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EEG Decoding Reveals the Strength 
and Temporal Dynamics of Goal-
Relevant Representations
Jason Hubbard, Atsushi Kikumoto & Ulrich Mayr   

Models of action control assume that attentional control settings regulate the processing of lower-level 
stimulus/response representations. Yet, little is known about how exactly control and sensory/response 
representations relate to each other to produce goal-directed behavior. Addressing this question 
requires time-resolved information about the strength of the different, potentially overlapping 
representations, on a trial-by-trial basis. Using a cued task-switching paradigm, we show that 
information about relevant representations can be extracted through decoding analyses from the scalp 
electrophysiological signal (EEG) with high temporal resolution. Peaks in representational strength—
indexed through decoding accuracy—proceeded from superficial task cues, to stimulus locations, to 
features/responses. In addition, attentional-set representations were prominent throughout almost the 
entire processing cascade. Trial-by-trial analyses provided detailed information about when and to what 
degree different representations predict performance, with attentional settings emerging as a strong 
and consistent predictor of within-individual and across-individual variability in performance. Also, 
the strength of attentional sets was related to target representations early in the post-stimulus period 
and to feature/response representations at a later period, suggesting control of successive, lower-level 
representations in a concurrent manner. These results demonstrate a powerful approach towards 
uncovering different stages of information processing and their relative importance for performance.

The efficiency of information processing differs both moment to moment, and from one individual to the 
next. Such variability could reflect the quality of low-level, stimulus or response representations. Alternatively, 
it may arise from the strength of more abstract, attentional settings that instantiate or control sensory and 
response-related processes1–3. For example, in the experimental paradigm we used in the current work (see 
Fig. 1A), participants were informed on each trial through auditory cues, which of two attentional settings to 
use4,5. For the Color task, they attended to the color singleton within the array of objects and responded via button 
press whether the exact color was orange or purple. Similarly, for the Orientation task, participants attended the 
orientation singleton and responded whether the line tilted to the left or to the right. In this situation, successful 
performance requires lower-level representations of the task cue, of the target location, and of the task-relevant 
feature/response. However, it may also require abstract attentional-set representations that differentiate between 
the color task context and the orientation task context and that ensure an adequate cascade of lower-level 
representations.

Even though the existence of higher-level, task or rule representations is a common assumption in models 
of cognitive control3,6–8 there are open questions about the degree to which such more abstract representations 
regulate performance, and how such regulation is achieved4,5,9,10. For example, as an alternative to the view that 
abstract, task-level representations are necessary to modulate lower-level processes, some authors have pointed 
out that when unambiguous, environmental stimuli (i.e., cues) distinguish between competing response options, 
superficial cue representations could be sufficient to constrain lower-level processes4. It is also currently not 
clear when exactly higher-level control occurs (see Fig. 1B). Cue or task-set representations might be neces-
sary to set up and preconfigure lower-level representations11,12. Alternatively, task sets may also become rele-
vant only as competition between lower-level representations arises, in order to mold these representations in a 
goal-appropriate manner 3. Addressing these and related issues requires methods that directly probe the status 
and functional relevance of goal-relevant representations with high temporal resolution.
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Existing approaches, such as chronometric analyses of response-time (RT) patterns13, the analysis of averaged 
evoked EEG14, or fMRI BOLD signals15 are of limited value for capturing temporal dynamics, or trial-to-trial var-
iability (but see16, in the strength of different task-related representations. A particularly challenging problem is to 
identify representations that overlap in time, such as when attentional-set and stimulus/response representations 
occur and influence each other simultaneously. Moreover, because abstract attentional sets are not tied to specific 
stimuli or responses, they are particularly difficult to pin down with the existing methods.

The limited knowledge we have about the flow of information processing in humans, stands in contrast to 
advances from primate neurophysiological research. For example, in a recent study that served as a model for the 
current work, Siegel and colleagues17 had monkeys perform a task-switching paradigm while multi-unit activity 
was recorded in critical anatomical areas along the entire sensory-motor processing stream18–20. The results sug-
gest that abstract task rules, rather than superficial cue representations, control lower-level processes in a largely 
parallel manner. Specifically, the neural coding of cue information was very robust during the pre-stimulus phase, 
but then tampered off in the post-stimulus phase. In contrast, task-level information emerged concurrently with 
cue information, but then increased dramatically as stimulus and response choice information was processed 
during the entire response phase.

