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Neonatal thrombocytopenia: 
Thrombin generation in presence of 
reduced platelet counts and effects 
of rFVIIa in cord blood
Harald Haidl, Sina Pohl, Bettina Leschnik, Siegfried Gallistl, Wolfgang Muntean & 
Axel Schlagenhauf

Healthy neonates exhibit a well-functioning haemostatic system despite peculiarities regarding 
composition of clotting factors and inhibitors as well as impaired platelet aggregation. 
Thrombocytopenia and severe bleeding events are feared in sick infants. Recombinant factor VIIa 
(rFVIIa) is a haemostatic agent used as a last resort in neonates with refractory bleedings. Aim of this 
study was to investigate in-vitro (i) changes in thrombin generation with different platelet counts, (ii) 
effects of rFVIIa under conditions of thrombocytopenia and (iii) potentially differing dose-response of 
rFVIIa in cord blood as a surrogate for neonatal blood compared to adult blood. Thrombin generation 
parameters were observed in cord blood plasma and adult plasma with various platelet counts, with 
or without addition of rFVIIa, respectively. Low platelet counts did not influence thrombin generation 
in cord blood in contrast to adult blood. RFVIIa primarily affected lag time throughout all platelet 
concentrations. Interestingly, peak height was reduced exclusively in cord blood plasma after addition 
of rFVIIa. No significant differences regarding dose-response were observed between cord blood and 
adult blood. In contrast to adult blood, thrombocytopenia in cord blood does not significantly influence 
thrombin generation. Even at very low platelet counts there is enough negatively charged surface to 
support rFVIIa action in plasma from cord blood and adult blood in-vitro.

Healthy infants exhibit a well-functioning haemostatic system in-vivo and are not prone to easy bruising. The 
plasmatic coagulation system shows some particularities as many coagulation factors are known to be low at 
time of birth and adapt to adult levels within the first months of life. As shown by Cvirn et al., low procoagulatory 
factors are also accompanied by low levels of inhibitory factors, which result in a well-balanced haemostasis1.

Platelets of newborns exhibit impaired platelet function in in-vitro aggregation measurements2. This hypoag-
gregability is not due to a refractory state caused by preactivation during birth3. Multifactorial impairments in 
signal transduction have been shown to cause this hypoaggregability, including impaired calcium mobilization, 
lower numbers of α2-adrenergic receptors and lower GTPase activity in Gq-coupled receptors4–6. Despite these 
impairments, the phospholipid composition of neonatal platelet membranes and the overall phospholipid surface 
expression upon activation are similar to that of adult platelets.

Thrombin generation is a pivotal step in the formation of a stable fibrin clot and highly dependent on nega-
tively charged phospholipids. Neonatal platelets support thrombin generation equally to adult platelets due to the 
aforementioned comparable phospholipid composition7.

While healthy infants do not tend to bleed, preterm infants and sick infants exhibit a high bleeding risk, par-
ticularly when associated with thrombocytopenia which exacerbates the fragility of their haemostatic system. 
Thrombocytopenia with a threshold in platelet counts below 150,000/µl is observed in up to 35% of children 
that have to be treated – for any reason – at a neonatal intensive care unit (NICU) and is even more frequent and 
severe in preterm babies8. In cases of bleeding and/or platelet counts below 20,000/µl, platelet concentrates are 
given to increase platelet counts. In cases of refractory bleeding, recombinant factor VIIa (rFVIIa) is a therapeutic 
option9. However, fragility of the neonatal haemostatic system also leads to an increased risk of thrombosis10.
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RFVIIa is licensed for haemophiliac patients with inhibitors, Glanzmann thrombasthenia and FVII deficiency, 
but it is also used in several off-label indications to cease bleeding that cannot be stopped otherwise. Successful 
administration in neonates and preterm babies11–13 as well as in older children14 is described for cases of refrac-
tory bleeding events with/without thrombocytopenia. On the other hand, the prophylactic administration of 
rFVIIa to preterm infants does not prevent intracranial bleeding15. A study about off-label uses of rFVIIa in 
childhood reports 3655 off-label administrations of rFVIIa; 39.8% in the first year of life, among these 48% within 
the first month of life. According to this study, venous and/or arterial thrombosis – the main adverse events – 
occurred in 10.9% of all pediatric off-label administrations (vs. 2.7% of all label administrations). In neonates the 
incidence rate was 13.6%9.

