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Terpene Synthase Genes Originated 
from Bacteria through Horizontal 
Gene Transfer Contribute to 
Terpenoid Diversity in Fungi
Qidong Jia1,7, Xinlu Chen   2, Tobias G. Köllner   3, Jan Rinkel4, Jianyu Fu5, Jessy Labbé   1,6, 
Wangdan Xiong2, Jeroen S. Dickschat4, Jonathan Gershenzon3 & Feng Chen   1,2

Fungi are successful eukaryotes of wide distribution. They are known as rich producers of secondary 
metabolites, especially terpenoids, which are important for fungi-environment interactions. Horizontal 
gene transfer (HGT) is an important mechanism contributing to genetic innovation of fungi. However, 
it remains unclear whether HGT has played a role in creating the enormous chemical diversity of fungal 
terpenoids. Here we report that fungi have acquired terpene synthase genes (TPSs), which encode 
pivotal enzymes for terpenoid biosynthesis, from bacteria through HGT. Phylogenetic analysis placed 
the majority of fungal and bacterial TPS genes from diverse taxa into two clades, indicating ancient 
divergence. Nested in the bacterial TPS clade is a number of fungal TPS genes that are inferred as the 
outcome of HGT. These include a monophyletic clade of nine fungal TPS genes, designated as BTPSL for 
bacterial TPS-like genes, from eight species of related entomopathogenic fungi, including seven TPSs 
from six species in the genus Metarhizium. In vitro enzyme assays demonstrate that all seven BTPSL 
genes from the genus Metarhizium encode active enzymes with sesquiterpene synthase activities of 
two general product profiles. By analyzing the catalytic activity of two resurrected ancestral BTPSLs 
and one closely related bacterial TPS, the trajectory of functional evolution of BTPSLs after HGT from 
bacteria to fungi and functional divergence within Metarhizium could be traced. Using M. brunneum as 
a model species, both BTPSLs and typical fungal TPSs were demonstrated to be involved in the in vivo 
production of terpenoids, illustrating the general importance of HGT of TPS genes from bacteria as a 
mechanism contributing to terpenoid diversity in fungi.

Rich in taxonomic and phenotypic diversity, the fungal kingdom is one of the three large and dominant eukar-
yotic groups of the terrestrial ecosystems. Like animals and plants, fungi evolved as multicellular structures that 
concur to their adaptation to diverse ecological niches1. The origin and evolution in fungi reflect broader patterns 
of genome remodeling in a biochemical arms race with competitors and hosts, and thus their important eco-
logical roles2. Consequently, one of the key characteristics of the fungal adaptation to various ecosystems is the 
broad diversity of secondary metabolites they produce3, including terpenoids. Fungal terpenoids have roles in 
diverse biological processes. For example, some are involved in various fungus-animal interactions; nematodes 
and arthropods being the main predator of fungi, they are the targets of terpenoid mycotoxins4. Some fungal 
terpenoids attract animals to facilitate spore dissemination5. Other fungal terpenoids have been demonstrated 
to mediate communication between fungi and bacteria6. Due to their biological activities, some fungal terpe-
noids are useful drugs7. Because of the chemical diversity, the diverse biological functions and the application of 
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fungal terpenoids, it is of enormous interest to understand the mechanisms underlying terpenome biosynthesis 
in fungi7.

All terpenoids are synthesized from the same five-carbon precursors isopentenyl diphosphate (IPP) and 
dimethylallyl diphosphate (DMAPP). Three types of enzymes are known to be responsible for terpenoid diver-
sification8. First, isoprenyl diphosphate synthases (IDS), which catalyzes the condensation of IPP and DMAPP 
to form isoprenyl diphosphates of various chain length, control the branching points of terpenoid biosynthesis. 
Second, terpene synthases (TPSs), which convert isoprenyl diphosphates to terpenes, are largely responsible for 
the diversity of terpene skeletons. Third, modifying enzymes, especially cytochrome P450s, add further struc-
tural diversity to terpenoids9. Besides these different types of enzymes, several mechanisms have been revealed 
to be important for terpenoid diversity. One mechanism is gene duplication and functional divergence, which 
is well supported by the presence of gene families of both TPS and P450s in fungi, plants and bacteria. Another 
mechanism is evolution of novel enzymes. This is best demonstrated by the identification of TPS-IDS hybrid type 
enzymes, which so far are known to occur only in fungi10–15.