In humans it is currently not possible to match this type of primate, neurophysiological research in terms of 
both temporal and neuroanatomical resolution. However, recent work has suggested that a surprising amount 
of information about currently active representations can be extracted from EEG signals21–25. This approach is 
similar to the multi-voxel-pattern-classification method in fMRI research, where the pattern of activations across 
a set of voxels is used to classify specific task aspects (e.g., face vs. house stimuli). The degree to which such clas-
sification is possible, indicates the strength with which that aspect is encoded within the neural signal. Applied 
to EEG, the spatial pattern of the power in specific frequency bands (or of the raw EEG signal) across electrodes 
is used to categorize the task aspect in question. Recent work has shown that among other aspects, the focus of 

Figure 1.  (A) Stimulus timeline with each relevant task aspect. (B) Competing models specifying either a 
(I) preconfiguration or a (II) parallel-activation relationship between attentional set and stimulus/response 
representations. (C) Decoding accuracy of each aspect across time, relative to chance (p = 0.5, except for target 
and distractor, where it was p = 0.25). In all figures, shaded regions specify 95% within-subject confidence 
intervals. The insert shows how task (i.e., attentional-set) decoding accuracy generalizes both within (filled line) 
and across target locations/responses (dotted line). Note, that in the current work we are particularly interested 
in within-individual variability in decoding accuracy and therefore the values presented here are based on 
averaged, trial-by-trial results. When performing decoding analyses based on averaged data, much higher 
decoding accuracy (>80% for some aspects) can be achieved.
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spatial attention23, the content of spatial working memory22, and even of semantic categories24 can be decoded 
from the EEG signal. While EEG-based decoding results are limited in their spatial resolution (compared to 
fMRI), the decoding analyses can be repeated for every time point, thus yielding very high temporal resolution.

We applied the EEG decoding approach to the task-switching paradigm presented in Fig. 1A. Our goal was 
to track the temporal dynamics of activating the five, potentially relevant aspects: task cues, target and distractor 
locations, target feature/response, and the attentional/task set. In addition, we conducted our decoding analy-
ses on the single-trial level, which provided information about a particular aspect’s decoding strength for each 
time point and each trial. This allowed us to examine with high temporal resolution the relative importance of 
lower-level, stimulus/response, versus higher-level attentional-set representations in predicting trial-by-trial var-
iability in performance.

Methods
Participants.  Consistent with the sample sizes used in other recent EEG-decoding experiments22–24, a total of 
22 participants participated in this experiment. One participant was excluded for having EEG artifacts in excess 
of 30% of trials, and one was excluded due to an experimenter error that resulted in data loss, leaving a sample 
size of N = 20. Participants were compensated at a rate of $10 per hour, with additional incentives based on per-
formance on the task. All experimental procedures were approved through the University of Oregon’s Human 
Subject Review Board, and performed in accordance with relevant guidelines/regulations. Informed consent was 
obtained from all participants.

Tasks and stimuli.  We used a cued task switching paradigm that was closely modelled after a paradigm that 
we had previously used in the context of eye-tracking experiments12,26. On each trial, an auditory cue indicated 
which of the tasks, the Color task or the Orientation task, participants had to complete. Each task was paired with 
two auditory cues: “color” or “hue” for the Color task, and “tilt” or “lean” for the Orientation task. We used two 
sets of cues (Set A = “color” and “tilt”, Set B = “hue” and “lean”) that were alternated across consecutive trials27. 
Because with this procedure, both task-repeat and task-switch transitions were accompanied by cue transitions, 
it ensured that task-switch costs are not contaminated by superficial cue-priming effects4,5 and that we could 
independently decode cue and task information17.

The stimulus array consisted of 8 circular gratings (diameter of each ~2.4 degrees) in a larger circular arrange-
ment (diameter ~12.5 degrees). The stimulus array always contained six, neutral stimuli consisting of vertical, 
black and white gratings. In addition, there was (a) one color singleton stimulus with a vertical grating shaded in 
one of two colors, either “yellowish” or “reddish” and one (b) orientation singleton with a black grating oriented 
either 30 degrees to the left or the right. For the Color task, participants had to attend to the color singleton and 
press the left (z) key for a “yellowish” target and the right (/) key for the “reddish” target. For the Orientation task, 
participants had to attend to the orientation singleton and press the left (z) key for a left-tilted target and the right 
(/) key for the right-tilted target.

Each trial began with a 700 ms prestimulus interval with a fixation cross in the center of the screen. The 
auditory cue was presented in the last 300 ms of this interval, so that the stimulus array appeared as soon as the 
auditory cue completed. Participants were instructed to respond as quickly and accurately as possible. The stimuli 
remained on the screen until a response was made. In case of a mistake, an error tone was emitted for 100 ms. 
During the following inter-trial interval (ITI), which was jittered between 750 and 937 ms, participants were 
instructed to blink before the next trial began.