Mechanism of action of rFVIIa on platelets is a tissue factor-independent activation of FX in presence of phos-
pholipids. Small amounts of thrombin are generated, leading to a thrombin burst16. The hypothesised mechanism 
of rFVIIa action in a thrombocytopenic state is a boost of the initial thrombin generation through high-dose 
rFVIIa, resulting in faster platelet activation, thus compensating for the lower number of platelets17.

Calibrated automated thrombography is an in-vitro method enabling time-dependent tracing of thrombin 
generation in various conditions. It has been shown that this method is applicable to detect states of hypo- as well 
as hypercoagulability. It is sensitive to clotting factor deficiencies and reflects the effect of anticoagulant drug18–20. 
When performed in the presence of platelet rich plasma the necessary phospholipids are provided by activated 
platelets. Therefore, this assay is superior to conventional global tests of haemostasis without platelets which are 
less sensitive and only detect onset of fibrin clot formation.

Considering aforementioned peculiarities of the neonatal haemostatic system we posed the question whether 
rFVIIa will perform in a similar manner in samples from adults and from cord blood with neonatal platelets 
featuring exactly those peculiarities. Particularly we wanted to elucidate the following issues: How does thrombin 
generation differ in samples from cord blood (CB) compared to adult samples when platelet counts are reduced 
and no rFVIIa is added? Is there a different in-vitro dose-response to rFVIIa in thrombin generation of platelet 
rich plasma (PRP) from CB compared to adult PRP, and does a lower dose eventually have a sufficient effect on 
thrombin generation? Does reduction of platelets influence the rFVIIa support of thrombin generation?

Results
First, we evaluated potential differences between thrombin generation of platelet-rich plasma from cord blood 
and from adult blood. Figure 1 shows schematics of a thrombin generation trace with the corresponding param-
eters. In our study samples from cord blood exhibit a shorter lag time and time-to-peak and a higher peak. 
The endogenous thrombin potential (ETP, Table 1), however, is lower, which is similar to previous reports with 
platelet-poor plasma1. Taken together thrombin generation in platelet-rich plasma from cord blood differs from 
that of adult blood.

Next, we tested the impact of varying platelet counts on thrombin generation in samples from cord blood and 
adult blood. Table 1 shows effects of platelets on thrombin generation and parameters without rFVIIa at 100,000 
and 10,000 platelets/µl (mean ± SD). While CAT parameters in cord blood derived plasma are comparable at 
platelet counts of 100.000/µl and 10.000/µl, the values for ETP and peak in adult plasma are significantly reduced 
at 10,000 platelets/µl compared to 100,000 platelets/µl. Parameters at 100,000, 75,000, 50,000, 10,000 platelets/
µl and platelet poor plasma (PPP) in a subset of adult and cord blood (CB) samples are shown in Fig. 2. Values 
remain constant in CB samples whereas ETP and peak levels are reduced at 10,000 platelets/µl and PPP in adult 
samples. Taken together, thrombin generation in samples from adult blood exhibits a substantially higher platelet 
dependency than samples from cord blood.