In the general genetic innovation of fungi, besides gene duplication and functional divergence and creation 
of novel genes, another important mechanism is to acquire genes laterally, particularly from bacteria. Fungi and 
bacteria are often associated or interacting16,17. Previous studies (e.g.18) showed that the gene transfer between 
bacteria and eukaryotes can occur at a high magnitude, and HGT also plays an important role in eukaryotic 
adaptions and evolution19. However, whether HGT from bacteria has played a role in genetic innovation of terpe-
noids in fungi remains unknown. In principal, HGT of TPS genes could rapidly result in novel chemistry in the 
recipient organism. All organisms produce IPP, DMAPP and various types of isoprenyl diphosphates. As such, 
the substrates for TPSs are being produced by essentially all living organisms (also for the production of primary 
terpene metabolites). Therefore, TPS genes acquired through HGT can be functional in the recipient immediately 
after being acquired with its substrate readily available. If the acquisition of a TPS gene and consequently the 
ability of producing a suite of terpenoids provide fitness benefit for the recipient, such TPS genes of HGT would 
be retained and fixed in the population of the recipient. TPS genes are widely distributed in bacteria20,21. Based 
on this theoretical consideration, HGT of TPS genes from bacteria may have made important contribution to the 
vast diversity of terpenoids in fungi. This study is set to answer the question whether HGT of TPS genes from 
bacteria to fungi have occurred, and if so, to determine the contribution of such acquired TPS genes to terpenoid 
diversity in fungi.

Results
Phylogenetic analysis of fungal and bacterial TPSs and identification of cases of HGT 
events.  TPSs can be classified into different types based on reaction mechanism, substrate/product or domain 
structures22. This study focused on the main subclass of fungal and bacterial TPSs that contain well-defined Pfam 
domains of the microbial terpene synthase family: PF03936 (https://pfam.xfam.org/family/Terpene_synth_C)  
or PF06330 (https://pfam.xfam.org/family/TRI5). Using this criterion, an initial set of 348 fungal TPSs from 
88 species and 287 bacterial TPSs from 140 species were obtained from the Pfam database (version 27.0)23. 
These sequences were then used as queries to search against the NCBI nr database using blastp. The final dataset 
includes 908 TPSs from fungi and 1535 TPSs from bacteria. To understand their evolutionary relatedness, fungal 
TPSs and bacterial TPSs were combined for phylogenetic reconstruction. According to the tree topology, the 
majority of fungal and bacterial TPSs clustered into two separate groups (Fig. 1). Nonetheless, a number of TPS 
genes were not placed within the phylogenetic branch representing their own kingdom. While some of the mis-
placed genes were poorly supported by the respective bootstrap values, three cases (I, II and III) were identified to 
have strong support (Fig. 1). They were inferred to be the outcome of HGT. We then focused on case I, which is a 
case of HGT of TPS gene from bacteria to fungi.

Within case I, nine fungal TPS genes form a monophyletic clade (Fig. 1). To distinguish these particular 
TPS genes from those typical fungal TPS genes, they were designated as bacterial terpene synthase-like (BTPSL) 
genes (Table S1). Seven of the nine BTPSL genes are from the genus Metarhizium, including MacBTPSL from 
M. acridum, MajBTPSL from M. majus, MguBTPSL from M. guizhouense, ManBTPSL from M. anisopliae, 
MaaBTPSL from M. robertsii, and two genes MbrBTPSL1 and MbrBTPSL2 from M. brunneum. The other two 
BTPSL genes are from the genus Ophiocordyceps, including OcsBTPSL from O. sinensis and OunBTPSL from O. 
unilateralis. It is notable that Metarhizium and Ophiocordyceps are two related genera, both are entomopatho-
genic24. All nine BTPSLs except OunBTPSL contain a highly conserved aspartate-rich “DDxxxD” motif located 
approximately 90 aa of their N-terminus and “NDxxSxxxE” motif at the C-terminus (Fig. S1). While OcsBTPSL 
and OunBTPSL each contains one intron, all seven Metarhizium BTPSL genes are intronless (Fig. S2).

Evidence that BTPSLs are encoded by fungal nuclear genomes.  To rule out the possibility of bac-
terial contamination for the presence of BTPSL genes in fungal genomes, two types of analysis were performed. 
The first analysis was to determine whether BTPSL and their neighbor genes from each species showed synteny. 
The scaffolds containing the 9 BTPSLs from 8 entomopathogenic fungi were aligned and each collinear set of 
matching regions was drawn as a contiguously colored local collinear block (LCB). The alignment shows that the 
surrounding regions of BTPSLs were collinear among all the Metarhizium species although some assembly was 
of low quality (Fig. 2). All BTPSLs were located in a single LCB with three exceptions, MbrBTPSL2, OcsBTPSL 
and OunBTPSL. Neighboring genes in the recipient genomes were displayed as rectangles. The gene order in 
the region surrounding BTPSL was found to be highly conserved across all members of the Metarhizium genus 
(Fig. 2). While one of the neighbor genes, major/yellow royal jelly protein, occurs in both eukaryotes and prokar-
yotes, all other flanking genes are non-bacterial.