The experiment began with two single-task practice blocks (one for each task, order counter-balanced), and 
a task-switching practice block (20 trials), followed by 22 test blocks of 64 trials each. In order to incentivize par-
ticipants to respond quickly and accurately, they were rewarded a small amount (0.5 cents) for each trial where 
they were faster than the 75th% percentile of their RT distribution up to that point, but only if they maintained at 
least 90% accuracy for a given block26. At the end of each block, subjects were given feedback about their average 
RT and accuracy for that block. The RT distribution was determined separately for each task and switch condition 
after the first mixed-task block, and updated with each trial. All task aspects were determined randomly on a 
trial-by-trial basis. This includes the selection of tasks, yielding an average switch rate of p = 0.5.

Participants were seated approximately 70 cm from the screen, and instructed to keep their eyes at fixation and 
not blink throughout the trial.

EEG Recording and Preprocessing.  Electroencephalographic (EEG) activity was recorded from 20 tin 
electrodes held in place by an elastic cap (Electrocap International) using the International 10/20 system. The 
10/20 sites F3, Fz, F4, T3, C3, CZ, C4, T4, P3, PZ, P4, T5, T6, O1, and O2 were used along with five nonstandard 
sites: OL midway between T5 and O1; OR midway between T6 and O2; PO3 midway between P3 and OL; PO4 
midway between P4 and OR; and POz midway between PO3 and PO4. The left-mastoid was used as reference 
for all recording sites. Data were re-referenced off-line to the average of all scalp electrodes. Electrodes placed 
~1 cm to the left and right of the external canthi of each eye recorded horizontal electrooculogram (EOG) to 
measure horizontal saccades. To detect blinks, vertical EOG was recorded from an electrode placed beneath 
the left eye and reference to the left mastoid. The EEG and EOG were amplified with an SA Instrumentation 
amplifier with a bandpass filter of 0.01–80 Hz and were digitized at 250 Hz in LabView 6.1 running on a PC. 
Preprocessing was performed using the Signal Processing and EEGLAB28 toolboxes in MATLAB. Trials including 
blinks (>80uv, window size = 200 ms, window step = 50 ms), large eye movements (>1°, window size = 200 ms, 
window step = 10 ms), and blocking of signals (range = −0.0 5uv to 0.05uv, window size = 200 ms) within the 
interval of −700 to +400 ms relative to the stimulus were rejected and excluded from further analysis, resulting 
in an average of 180 trials (12.4%) rejected across participants.
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After the initial preprocessing, the single-trial EEG data were decomposed into a time-frequency representa-
tion via wavelet decomposition. The power spectrum of the EEG signal was obtained through a fast Fourier 
transform, which was then convolved with the power spectrum of complex Morlet wavelets, defined by 
( π σ− ⁎e eft t2 2/(2 )2

), where t is time, f is frequency, and σ is the width of each frequency band, set according to n/2πf, 
with n increasing logarithmically from 3 to 8. This was repeated for the frequency bands between 2 and 31 Hz in 
logarithmically-spaced steps. The incremental number of wavelet cycles was used to balance between both 
temporally-based and frequency-based precision29. The results were then brought back into the temporal domain 
using an inverse Fourier transform. A frequency band-specific estimate at each time point was defined as the 
squared magnitude of the convolved signal Z(real([z(t)]2 + imag[z(t)]2) for power. Only power was considered for 
the present investigation, and for simplicity we focused on frequency bands that are most often presented in the 
literature: delta (2–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), and beta (13–31 Hz). For each frequency band, we 
averaged the power signal across the range of interest. Note, that for the decoding analyses we did not differentiate 
between the four frequency bands.

Decoding analyses.  With the decoding analyses, we examined the extent to which the spatial pattern of the 
EEG power across the scalp was predictive of each task aspect. The aspects we considered were the auditory cue 
(“color”/“hue” or “tilt”/“lean”, classified within tasks), the task (Color or Orientation), the target position (parti-
tioned into 4 bins, coded 1–4), the distractor position (bins 1–4), and the response (left vs. right).

For the target/distractor location, we decoded positions based on the bin that each item appeared in (e.g., bin 
1 = top and top-right position, bin 2 = right and bottom-right position, etc.). This ensured that the target and dis-
tractor occupied each combination of bins with equal frequency (including sharing the same bin), thus ensuring 
that successful distractor decoding is not simply due to the classifier decoding “not target position”.

Note also that in the current paradigm we cannot distinguish between the manual response and the specific 
target stimulus (e.g., left-tilted grating, or reddish grating) as they were confounded. Also, as we wanted to iso-
late the discriminability of each aspect regardless of any task differences, we performed the decoding separately 
within each task (except, of course in decoding the task set itself). The results from these analyses were then 
averaged. Previous work has established that different types of information are encoded in brain oscillations at 
particular frequency bands22,30,31, which motivated decomposing the raw EEG signal into the separate bands. 
However, in the present investigation we were agnostic to which bands encode which type of information, and 
thus concatenated all 4 bands together in the decoding analysis.