Then, we tested the impact of rFVIIa on thrombin generation at varying platelet counts in samples from cord 
blood and from adult blood. The impact of rFVIIa on thrombin generation is primarily reflected in the short-
ening of lag time. Results of thrombin generation experiments – run with 1.5 µg/ml rFVIIa at different platelet 
concentrations – are outlined in Table 2 and are given as ratios ± SD to vehicle. The use of 3.0 µg/ml rFVIIa did 
not further increase the effects observed with 1.5 µg/ml rFVIIa (data not shown). The ratios provide comparability 

Figure 1.  Schematic depiction of a thrombin generation trace. Endogenous thrombin potential (ETP) – area 
under the curve, represents the total amount of generated thrombin; lag time – time from tissue factor addition 
to onset of thrombin generation; peak – maximum level of generated thrombin; time-to-peak (ttpeak) – time 
from tissue factor addition to peak generation.
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between CB and adult blood as absolute values differ broadly. For lag time shortening, the ratios reflect a more 
pronounced impact of rFVIIa in CB than in adult blood (Table 2) whereas the absolute reductions in lag time 
are within a similar range in CB and in adult blood (1.22–1.38 min and 0.91–1.13 min, respectively). Concerning 

cord blood 100,000/μl 10,000/μl

lag time [min] 3.4 (±0.46)§§ 3.5 (±0.60)§§

ETP [nMol × min] 1238.7 (±176.3)§§ 1225.4 (±144.2)§§

peak [nMol] 168.1 (±27.8)§ 168.9 (±27.3)§§

time-to-peak [min] 6.9 (±0.64)§§ 7.1 (±0.74)§§

velix [nMol/min] 48.9 (±11.9)§§ 49.0 (±14.1)§§

adult blood

lag time [min] 4.6 (±0.56) 4.6 (±0.48)

ETP [nMol × min] 2106.3 (±208.1) 1860.3 (±144.6)**

peak [nMol] 144.7 (±27.6) 100.4 (±38.8)**

time-to-peak [min] 13.5 (±3.34) 11.7 (±2.69)

velix [nMol/min] 19.6.4 (±12.0) 17.3 (±11.1)

Table 1.  Impact of 100,000 platelets/µl vs. 10,000 platelets/µl on thrombin generation parameters of all studied cord 
blood derived samples (n = 10) and adult samples (n = 10) without rFVIIa. **Marks a significant difference between 
the two platelet counts (**p < 0.001). §Marks a significant difference between adult and cord blood samples at the 
same platelet count (§p < 0.05; §§p < 0.001). ETP (endogenous thrombin potential), velix (velocity index).

Figure 2.  Impact of decreasing platelet counts on thrombin generation parameters without rFVIIa. Course of 
parameters of thrombin generation – lag time (a), endogenous thrombin potential (ETP) (b), peak height (c), 
time-to-peak (ttpeak) (d) – in cord blood derived and adult plasma with platelets at different platelet counts 
(100,000/µl, 75,000/µl, 50,000/µl, 10,000/µl and PPP; n = 5).
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peak heights the addition of rFVIIa leads to a reduction in CB but not in adult blood. Lower maximum amount of 
generated thrombin with rFVIIa might be due to lower prothrombin levels in CB leading to substrate consump-
tion caused by accelerated initial thrombin generation rates. ETP shows no significant change, neither in the 
adult group nor in the CB group. These effects are comparable for all platelet concentrations. Taken together, we 
found a similar impact of rFVIIa in samples from cord blood and from adult blood, and no platelet-dependency 
in rFVIIa-action.

Finally, we evaluated potential differences in rFVIIa dose response of thrombin generation in samples from 
cord blood and from adult blood. Dose response of lag time shortening was analysed by performing thrombin 
generation experiments with different rFVIIa concentrations in PRP samples from CB and adult blood. Figure 3 
shows results of experiments with PRP at 100,000 and 10,000 platelets/µl with varying rFVIIa concentrations 
compared to vehicle. In these tests, standard deviations are relatively high, reflecting the varying dose response 
of our samples. Significant differences in lag time reduction between CB and adult blood were not found. It is 
remarkable that even with the lowest concentration of rFVIIa (0.023 µg/ml), a measurable reaction could be 
observed in both groups. While ETP remains unchanged in these experiments, peak levels in CB samples abate 

cord blood lag time [min]