The other analysis was to amplify BTPSL genes from the fungal genome. MaaBTPSL and MbrBTPSL2 were 
selected as two representatives to confirm their genomic locations. MaaBTPSL from M. robertsii was selected 
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because it has orthologs in all other five species of Metarhizium (Fig. 3). Whereas MbrBTPSL2 does not have an 
ortholog, it can be inferred to be derived from a gene duplication event that also leads to MbrBTPSL1. Genomic 
DNA sequences covering MaaBTPSL and MbrBTPSL2 and their respective upstream and downstream genes as 
well as their intergenic regions were amplified using PCR. Amplified DNA fragments of MaaBTPSL (Fig. 3A) and 
MbrBTPSL2 (Fig. 3B) were fully sequenced, and their positions were confirmed to be consistent with genome 
annotation.

Catalytic activities of BTPSLs.  With the verification that BTPSL genes are fungal nuclear genes, next, the 
seven BTPSL genes found in the six Metarhizium species were characterized for the catalytic activities of their 
encoded enzymes. Full-length coding sequences for each of the seven intron-less BTPSL genes were amplified 
from thei respecrtive genome DNA, cloned into a protein expression vector and heterologously expressed in 
Escherichia coli. Among the bacterial TPSs that are closed related to BTPSLs is one TPS BAJ27126 from the bac-
teria Kitasatospora setae (Fig. 1), which has been determined to be a sesquiterpene synthase25. As such, we chose 
to test recombinant BTPSs with (E,E)-farnesyl diphosphate (FPP), the substrate of sesquiterpene synthases. Each 
of the seven enzymes could convert FPP into a mixture of sesquiterpenes (Fig. 4A). Among the major products of 
these seven enzymes were corvol ether A and corvol ether B, γ-cadinene, α-cadinol and nerolidol (Fig. 4B) with 

Figure 1.  Maximum Likelihood phylogenetic tree of fungal and bacterial terpene synthases (TPSs). A total of 
2443 TPSs from bacteria (Blue) and fungi (Green) was identified from the NCBI nr database. Three highlighted 
clades on the right are those with strong support in which fungal TPSs were embedded within bacterial TPSs (I 
and II) or vice versa (III). Bootstrap values are displayed next to the nodes, with values over 50% shown. Protein 
accession numbers and full species/strain names are shown as tips. Names of the 9 BTPSL genes in clade 1 are 
shown in red and in parentheses.
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the first two being unusual sesquiterpene ethers (Fig. 4C). Five of them, MacBTPSL, MguBTPSL, MajBTPSL, 
MbrBTPSL1, and MbrBTPSL2 produced similar mixtures consisting of eight sesquiterpenes that include corvol 
ether A, corvol ether B, epizonarene, γ-cadinene, δ-cadinene, α-cadinene, α-cadinol, and an unidentified ses-
quiterpene (Fig. 4A). While the product spectrum of MbrBTPSL1 was dominated by corvol ether B, MajBTPSL 
and MbrBTPSL2 produced mainly corvol ether A. MacBTPSL and MguBTPSL, however, formed both corvol 

Figure 2.  Synteny analysis of chromosomal regions containing BTPSLs from eight fungi species. Each 
horizontal profile indicates one genomic region with the height as the indicator of degree of sequence 
conservation. The white regions correspond to unaligned sequences. The regions that share the same color are 
locally collinear blocks. Below each profile are gene models and orthologous genes are colored and connected by 
shaded boxes in the same color. Red vertical lines delineate the ends of contigs. Genomes (Metarhizium album, 
Metarhizium rileyi and Escovopsis weberi) without regions similar to the region of MaaBTPSL were not aligned. 
Genes connected by the red dashed lines in the genome of Metarhizium guizhouense ARSEF 977 represent genes 
that are not visible in the current view.

Figure 3.  Verification that selected BTPSL genes are fungal nuclear genes. (A) Schematic genomic organization 
of MaaBTPSL with its neighboring genes MAA_08667 and MAA_08669 in M. robertsii. Two genomic regions 
spanning BTPSL gene and its neighboring genes were amplified using PCR from genome DNA and confirmed 
by sequencing. Number indicates distance in nucleotides (nt). (B) Schematic genomic organization of 
MbrBTPSL2 with its neighboring gene Mbr_09976 in M. brunneum. A genomic region spanning MbrBTPSL2 
gene and Mbr_09976 was amplified using PCR from genome DNA and confirmed by sequencing. Number 
indicates distance in nucleotides (nt).
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ethers in similar concentrations. ManBTPSL and MaaBTPSL each produced 10 sesquiterpenes (Fig. 4A), includ-
ing nine sesquiterpenes shared by the two enzymes: γ-cadinene, δ-cadinene, α-cadinene, α-cadinol, β-elemene, 
(E)-β-caryophyllene, germacrene D, and an unidentified oxygen-containing sesquiterpene. Besides, ManBTPSL 
produced γ-muurolene while MaaBTPSL produced nerolidol.