For each trial, we extracted a window centered around stimulus time onset, starting 500 ms before and extend-
ing 500 ms after the onset. The end of this interval corresponds to the 70th percentile of the RT distribution, 
ensuring that at least 70% of trials are still in progress at that point. We performed the analyses separately for each 
4 ms time point. Thus, in the decoding analyses, the features consisted of the estimate of power for each electrode 
at a single point in time, repeated for each frequency band (20 electrodes × 1 time point × 4 bands = 80 features). 
Prior to decoding, the EEG data were z-scored so that the mean of each trial’s data was 0 without baseline activ-
ity subtraction. We performed all analyses separately for each subject and then averaged results across subjects 
(e.g.22). We used L2-regularized logistic regression, as implemented in the scikit-learn package in Python32, with a 
tolerance of 1 × 10–4 and the inverse of the regularization strength (C) set to 1.0. Multi-class classification (which 
was necessary for target and distractor positions), was implemented as a series of binary classifications. For all 
decoding analyses, we used a 4-fold cross-validation procedure where 75% of trials were used in the training set, 
and the remaining 25% of trials were used as the test set, and this was repeated until each trial had an opportunity 
to be part of the test set. We also repeated the analyses with naïve Bayes, support vector machines, and random 
forests. The results were consistent across the different algorithms.

For the main decoding analysis (Fig. 1C in manuscript), we reported the decoding accuracy, averaged within 
subject, timepoint, and factors of interest (e.g., task), and then across subjects. We used decoding accuracy here 
as it is most consistent with how such results are presented in the literature. In contrast, Figs 2–5 are based on 
classifier confidence, which provide a continuous prediction score on the trial-by-trial level. Specifically, for each 
item in the test set, the classifier generates a probability (using the predict_proba function in scikit-learn), indicat-
ing the classifier’s confidence that the test observation belongs to each class. The class with the highest posterior 
corresponds to the prediction given by the classifier, and the sum of all probabilities for a single test observation 
equals 1. Average patterns of results based on classifier confidence are qualitatively very similar to those based on 
decoding accuracy, but are smoother and with tighter confidence intervals than for average decoding accuracy. 
Most importantly, the continuous score is better suited for the analyses of trial-to-trial variability as presented in 
Fig. 2.

For some of the subsequent analyses (e.g., Figs 2C and 5), we derived decoding scores that reflected the peaks 
of decoding accuracy for each feature. For these analyses, we identified the average time point with the maximum 
decoding accuracy for each aspect (see Fig. 1C) and averaged the (logit-transformed) classifier confidence across 
a 150 ms window centered around that point. For the response aspect, the maximum decoding accuracy was 
towards the end of the 500 ms interval. Here, we simply averaged the period from 350–500 ms.

In the Supplemental Information, we provide additional analyses to (a) rule out the effects of eye-movements 
on task decoding, (b) examine task-specific effects on the encoding of lower-level features, and (c) provide addi-
tional information about trial-by-trial predictive relationships between decoding accuracy and behavior.

Results
Behavior.  Table 1 contains mean RTs and error rates as a function of task and switch condition. We sub-
mitted RTs to a repeated-measures ANOVA with the factors task and switch. This yielded a modest, but highly 
significant switch effect, F(1,19) = 40.7, p < 0.001, but no effect of task, F(1,19) = 0.03, p = 0.86, and only a 
marginal task × switch interaction, F(1,19) = 3.33, p = 0.08. For error rates, we obtained a main effect for task, 
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F(1,19) = 13.27, p = 0.002, with higher error rates for the color than for the orientation task, a main effect for 
switch, F(1,19) = 14.53, p = 0.001, and also a task × switch interaction, F(1,19) = 10.05, p = 0.005, with somewhat 
larger switch costs for the color task.

Figure 2.  Within and between-individual relationships between decodability of all task aspects and RTs. (A) 
Coefficients from multilevel, linear models with logit-transformed classifier evidence from all task aspects for 
a given timepoint simultaneously predicting RTs. The insert shows the coefficient when the task-set predictor 
is based on the generalization scores presented in the insert to Fig. 1C. (B) T-values representing simple 
correlations between individuals’ average, logit-transformed classifier evidence for each task aspect and their 
average RT. (C) Scatterplots of relationships between subject-averaged classifier evidence and RTs during 
peak, average decoding accuracy periods for each task aspect. For task-level generalization scores (see insert to 
Fig. 1C), the correlation remained very robust at 0.63 (p < 0.01).

Color Task Orientation Task

no-switch switch no-switch switch

RT (ms) 632 (238) 663 (230) 636 (195) 653 (204)

errors (%) 3.86 (1.80) 5.92 (2.19) 2.23 (1.30) 2.74 (1.45)

Table 1.  RTs and error rates as a function of task and switch contrast.