ETP peak ttpeak velix

[nMol × min] [nMol] [min] [nMol/min]

100,000/µl 0.62 ± 0.02**§ 0.96 ± 0.13 0.94 ± 0.04* 0.84 ± 0.03*§ 0.87 ± 0.04*§

75,000/µl 0.65 ± 0.03*§§ 0.93 ± 0.17 0.92 ± 0.05* 0.87 ± 0.05*§ 0.85 ± 0.07*§

50,000/µl 0.65 ± 0.02**§ 0.95 ± 0.12 0.91 ± 0.05* 0.86 ± 0.01**§ 0.85 ± 0.07*

10,000/µl 0.66 ± 0.07*§ 0.98 ± 0.02 0.93 ± 0.03* 0.87 ± 0.03*§ 0.86 ± 0.10

PPP 0.64 ± 0.05*§ 0.95 ± 0.10 0.91 ± 0.04*§ 0.86 ± 0.03*§ 0.82 ± 0.08*

adult blood

100,000/µl 0.75 ± 0.06** 0.99 ± 0.03 0.98 ± 0.05 0.90 ± 0.04* 0.99 ± 0.09

75,000/µl 0.80 ± 0.03** 1.01 ± 0.06 0.99 ± 0.06 0.94 ± 0.03* 0.98 ± 0.08

50,000/µl 0.77 ± 0.05** 0.97 ± 0.03 0.95 ± 0.03 0.97 ± 0.08 0.89 ± 0.10

10,000/µl 0.76 ± 0.06* 0.98 ± 0.09 0.99 ± 0.07 0.93 ± 0.05* 0.94 ± 0.07

PPP 0.77 ± 0.03** 0.97 ± 0.05 0.96 ± 0.04 0.94 ± 0.04* 0.89 ± 0.08

Table 2.  Relative impact of decreasing platelet counts on all parameters of thrombin generation with 1.5 µg/ml 
rFVIIa vs. vehicle. Ratios for each parameter were formed from absolute values with/without rFVIIa. Samples 
from cord blood derived and adult plasma with platelet counts of 100,000/µl, 75,000/µl, 50,000/µl, 10,000/µl and 
platelet poor plasma (PPP) with rFVIIa at 1.5 µg/ml (n = 5). *Marks a significant difference to baseline level of 
the same platelet count (*p < 0.05; **p < 0.001). §Marks a significant difference between adult and cord blood 
samples (§p < 0.05; §§p < 0.001). ETP (endogenous thrombin potential), ttpeak (time-to-peak), velix (velocity 
index).

Figure 3.  Impact of varying rFVIIa concentrations on reduction of lag time and peak thrombin generation. Lag 
time shortening (a) and changes in peak (b) were observed with different concentrations of rFVIIa at 100,000 
platelets/µl and 10,000 platelets/µl (n = 5).
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gradually with higher rFVIIa levels (Fig. 3b). Taken together, overall dose response is comparable in samples from 
cord blood and adult blood, and both cohorts exhibit high sensitivity to rFVIIa even at very low concentrations.

To explain the varying dependency of thrombin generation on platelet counts in samples from cord blood and 
adult blood, we performed additional experiments and evaluated the impact of differing TFPI-levels in standard 
plasma. TFPI depleted standard plasma reconstituted to neonatal (18 ng/ml) or adult (48 ng/ml) TFPI levels show 
similar platelet-dependencies as plasma from CB and adult blood respectively (Fig. 4). Samples with 48 ng/ml 
TFPI exhibit a substantial reduction in ETP and peak while samples with 18 ng/ml TFPI show only minor changes 
with decreasing platelet counts. Taken together, thrombin generation in samples with lower TFPI levels is less 
dependent on the presence of platelets.