Interestingly, the sesquiterpene products of the bacterial TPS BAJ27126 from K. setae are also two corvol 
ethers25 (Fig. S3). The stereochemical course of the initial 1, 3-hydride shift in corvol ether biosynthesis was 

Figure 4.  Biochemical characterization of BTPSL enzymes. (A) GC traces of sesquiterpene products of 
individual BTPSLs. 1, corvol ether B*; 2, corvol ether A*; 3, epizonarene; 4, γ-cadinene*; 5, δ-cadinene*; 
6, α-cadinene*; 7, α-cadinol; 8, unidentified oxygen-containing sesquiterpene; 9, β-elemene*; 10, (E)-β-
caryophyllene*; 11, γ-muurolene; 12, germacrene D; 13, α-muurolene*; 14, nerolidol. Compounds marked 
with asterisks (*) were identified using authentic standards. (B) Structures of the major sesquiterpene products 
of BTPSLs. Corvol ethers (A and B) are shown with absolute configuration, the other compounds are shown 
with relative configuration. (C) Mass spectra of (+)-corvol ether B (peak 1) and (+)-corvol ether A (peak 2).
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proved to be the same for the reaction catalyzed by MajBTPSL as for the enzyme from K. setae, which was investi-
gated by conversion of (R)- and (S)-(1-2H)FPP (Fig. S4)26. These results point to the same absolute configuration 
of corvol ethers from both sources.

Catalytic activity of resurrected ancestral Metarhizium MTPSLs and a TPS from a putative 
donor bacterium.  By comparing their sesquiterpene products, the seven BTPSLs can be categorized into 
two groups. One group produced corvol ether B and/or corvol ether A as major product(s). This includes five 
enzymes. The other group, which includes ManBTPSL and MaaBTPSL, produced α-cadinol as a major product 
but do not produce corvol ether B and corvol ether A (Fig. 4A). This raised an intriguing question about the 
catalytic function of the ancestral protein of BTPSLs. To understand the trajectory of functional evolution of 
BTPSLs, we predicted the sequences of two ancestral genes. One gene, designated as Ancestor 1, is the puta-
tive ancestral gene in the common ancestor of Metarhizium. The other gene, designated as Ancestor 2, is a pre-
dicted ancestor gene before the divergence of two functional groups: ManBTPSL/MaaBTPSL and MguBTPSL/
MajBTPSL/MbrBTPSL2 (Fig. 5A). These two genes were synthesized and cloned into a protein expression vector 
and expressed in E. coli. Recombinant proteins of Ancestor1 and Ancestor2 were assayed with FPP and showed 
activity as BTPSLs. Both proteins produced corvol ether B, corvol ether A, γ-cadinene, δ-cadinene, α-cadinene, 
α-cadinol, and an unidentified oxygen-containing sesquiterpene (Fig. 5B). In addition, Ancestor2 formed 
another compound identified as epizonarene. Although corvol ether B was the most abundant compound in the 
product spectra of Ancestor1 and Ancestor2, Ancestor2 produced corvol ether A in relative higher concentra-
tions than Ancestor 1.

Phylogenetic analysis showed that BTPSLs from the entomopathogenic fungi are most related to TPSs from 
the bacterial species in the genus Burkholderia (Fig. 1), suggesting an ancestor of Burkholderia or its related spe-
cies might be the original donor of BTPSLs to entomopathogenic fungi. To understand the functional relatedness 
of BTPSLs and Burkholderia TPSs, we selected Burkholderia cepacia as a model species for experimental study. 
The TPS gene from B. cepacia was designated BcTPS. First, the full-length coding sequence of BcTPS was cloned 
from the genomic DNA of B. cepacia into a protein expression vector. BcTPS was then expressed in E. coli and its 
recombinant protein was assayed for terpene synthase activity using FPP as substrate. BcTPS had seven sesquit-
erpene products, including corvol ether B, corvol ether A, epizonarene, γ-cadinene, δ-cadinene, α-cadinol, and 
an unidentified oxygen-containing sesquiterpene (peak#8) (Fig. 5C).

Both BTPSLs and typical fungal TPSs contribute to terpenoid diversity: a case study with M. 
brunneum.  Once in vitro functional characterization of BTPSLs was completed, next, we asked whether their 
catalytic activities are biologically relevant. To answer this question, M. brunneum was selected as a model spe-
cies. Because the sesquiterpene products of BTPSLs are volatile compounds, we analyzed the headspace of M. 
brunneum culture in liquid medium. A number of sesquiterpenes were detected, including corvol ether B and 
corvol ether A, the products of MbrBTPS1 and MbrBTPSL2 (Fig. 6A). In addition, (E)-β-farnesene was detected 
as a major volatile. (E)-β-farnesene is not a product of MbrBTPSLs (Fig. 4), suggesting it is produced by other 
terpene synthases. The genome of M. brunneum contains two additional terpene synthase genes Mbr3882 and 
Mbr0969, which are clustered with the majority of fungal TPS (Fig. 1). They are termed typical fungal TPSs. To 
verify that (E)-β-farnesene is the product of typical fungal TPSs, the coding sequences of Mbr3882 and Mbr0969 
were cloned into a protein expression vector and expressed in E. coli. Recombinant Mbr3882 and Mbr0969 were 
assayed for terpene synthase activity using FPP as substrate. While Mbr0968 was inactive with FPP, Mbr3882 
catalyzed the formation of (E)-β-farnesene as major sesquiterpene product (Fig. 6B).