Figure 3.  Coefficients representing the independent relationships between classifier confidence for task-level 
decoding on the one hand, and for cue, target, and responses on the other. For clarity of presentation, the 
relationship with distractor classifier confidence was omitted here, which hovered around 0 throughout.
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The magnitude of RT switch costs was relatively small. This is likely due to two design factors in our paradigm. 
First, to allow blinks between trials we used a relatively long response-stimulus interval (RSI) that ranged between 
1450 and 1637 ms. Second, different from the more standard switching paradigm, where a central stimulus com-
bines all task-relevant aspects, in the current paradigm target and distractors were spatially separated in order 
to allow decoding of target and distractor locations as task-related aspects. Given the spatial separation between 
targets and distractors, participants could use spatial attention to reduce or even eliminate stimulus-induced, 
between-task interference, which is critical for obtaining large task-switch costs33.

At least in terms of errors, the orientation task was somewhat easier than the color task, which may seem 
surprising given that color information is typically more salient than orientation/shape information. Likely this 
is due to the fact that the left-versus-right orientation discrimination has a compatible stimulus-response map-
ping (i.e., right tilt- > right response, left tilt- > left response), whereas the response mapping for the color task is 
arbitrary.

Representational dynamics.  Figure 1C shows that decoding accuracy unfolds in a manner that is consist-
ent with standard expectations about the flow of information––from cue encoding, to attentional-set activation, 
to relevant and irrelevant stimulus locations, and finally to feature/response codes. Remarkably, task-level (i.e., 
attentional set) information was decodable with high accuracy throughout almost the entire duration of the trial.

To ensure our conclusions regarding the decoding of the theoretically critical task feature are not compro-
mised by multiple comparisons and faulty comparisons against chance34,35, we also conducted a cluster-based 
permutation test. First, we generated a series of t-values via t-tests against the chance level (33.3%) using decod-
ing results with randomly shuffled labels. Then, we identified reliable clusters as neighboring time points that 
exceeded a primary threshold (cluster-defining threshold, alpha = 0.05) and retained the size of the maximum 
cluster. We computed a cluster p-value under the permutation distribution of cluster-level statistics (5000 per-
mutations), which defined clusters as significant if their size was larger than the 95th (i.e., alpha = 0.05) largest 
member in the permutation distribution. According to these analyses, we identified a significant cluster expand-
ing from −260 to 500 ms for the task feature (cluster- defining threshold, p < 0.05, corrected significance level, 
p < 0.001, critical statistics = 52 ms).

As mentioned in the Introduction, one prominent model suggests that the cognitive system does not actually 
rely on abstract task settings, but––at least when available-–uses superficial cue representations to resolve ambi-
guity between competing stimulus/response representations4,9. However, we found that cue decoding accuracy 
(i.e., discriminating between the two cues for each task) peaks during the pre-stimulus phase, but declines sharply 
once the stimulus is presented. This result is consistent with the view that cue representations are used to activate 
task- or attentional-set representations5,27 and are less involved with actually regulating task-specific processes.

But how exactly are attentional sets instantiated? If such settings are critical for “preconfiguring” lower-level 
processes, stimulus representations would need to wait until they are firmly established11,12. Alternatively, task sets 
may be activated in parallel to low-level stimulus/response selection processes, biasing these in a goal-relevant 
direction3. As shown in Fig. 1C, there was above-chance task decoding during the prestimulus phase, which 
substantially increased once stimulus/response information became decodable. Thus, while the presence of pres-
timulus, task-level information indicates some role for preconfiguration, the overall pattern suggests that––con-
sistent with the parallel-activation hypothesis––attentional settings become particularly critical once competition 
between conflicting stimulus/response representations needs to be resolved (see Fig. 1B).

Determining the relevance of representations.  Going beyond average activation trajectories, the 
trial-by-trial decoding approach allows determining at what point in the trial, which of the represented aspects 
drive performance. For this purpose, we entered logit-transformed classifier probabilities for the five aspects as 
simultaneous predictors into a linear mixed-effects model, predicting trial-by-trial RTs, with a random intercept 
and random coefficients for each subject using the lme4 package36. RTs were pre-whitened by removing any linear 
or quadratic trends across the blocks of the experiment. The coefficients shown in Fig. 2A represent the unique 
predictive power associated with each aspect, as a function of time in the trial. Note that negative coefficients 
imply that the greater the classifier confidence, the faster the RTs—indicating that classifier confidence can be 
interpreted as representational strength. Consistent with the view that attentional sets, and not superficial cues, 
control lower-level representations, we found that cue-related activity is largely irrelevant for performance, a 
result that also holds up when cue decoding accuracy is entered as the sole predictor. In contrast, attentional-set 
information became highly predictive of RTs during the post-stimulus phase, suggesting that fluctuations in 
the quality of attentional-sets are a major source of trial-to-trial variability in performance. Consistent with the 
parallel-activation account, attentional sets begin to predict RTs only once also the (independent) predictive 
power of stimulus and response information emerges. It is noteworthy that the predictive effect for task-level 
decoding emerges over and above the—also substantial—predictive effects for the target location and the feature/
response aspect. Moreover, the aspects that we do not expect to predict performance (i.e., the cue and the distrac-
tor location) show no relationships. This result rules out the possibility that fast-RT trials are simply less noisy and 
therefore allow better decoding of any aspect.

