, LR supports the event view of the problem by modeling only 
the last index event. LR model can be considered as a neural network model with no hidden layers and one output 
neuron. In this setup, the input features are fully-connected to one output neuron where the sigmoid function is 
applied as a non-linear operation computing the probability of the outcome label to be equal to 1. In other words, 
the LR model computes = | =

+ − × +ˆp y x( 1 )T T
1

1 exp W dxT b( 1 )
 where W1×d is the weight matrix that maps xT to a scalar 

value (i.e. using one neuron), b is the bias term and 
+ −

1
1 exp z  is the sigmoid function representing the non-linear 

operation. The output represents the probability of a patient readmitting to hospital within 30 days after HF hos-
pitalization event. In this work, LR was the baseline model that we compare its performance to the ones of the 
neural network-based models. The loss function for each patient’s last event is defined by the conditional 
log-likelihood which is equivalent to the cross-entropy loss for the binary case (i.e 2-class classification) and the 
overall objective function is based on the average conditional log-likelihood of the data (see Eq. 4). Additionally, 
we experimented with two regularization schemes: (1) l1-norm regularization (LASSO) and (2) l2-norm 
regularization.

Experimental Setup
We followed a stratified 5-fold cross-validation scheme, in which the HF dataset is split into 5 folds, each having 
a training and test set size of 80% and 20% of the data, respectively, and a validation set size of 10% of the training 
set in each fold (used for optimal epoch selection in case of neural models or hyperparameter selection in case of 
logistic regression). Moreover, due to the imbalance in outcome classes (i.e. no readmission vs. readmission), 
training examples were weighted inversely proportional to class/outcome frequencies in the training data. The 
models’ performance was evaluated using the last HF event in the patients’ timeline (i.e. 30 days all-cause read-
mission after hospitalization for HF event). We used the area under the ROC curve (AUC) as our performance 
measure with confidence intervals computed using the approach reported in LeDell et al.42. The optimal cutoff  
was computed for each model for every fold using the Youden-Index and then averaged across all 5-folds to deter-
mine the optimal cutoff position with the ± standard deviation. Moreover, the evaluation of the trained models 
was based on their average performance on the test sets of the five folds.

Hyperparameter optimization for neural models. Neural model hyperparameter selection is costly, 
particularly for finding the optimal architecture. To this end, we randomly chose one fold where 30% of the 
training set was further split into a training and validation set, each having 90% and 10% of the data, respectively. 
We developed a multiprocessing module that used a uniform random search strategy43 that randomly chose a 
set of hyperparameters configurations (i.e. layer depth, filter size and optimization methods, see Supplementary 
Materials for more details) from the set of all possible configurations. Then the best configuration for each model 
(i.e. the one achieving best performance on the validation set) was used for the final training and testing.

Data and Code Availability
The dataset was derived from the Healthcare Cost and Utilization Project (HCUP), Nationwide Readmission Da-
tabase (NRD), issued by the Agency for Healthcare Research and Quality (AHRQ) for use as limited dataset. Re-
cipients of the dataset are required to go through a HCUP Data Use Agreement (DUA) course and sign the DUA 
before receiving the data. The data storing, handling, analysis and reporting for this study was done in accordance 
with the DUA. Moreover, the code for data processing, model implementation, training and testing workflow is  
publicly available at the following link: https://bitbucket.org/A_2/hcup_research.
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