Discussion
In this study, we report the identification of bacterial terpene synthase-like (BTPSL) genes in several entomo-
pathogenic fungi originated from bacteria (Fig. 1) and the characterization of their functional evolution. These 
fungal BTPSL genes were verified to be fungal nuclear genes based on synteny analysis (Fig. 2) and genomic 
PCR analysis (Fig. 3). At the protein structural level, all BTPSLs possess an uncanonical aspartate-rich cata-
lytic motif “DDxxxD” motif (Fig. S1), while in most typical fungal TPSs this motif is in the form of ‘DDxxD’, 
offering another indicator for their bacterial origin. The conservation in catalytic activities of most BTPSLs 
(Fig. 4A), their putative ancestor (Fig. 5B) and the related bacterial TPS (Fig. 5C) in producing the same rare 
sesquiterpenes corvol ether A and/or corvol ether B indicates the relatedness of these fungal and bacterial 
TPSs. Taken together, these results provide circumstantial evidence for HGT of BTPSL genes from bacteria to 
ancestral entomopathogenic fungi.

The monophyletic relationship of BTPSLs from six species of Metarhizium and two species of Cordycepioideus 
implies that the acquisition of BTPLS genes from bacteria may have occurred in the common ancestor of these 
two fungal lineages. Certainly, it is also possible that the genus Metarhizium and Cordycepioideus acquired their 
ancestral BTPSL genes independently, which is less parsimonious. Although the actual donor bacterium species 
is hard to identify, the ancestor of Burkholderia bacteria is the most likely source of this HGT based on the high 
sequence identity shared by BTPSL genes and TPSs in Burkholderia (Fig. S1). The genus Burkholderia, which 
belongs to the class β-proteobacteria and forms a monophyletic group, is widely distributed in the environment 
and often forms close associations with fungi25, providing a biological basis of the HGT of TPS genes.

Generally, the seven BTPSLs from Metarhizium can be categorized into two groups: one group producing 
corvol ether A and/or corvol ether B as the major product, the other group producing α-cadinol as a major prod-
uct and corvol ether A/B as minor products. This suggests functional divergence of BTPSs within Metarhizium. 
Resurrecting the immediate ancestor (Ancestor2 in Fig. 5) of these two diverging groups and subsequent activity 
assays suggest that corvol ethers synthase is the ancestral activity (Fig. 5). This inference is further supported by 
the similarity between the catalytic activity of the resurrected common ancestor of Metarhizium BTPSLs, the 
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catalytic activities of the majority of BTPSLs and that of the Ancestor1 (Fig. 5). The similarity between the cat-
alytic activity of Ancestor 1 with that of the bacterial homolog of putative TPS donor (Fig. 5C) suggests that the 
ability to produce rare sesquiterpenes corvol ether A and/or corvol ether B by these related enzymes in fungi and 
bacteria has fitness benefit and probably has been under purifying selection.

Figure 5.  Catalytic activities of two resurrected ancestral BTPSLs and the TPS of a putative donor bacterium. 
(A) Phylogentic tree of seven BTPSLs from Metarhizium with OcsBTPSL from Ophiocordyceps sinensis as 
outgroup. Ancestor1 and Ancestor2 indicate the two ancestral BTPSLs. (B) GC chromatograms of assays 
products of Ancestor1 and Ancestor2 using farnesyl diphosphate as substrate. 1, corvol ether B*; 2, corvol 
ether A*; 3, epizonarene; 4, γ-cadinene*; 5, δ-cadinene*; 6, α-cadinene*; 7, α-cadinol; 8, unidentified oxygen-
containing sesquiterpene. (C) Biochemical activity of terpene synthase (BcTPS) of the bacterium Burkholderia 
capecia. The gene was expressed in Escherichia coli and recombinant protein was incubated with the potential 
substrates (E,E)-farnesyl diphosphate (FPP). Enzyme products were analyzed using GC-MS. The total ion 
current (TIC) chromatograms are shown. 1, corvol ether B*; 2, corvol ether A*; 3, epizonarene; 4, γ-cadinene*; 
5, δ-cadinene*; 7, α-cadinol; 8, unidentified oxygen-containing sesquiterpene. Compounds marked with 
asterisks (*) were identified using authentic standards.
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By comparing the chemical profile of the M. brunneum culture with the product profiles of BTPSLs, it is evi-
dent that both BTPSLs and typical fungal TPSs contribute to the terpenoid diversity in these species. The majority 
of horizontally transferred genes get lost in the recipient genomes very quickly except those increasing the fitness 
of the recipient organism27,28. In Metarhizium species, the fact that these BTPSL genes are arranged in clusters 
along with other genes like transcription factors (a typical characteristic of fungal secondary metabolism) (Fig. 2) 
suggests that they may be under selection and their expression are probably fine-tuned by these transcription 
factors. While it can be generally hypothesized that the acquired BTPSL genes enhance the competitiveness and 
ecological specialization of the receipt fungal species, it will be interesting to test such hypothesis by elucidating 
the specific biological functions of BTPSL genes in respective fungal species.