Discussion
Aim of our study was to evaluate the support of thrombin generation by neonatal platelets and the effect of fac-
tor rFVIIa simulating thrombocytopenia in-vitro. Neonatal platelets show impaired aggregation in-vitro but no 
apparent lack in function in-vivo since primary haemostasis seems to be functional in healthy newborns21–23. 
Specific peculiarities of neonatal platelets explain this hypoaggregability24–26. We wanted to study the role of plate-
let counts in thrombin generation in cord blood (CB) and the effects of procoagulant agent rFVIIa under these 
circumstances.

In our thrombin generation experiments with adult samples and no rFVIIa, low platelet counts of 10,000/µl 
lead to diminished endogenous thrombin potential- (ETP-) and peak-levels compared to 100,000/µl, while lag 
time and time-to-peak were not influenced by platelet counts (Fig. 2). In CB samples no remarkable change was 
observed at declining platelet numbers in any of the thrombin generation parameters.

Apparently, normal thrombin generation can be established in CB, even with low platelet counts. In our exper-
imental setup the source of phospholipids, which are required to support thrombin generation, are endogenously 
derived from platelets.

There is no activation of platelets during birth and the phospholipid content in CB does not differ from 
adults3,7. Possibly, lower amounts of negatively charged phospholipids are required to optimally support throm-
bin generation in newborns due to lower plasma levels of tissue factor pathway inhibitor (TFPI) and antithrom-
bin (AT) in the neonatal haemostatic system. Additionally, elevated microparticles in CB may contribute to the 
overall phospholipid content to provide sufficient support of thrombin generation27. We tested this hypothesis 
by mimicking neonatal and adult TFPI levels using TFPI depleted standard plasma and recombinant TFPI. Our 
results showed that ETP and peak are less dependent on platelet counts at lower TFPI levels hinting to a substan-
tial role of TFPI in platelet dependency of thrombin generation. Interestingly, ETP and peak were higher with 
48 ng/ml than with 18 ng/ml TFPI when ample amounts of platelet surface were available (100.000/µl). This may 
seem contradictory to TFPI’s inhibiting function but fits well with thrombin generation observed in plasma from 
CB and adult blood. Possibly, TFPI plays an additional role in the positive feedback loop of thrombin generation 
by thrombin itself.

Our findings differ from Gerotziafas et al., who described an elongation of lag time and time-to-peak in adult 
samples with low platelet counts. Presumably, these contrasts are due to unknown tissue factor concentrations 
and the addition of exogenous phospholipids in their study28.

Using rFVIIa, we observed a similar dose response in CB derived plasma and in adult samples. The total 
amount of generated thrombin (ETP) shows no significant change after adding rFVIIa, but the kinetics of reaction 

Figure 4.  Impact of varying TFPI concentrations on platelet count dependency of thrombin generation. CAT 
measurements were done with TFPI depleted standard plasma reconstituted with recombinant TFPI (18 and 
48 ng/ml). ETP (a) and peak (b) are depicted with varying counts of washed platelets added to the plasma 
samples (100,000/µl, 10,000/µl, PPP).
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change. The effect of rFVIIa lies in the acceleration of the initial thrombin burst, resulting in shortened lag time 
and time-to-peak. The shortening of lag time after addition of rFVIIa in newborn (and preterm) platelet poor 
plasma has already been shown by Streif et al. with a subsampling method29. These findings are now also observed 
in thrombocytopenic CB derived plasma and adult plasma, respectively. We did not find significant differences of 
rFVIIa-effects at varying platelet counts. In our experiments, the mean percentage of shortening was 62% to 66% 
of negative control in CB plasma and 75% to 80% in adult plasma, not depending on platelet counts. We conclude 
that a reduction of platelets does not influence the rFVIIa support of thrombin generation.