We also looked at the degree to which the decoding accuracy for the different aspects is related to individ-
ual differences in RTs. We found that the temporal pattern of simple correlations between individuals’ average 
decoding accuracy for each task aspect and their average RT was very similar to the within-individual predictive 
pattern. As shown in Fig. 2B, decoding accuracy for attentional sets was a major source of individual differences 
in RTs for nearly the entire post-stimulus period, whereas stimulus location correlates early and the feature/
response aspect late in the post-stimulus phase (Fig. 2B). In addition, Fig. 2C shows the scatterplots for the corre-
lations at each task aspects’ peak decoding accuracy (see Fig. 1C). It is noteworthy that just as for the trial-to-trial 
relationships, the individual-differences relationships appear to express feature-specific effects on performance, 
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rather than an unspecific, noise/decodability factor. With its small sample size, the current experiment was not 
originally designed to examine individual differences. Therefore, these analyses need to be treated as exploratory 
and require replication. Nevertheless, confidence in the results is strengthened by the fact that the relationships 
are strikingly robust and are, both in terms of involved features and their time course, highly consistent with the 
within-individual relationships.

Relationship between representations.  The notion that cues activate task-level control settings, which 
in turn bias stimulus and eventually response representations, leads to a straightforward prediction about the 
sequence in which different lower-level representations should be related to the strength of attentional settings. 
Figure 3 presents for each timepoint the relationships between the classifier confidence for task-level information 
and each of the other aspects (to avoid clutter, we omit the distractor here, for which the relationship was close 
to zero throughout). As expected, early in the prestimulus phase, the strength of attentional sets was coupled 
with the strength of cue representation, likely indicating the activation of the attentional sets based on the cue5. 
Following stimulus onset, a correlation with the target location emerged and subsequently, a correlation with the 
response information. This pattern is again consistent with the parallel-activation account, where attentional sets 
coordinate lower-level representations in a concurrent manner (see Fig. 1B).

Effects of task switching.  In the results presented so far, we had ignored potential effects of trial-to-trial 
changes in tasks—typically of major interest in task-switching research1. In fact, our version of the task-switching 
paradigm was optimized towards EEG decoding analyses, not towards producing large switch effects (i.e., both 
the use of long inter-trial intervals and of spatially separate, task-related features can be expected to reduce 
between-task competition). Indeed, behavioral switch costs were small (see Table 1). Nevertheless, we exam-
ined the degree to which the switch/repeat contrast plays out in the decoding results. We constrained our anal-
yses a-priori to the 150 ms intervals centered around the peak of the activation trajectories for each feature (see 
Fig. 1C). In addition, given the strong relationship between RTs and decoding accuracy for task, stimulus loca-
tions, and response, we also conducted a median split into fast and slow RT trials. The median-split was con-
ducted within each subject, task, and switch condition; values were than averaged across tasks and subjects, but 
presented separately for no-switch and switch trials. The dominant aspect in Fig. 4 is again the strong relationship 
between RTs on the one hand and task, target location, and response representations on the other. In addition, 
switching tasks led to weakened task-set representations, both in general (switch main effect: F(1,19) = 6.69, 
p = 0.018), but in particular on slow-RT trials (fast/slow × switch interaction: F(1,19) = 6.62, p = 0.019). Also, 
distractor representations were increased on switch trials, F(1,19) = 5.23, p = 0.034. Thus, at the time of peak 
attentional-set activation, decoding of task-level information was less robust on switch than on no-switch trials, 
whereas information related to the competing task was more strongly expressed.

How abstract are attentional sets?.  In our paradigm, attentional settings are confounded with attention 
to different visual features (i.e., color versus orientation). Thus, the results reported so far do not allow strong con-
clusions about the question to what degree the task-level decoding reflects representations of abstract task rules, 
or the engagement of task-correlated sensory or response-related features. In fact, as shown in the Supplemental 
Material, there were marked between-task differences in the time course of encoding target locations, with color 

Figure 4.  Average classifier confidence, separately for switch vs. no-switch trials and fast vs. slow RTs 
(determined via median split within individuals, tasks, and switch vs. no-switch trials).
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decoding being stronger and earlier than orientation decoding. Arguably, even if task-level decoding is driven 
by such aspects they would still be the consequence of top-down, task-level representations and thus indirectly 
reflect the strength of top-down control through such abstract representations. However, we can also conduct 
additional analyses to explore the abstractness of the information decoded on the level of tasks.