Within case I, there is another fungal terpene synthase gene found from Escovopsis weberi (Fig. 1). Although 
the placement of this gene to this clade is highly supported, its position within this clade is not resolved (with 
a low support value of 31%). Additional evidence is needed to discern whether this particular TPS gene in E. 
weberi and the BTPSLs characterized in this study resulted from a single HGT event or two independent events. 
Besides the HGT case characterized in this study, there were two other strongly supported cases of TPS genes of 
incongruency in the phylogenetic analysis of fungal and bacterial TPSs (Fig. 1). One is another putative HGT of 
TPS genes from bacteria to fungi. Fungal TPSs in this case are from two nematode endoparasitic fungi (Hirsutella 
minnesotensis 3608 and Arthrobotrys oligospora ATCC 24927) and one caterpillar fungus Ophiocordyceps sinensis 
CO18. These three TPSs are clustered with many TPSs found in multiple Gram-negative bacteria species of the 
genus Chryseobacterium and one species of the genus Sphingobacterium. The other case of putative HGT of TPS 
genes is from fungi to bacteria. In this case, 20 bacterial TPSs clustering with fungal TPSs. Nearly half of them are 
from the family Streptomycetaceae, and others are from the genera of Pseudomonas and Burkholderia. It will be 
interesting to determine whether these two cases represent real case of HGT of TPS genes and if yes, to determine 
the biological importance of such HGT-derived TPS genes. In summary, this study not only showcases general 
importance of HGT of TPS genes from bacteria as a mechanism contributing to terpenoid diversity in fungi, but 
also opens the door to further understanding of HGT as a mechanism for contributing terpenoid diversity in 
diverse life forms.

Materials and Methods
Data sources and identification of terpene synthase genes.  The Pfam database (version 27.0)23 was 
first searched by keyword “terpene synthase” and the protein sequences associated with the Pfam accessions 
“PF03936” (also known as “Terpene_synth_C”) and “PF06330” (also known as “TIR5”) were downloaded and 
the sequences from fungi and bacteria were extracted and complied. Next, each of the sequences was used as a 
query to search against the NCBI nr database using blastp at an e-value of 1e-5. The resulting dataset was then 

Figure 6.  Volatile terpenes emitted from a liquid culture of Metarhizium brunneum and catalytic activity of 
typical terpene synthase from this species. (A) Three terpenes were detected from the liquid culture of M. 
brunneum using headspace volatile collection. 1, corvol ether B*; 2, corvol ether A*; 15, (E)-β-farnesene*. 
(B) Catalytic activity of typical fungal terpene synthase Mbr3882 from M. brunneum. 15, (E)-β-farnesene*. 
Compounds marked with asterisks (*) were identified using authentic standards.
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subjected to a HMMER search and only sequences containing PF03936 or PF06330 domain as the best-matched 
domain were kept for our further analysis.

Multiple sequence alignments and phylogenetic inference.  TPSs obtained from Pfam were first 
clustered at 100% sequence identity in each kingdom (bacteria and fungi) using CD-HIT29 to eliminate highly 
similar sequences within each kingdom. The corresponding C terminal domain sequences from bacterial and 
fungal TPSs were retrieved based on the coordinates predicted by HMMER. All multiple sequence alignments 
were made using MAFFT (v7.130b)30 in a highly accurate setting (L-INS-i) with 1000 iterations of improvement. 
The appropriate amino acid substitution model was determined using ProtTest version 3.431 for each alignment 
according to Akaike information criterion (AIC) and Bayesian information criterion (BIC). The improved general 
amino acid substitution matrix with empirical base frequencies along with a gamma distribution (LG + G + F) 
was obtained as the most appropriate model for all protein datasets. Maximum likelihood analyses were per-
formed using RAxML version 8.1.1132 with 1000 bootstrap replicates under the best substitution model for each 
dataset via the online CIPRES Science gateway portal33.

The maximum-likelihood tree shown in Fig. 4 was inferred from the codon alignment of TPS genes identified 
from several entomopathogenic fungi and TPS genes in bacteria that showing great similarity to BTPSLs. The 
codon alignment was generated using PAL2NAL34 from the MAFFT protein alignment (L-INS-I method with 
1000 iterations of improvement) and the corresponding nucleotide sequences. The maximum-likelihood analy-
sis was performed using PhyML 3.135 with GTR + I + G nucleotide substitution model chosen by jModeltest236 
based on the AIC and BIC criteria. The robustness of the phylogenetic tree was estimated by bootstrapping with 
1000 replicates.

For comparisons of sequences at the genome level, homologous contig sequences from each of seven species 
were aligned with sequence of MAA as the reference using the progressive alignment algorithm of the MAUVE 
Multiple Genome Aligner (version 2.4.0) at default settings37.

Fungal cultures.  Metarhizium robertsii (MAA) isolate (ARSEF 23), M. brunneum (MBR) isolate (ARSEF 
3297), M. acridium (MAC) isolate (ARSEF 324), M. majus (MAJ) isolate (ARSEF 297), M. guizhouense (MGU) 
isolate (ARSEF 977) and M. anisopliae (MAN) isolate (ARSEF 549) were ordered from USDA ARS Collection of 
Entomopathogenic Fungal Cultures (ARSEF), Ithaca, New York. Lyophilized isolates were suspended with 500 µl 
sterilized distilled water and the final solution was cultured on Difco potato dextrose agar medium (PDA) at 28 °C 
for conidia development.

Fungal BTPSL genes and bacterial TPS gene cloning.  Mycelia of six fungal species developing 
from lyophilized isolates were used to isolate genomic DNA. A bacterial species homological to Metarhizium, 
Burkholderia cepacia (ATCC 25416) was ordered from the American Type Culture Collection (ATCC). The 
genomic DNA was extracted using GeneJET Plant Genomic DNA Purification Kit (https://www.thermofisher.com)  
according to the protocol recommended by the manufacturer. Primers were designed to amply the entire coding 
sequences of all seven Metarhizium BTPSL genes and one B. cepacia TPS gene (BcTPS) (Table S2). PCR products 
for fungal BTPSL genes and BcTPS gene were cloned into pEXP5-CT/TOPO vector (www.lifetechnologies.com) 
according to the protocol provided by the manufacturer and fully sequenced.

Confirmation of MbrBTPSL2 and MaaBTPSL with neighboring genes.  Two BTPSL genes, 
MbrBTPSL2 and MaaBTPSL, were selected to confirm their locations. For neighboring genes of MbrBTPSL2, 
forward primer MbrBTPSL2NBF was designed at the sixth intron area of MBR_09976, and reverse primer 
MbrBTPSL2NBR was selected around 340nt from the start codon of MBrBTPSL. For MaaBTPSL, two pairs 
of primers were designed to amplify partial MaaBTPSL and its downstream or upstream neighboring gene 
(Table S2). Genomic DNAs of M. brunneum and M. robertsii were used as template for PCR using PfuUltra II 
Fusion HS DNA polymerase (http://www.genomics.agilent.com). The DNA fragment was excised from agarose 
gel, purified, and cloned into pGEM-T EASY vector (https://www.promega.com) for sequencing.

Biochemical characterization of BTPSLs from Metarhizium and BcTPS.  The E. coli BL21 codon 
plus strain (http://www.lifetechnologies.com), transformed with the plasmid containing the open reading frame 
of MacBTPSL, MajBTPSL, MguBTPSL, MbrBTPSL1, MbrBTPSL2, ManBTPSL, MaaBTPSL, or BcTPS, was used 
for protein expression. The BL21 culture was grown in liquid LB at 37 °C until the culture reached 0.6 at OD600. 
Protein expression was induced by the addition of isopropylthio-β-galactoside (IPTG) to a final concentration 
of 1 mM. After 20 hours of incubation at 18 °C, cells were harvested by centrifugation at 6000 g, resuspended in 
protein extraction buffer (50 mM Mopso (pH7.0), 5 mM MgCl2, 5 mM Sodium ascorbate, 5 mM dithiothreitol, 
0.5 mM PMSF and 10% (v/v) glycerol) and disrupted with a sonicator (Microson XL 2000; Misonix, Farmingdale, 
New York). Cell debris was removed by centrifugation at 13,000 rpm (30 min, 4 °C) and the supernatant was 
desalted by passage through a PD-10 Desalting Column (http://www.gelifesciences.com) into assay buffer 
(10 mM Mopso, pH7.0, 1 mM dithiothreitol, 10% (v/v) glycerol).