As a first step, we analyzed how task-set decoding generalizes across critical stimulus/response aspects. For 
this purpose, we split the data into four target positions by two features/responses (=8) bins. We then trained 
classifiers to discriminate task for each of these bins and tested for generalization both with left-out trials within 
the source bin and for the remaining seven bins. The insert in Fig. 1C presents the time-course of average, 
within-bin classification accuracy and across-bin classification accuracy (for each source bin, averaged across all 
seven generalization bins). As evident, accuracy for generalization analyses was somewhat reduced, but remained 
very robust. This result confirms that at least a substantial part of the decodable task-related information is indeed 
of a relatively abstract nature.

In a second step, we can ask to what degree the predictive power of task-level information (see Fig. 2A) is 
associated with abstract information versus task-correlated, lower-level aspects. Thus, instead of task-set classifier 
confidence, we used the degree of generalization (see insert to Fig. 1C) to predict RTs. As shown in the insert to 
Fig. 2A, the generalizable aspect of the decoded task-level representation remained a robust predictor of perfor-
mance. In the Supplemental Material, we report an additional analysis, where we controlled in the predictive anal-
yses (Fig. 2A) for the degree to which lower-level representations generalized across tasks on a trial-by-trial basis 
(see Fig. S3). Again, we found no change to the overall predictive pattern, confirming that the decoded task-set 
representations were relatively abstract (Fig. 4A).

Consistency of task decoding patterns.  We used an individual-specific decoding approach because we 
had no a-priori predictions about the frequency bands and electrode locations that capture task-specific infor-
mation. Nevertheless, it would be useful to know to what degree such an individual-specific approach is in fact 
warranted. Therefore, we computed for each subject, electrode, and frequency band the power across the 150 ms 
around the average, peak decoding accuracy for task sets (see Fig. 1C) and compared these across the two tasks. 
We then correlated the resulting vector of 80 (20 electrode × 4 frequency bands) t-values for the task contrast for 
each participant with that of every other participant. Figure 5 shows the histogram of the resulting correlations; 
the average is r = 0.13 (computed by averaging z-transformed correlations and re-transforming the mean into an 
r coefficient) and the range, although tilted towards the positive direction is very large. This result suggests that 
the pattern separating the two tasks is fairly idiosyncratic and therefore justifies an individual-specific decoding 
approach.

Discussion
When people need to respond to a given stimulus in a flexible, context-dependent manner, the flow of informa-
tion processing cannot rely on sensory or response representations alone. Rather, stimulus and response selection 
processes have to be constrained by representations of the current context, goals, and/or stimulus-response rules. 
There is a substantial literature using behavioral1 and neuroimaging methods37–40 on how we select and change 
representations that enact top-down control. However, compared to the recent progress made using neurophys-
iological methods in primates (Siegel et al.17), it has been much more difficult to precisely characterize the place 
and the relevance of such representations within the overall information processing cascade.

By decoding information about all potentially relevant features from EEG signals, we revealed a plausible 
sequence of active representations of target and distractor locations, as well as of response choices. For example, 
the timing of target/distractor location representations was highly consistent with recent work using eye-tracking 
to assess the dynamics of attentional allocation to task-relevant and irrelevant features12,26. More importantly, 
our results also reveal the time course for both cue and attentional-set representations. Task cues were highly 
decodable as soon as the cue was presented during the prestimulus phase, but were less strongly expressed once 

Figure 5.  Histogram of correlations of task-contrast t-values across electrodes and frequency bands for all 
possible pairs of individual subjects (i.e., one correlation per pair).
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the stimulus appeared. In contrast, task representations exhibited the reverse pattern: Their activity ramped 
up only slowly during the post-cue/pre-stimulus phase, but showed a very strong presence during the entire 
stimulus-to-response.

The pattern of average, cue and attentional-set activation trajectories is of some theoretical interest by itself. 
For example, contrary to one prominent model4, the fact that task-level decoding accuracy is much higher than 
cue decoding accuracy (at least after stimulus presentation) suggests that task-set activity is more important than 
superficial cue information in controlling lower-level representations. Yet, average decoding accuracy allows no 
firm conclusions about the functional relevance of the different representations. This is where decoding scores on 
the single-trial level yield important, additional information. Using these scores to predict trial-to-trial variability 
in RTs, allowed us to determine the representations that drive performance in a time-resolved manner (Fig. 2). 
Interestingly, the pattern of predictive relationships indicates that cue representations do not explain variability 
in performance. In contrast, task representations emerged as a very robust predictor of trial-to-trial variability in 
RTs. As for the trajectories of decoding accuracy (see Fig. 1C), the explanatory power of task-level representations 
was again largely limited to the post-stimulus phase and was most robust when also stimulus and response effects 
are particularly strong. Task-level information (but not cue information) also emerged as a robust predictor of 
inter-individual differences in performance—a result that will need to be confirmed with larger samples. In addi-
tion, an analysis of interrelationships between task and lower-level decoding scores (see Fig. 3) indicates that 
attentional sets were coupled in the post-stimulus phase initially with the target-location representations, and 
thereafter also with feature/response representations. Combined, these results strongly suggest that lower-level 
representations are configured through more abstract task or attentional settings, rather than through superficial 
cue representations. Further, the trajectory of average representational strength and the predictive pattern is most 
consistent with the parallel activation model (Fig. 1B), where attentional sets can shape lower-level processes in 
a concurrent manner3.