To determine the catalytic activity of fungal BTPSLs and BcTPS, enzyme assays were conducted in a 
Teflon-sealed, screw-capped 1 ml GC glass vial containing 40 µl of the bacterial extract and 60 µl assay buffer 
containing 10 µM (E,E)-FPP, 10 mM MgCl2, 0.2 mM NaWO4, and 0.1 mM NaF. A SPME (solid phase micro-
extraction) fiber consisting of 100 µm polydimethylsiloxane (http://www.sigmaaldrich.com) was placed into 
the headspace of the vial for 45 min incubation at 30 °C to adsorb the TPS reaction products. Product analysis 
was conducted using an Agilent 6890 Series gas chromatograph (GC) coupled to an Agilent 5973 quadrupole 
mass selective detector (interface temp, 250 °C; quadrupole temp, 150 °C; source temp, 230 °C; electron energy, 
70 eV). The GC was operated with a DB-5MS column (Agilent, Santa Clara, USA, 30 m × 0.25 mm × 0.25 µm). 
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The sample (SPME) was directly injected without split at an initial oven temperature of 80 °C. The temperature 
was held for 3 min, then increased to 240 °C with a gradient of 7 °C min−1, and further increased to 300 °C 
with a gradient of 60 °C min−1 and a hold of 2 min. Compounds were identified by comparisons of reten-
tion times and mass spectra to those of authentic standards obtained from Fluka (Seelze, Germany), Roth 
(Karlsruhe, Germany), Sigma (St. Louis, MO, USA), or by reference spectra in the Wiley and National Institute 
of Standards and Technology libraries.

In vitro identification of MajBTPSL products as corvol ethers.  The gene for MajBTPSL was 
cloned into the expression vector pYE-express38 using homology arms (underlined) containing primers 
(GGCAGCCATATGGCTAG and CATGACTGGTGGAATGGAAAAACAAAGATTGAAAGCCCAACTTTC 
and CTCAGT and GGTGGTGGTGGTGGTGCTCGAGTCTAGACCAAGCTGCTCGTTGACTC) for homolo-
gous recombination in yeast39. The obtained plasmid was shuttled to E. coli BL21(DE3) and the successful inser-
tion of the target gene was checked by sequencing. The transformant was grown in LB medium (10 g tryptone, 5 g 
yeast extract, 5 g NaCl, pH 7.2, 1 L H2O) supplied with kanamycin (50 mg/L) at 37 °C overnight. This preculture 
(1/100) was used to inoculate a LB-kanamycin main culture (200 mL), which was grown at 37 °C with shaking 
until OD600 = 0.4–0.6 was reached. The culture was cooled to 18 °C, before IPTG (0.4 mm final concentration) 
was added to induce expression of the recombinant protein. Shaking was continued at the same temperature 
overnight, before the cells were harvested by centrifugation (5000 × g, 4 °C, 10 min) and resuspended in binding 
buffer (5 mL; 20 mm Na2HPO4, 500 mm NaCl, 20 mm imidazole, 1 mm MgCl2, pH = 7.4, 4 °C). The cells were 
lysed by ultrasound (50% power, 4 °C, 5 × 30 s) and the cell debris was removed by centrifugation (5400 × g, 4 °C, 
7 min). The soluble fraction was filtered and loaded on a Ni2+-NTA affinity column (Ni-NTA superflow, Qiagen, 
Venlo, Netherlands), which was washed with binding buffer (2 × 2 mL). The target protein was obtained by add-
ing elution buffer to the column (2 × 1 mL; 20 mm Na2HPO4, 500 mm NaCl, 500 mm imidazole, 1 mm MgCl2, 
pH = 7.4, 4 °C). The obtained protein solution was directly used for incubation experiments. The substrates FPP, 
(1 R)-(1-2H)FPP and (1 S)-(1-2H)FPP26 (1 mg each) were dissolved in substrate buffer (1 mL; 25 mm NH4HCO3 
in H2O) and diluted with binding buffer (2 mL) and incubation buffer (4 mL; 50 mm Tris/HCl, 10 mm MgCl2, 
20% glycerol, pH = 8.2). The reaction was started by adding MajBTPSL elution fraction (1 mL). The samples were 
incubated for 3 h at 28 °C, before they were extracted using hexane. The organic phase was dried with MgSO4 and 
analyzed by GC-MS.

Prediction of ancestral TPS genes.  Ancestral sequence reconstruction was performed using FastML40. 
FastML requires the multiple sequence alignment and a related phylogenetic tree as input for predicting ancestral 
gene sequences. Multiple sequence alignments of BTPSL genes were performed using MAFFT and maximum 
likelihood phylogenetic trees prepared using and RAxML.

Volatile profiling of M. brunneum.  Conidia of M. brunneum developing from potato dextrose agar plate 
were transferred into a one-liter flask containing 200 ml of liquid potato dextrose broth. The fungal culture was 
grown at room temperature on a rotary shaker (100 rpm) for one week. A solid phase microextraction (SPME) 
fiber consisting of 100 µm polydimethylsiloxane (https://www.sigmaaldrich.com) was inserted into the headspace 
of the flask. The SPME fiber was directly inserted into the injector port of GC-MS after 16 h of collection. This 
analysis was repeated for three times.
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