Our results do not rule out the possibility of functionally relevant, preparatory activity before stimulus/
response processing sets in. In fact, the use of cue information to retrieve the current attentional set is a necessary 
process that clearly happens within the cue-to-stimulus interval5. The early inter-relationship between strength 
of cue and task representations likely is an expression of this retrieval activity (Fig. 3). It is reasonable to assume 
that the 300 ms interval between cue and stimulus interval was sufficient to absorb major, within-individual or 
between-individual variability in the duration or quality of this process, thus preventing any predictive effects 
of prestimulus cue or task-set representations from revealing themselves. Also, it is very well possible that with 
longer preparatory intervals, greater proactive task-set activity might be observed. Both behaviorally and in EEG 
or fMRI neuroimaging studies, preparation effects are well documented27,41–44. However, the fact that task-set 
representations were strongest, and also most predictive of performance in the presence of stimulus and response 
representations suggests that a key function of attentional sets is to regulate these lower-level representations 
in a concurrent manner. This conclusion is also consistent with a large body of behavioral work suggesting that 
task-selection costs cannot be easily eliminated through opportunity for preparation1.

The most important limitation of the current work is that we cannot be certain that the decoded, task-level 
information reflects exclusively abstract rule-type representations. As the two different tasks required attention to 
different visual aspects and different S-R rules it is possible that between-task decoding is driven to a large part by 
these aspects (see Supplemental Material). Even if that was the case though, given that the bottom-up stimulation 
did not differ across tasks, these aspects must reflect the degree of task-related engagement, which at the very least 
is an indirect reflection of higher-level control representations.

We also report several results suggesting that the task decoding accuracy we observed does in fact represent 
the strength of relatively abstract, task or attentional settings. For example, in the predictive analyses, task-level 
classifier confidence explained substantial, within-individual variability in RTs over and above the predictive rela-
tionships between RTs and lower-level aspects. We also demonstrated that task representations generalized across 
target positions and features/responses. Furthermore, these generalization scores proved nearly as predictive of 
within-individual and between-individual variability in performance as the regular decoding accuracy.

Because we had no strong a-priori predictions about frequency bands or electrode sites that might carry the 
relevant information, we used a strict bottom-up approach to decode tasks/attentional sets. Obviously, decoding 
analyses could be restricted to specific frequency bands (or electrodes) to test predictions about which parts of 
the signal contain theoretically relevant information45. Frequency-specific decoding analyses would also address 
another limitation of the current approach. Time-frequency analysis comes with some degree of blurring of the 
precise temporal characteristics—which for example is the likely reason for the above-chance increase of decod-
ing accuracy for the target feature before stimulus onset (see Fig. 1C). Given that the degree of blurring is larger 
for lower than higher frequency bands and that there is no control over the contribution of each frequency band 
to the overall decoding accuracy, it is difficult to determine the degree to which temporal precision is compro-
mised. When precise temporal relationships among features need to be assessed (e.g., which feature is activated 
first) then it would be useful to conduct decoding analyses in a frequency-specific manner. In the current case, 
however, none of our conclusions rest on precise, temporal comparisons.

In key aspects, our pattern of results was remarkably similar to earlier-mentioned results reported by Siegel 
et al.17. In particular, cue information was highly prominent during the pre-stimulus phase, but then tapered off 
in the post-stimulus phase. Task information emerged concurrently with cue information, but then increased 
dramatically as stimulus and response choice information was processed during the stimulus phase. The conver-
gence of results across species and methods suggests that some of the same information that is conveyed through 
neuron-level recordings can also be extracted through scalp-level EEG signals. The fact that we were able to 
extract information about task-relevant features through relatively sparse recordings from the scalp is generally 
consistent with the fact that in Siegel et al., both higher-level and lower-level aspects were represented throughout 
all cortical regions, albeit with varying strengths across regions.
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To summarize, we show here that EEG-based, trial-by-trial decoding analyses can clarify the relative role 
and the temporal dynamics of both lower-level stimulus/response, as well as more abstract attentional-set rep-
resentations. In particular, the ability to pinpoint the exact source of performance differences within a cascade of 
simultaneously evolving representations is a unique feature of this approach.
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