Interestingly, the absolute values for lag time shortening were similar for adult and cord blood samples. This 
is noteworthy because – without rFVIIa – lag time in samples from CB was already shorter than in adult samples. 
We postulate that plasmatic coagulation factors, especially the lower levels of tissue factor pathway inhibitor 
(TFPI), contribute to a comparable shift despite lower absolute baseline lag time in CB samples, which resulted 
in a higher relative reduction than in adult samples1. Reduction of peak levels with rFVIIa was only observed in 
samples from cord blood. Possibly, lower TFPI levels and low amounts of prothrombin in neonates result in a 
higher fraction of prothrombin being converted by rFVIIa. Thus, less prothrombin might be remaining for peak 
thrombin generation via FVIII/FIX.

The presented results from in-vitro experiments were done with 1.5 μg/ml rFVIIa, which roughly corresponds 
to 90 μg/kg, the recommended dose in a clinical setting. Additionally, we tried several lower concentrations as we 
were interested in dose dependent effects on thrombin generation in cord plasma, taking into consideration that 
physiological levels of FVII are lower in newborns. Therefore, we would have expected a lower dose of rFVIIa to 
reach the same effect when compared to adults. Administered rFVIIa doses in neonates vary greatly within the 
literature. In a case series of 36 newborns, the dose of rFVIIa was mostly received with good response but varied 
broadly between 15 µg/kg and 200 µg/kg30. Greisen et al. describe the effect of rFVIIa-doses of 5 µg/kg and 80 µg/
kg in preterm babies with prolonged prothrombin time (PT). PT was already significantly shortened at the lowest 
dose (5 µg/kg)31. Usually, a supraphysiological dose of rFVIIa is needed for pharmacological purposes. As shown 
by Shibeko et al., this need can not only be explained by a phospholipid-related pathway but also by a competition 
between rFVIIa and factor VII zymogen (FVII) for tissue factor binding32.

Our results do not support this assumption as we did not find a maximum lag time shortening at levels below 
1.5 μg/ml, neither at 100,000 nor at 10,000 platelets/µl. Therefore, in our experiments we found no evidence for a 
heightened dose response in neonates and comparable saturating rFVIIa concentrations.

Limitations of such trials lie in the use of cord blood, which may not reflect a neonatal in-vivo situation ideally. 
It is, however, the only ethically justifiable way to achieve sufficient quantities of neonatal platelets. We presumed 
a platelet count of 100,000/µl to be functionally normal as usually no bleeding occurs and higher levels were not 
feasible in the long term. Presentation of data as ratios was done to establish comparability of study cohorts, but 
may marginally distort the results as small changes at lower baseline levels affect ratios more than at higher base-
line levels.

In summary, we found that even at low platelet counts exhaustive rFVIIa action is observable in plasma from 
cord blood as well as from adult blood. The in-vitro hypoaggregability of neonatal platelets does not result in an 
impaired support of thrombin generation with or without rFVIIa. Nevertheless, the neonatal haemostatic system 
is known to be fragile. Peculiarities of neonatal haemostasis should be taken into consideration in addition to the 
critical health state, when rFVIIa has to be administered to babies due to the relatively high thrombosis rate in 
this age cohort.

Methods
This study was approved by the local ethics committee (Ethikkommission der Medizinischen Universität Graz), 
and all participants gave written informed consent in accordance with the Declaration of Helsinki.

Each experiment was repeated five-times with a total of ten different participants. Blood of adult volunteers 
(5 males, 5 females) was drawn with a 21 gauge needle from the antecubital vein, without applying venostasis, 
into precitrated S-Monovette premarked tubes (3 ml) from Sarstedt (Nümbrecht, Germany), containing 0.30 ml 
0.106 mol/l trisodium citrate solution. Cord blood was obtained from term newborns (gestational age 38–42 
weeks), immediately following delivery into the abovementioned citrate tube and processed shortly. For throm-
bin generation experiments, platelet-rich plasma (PRP) was obtained by centrifugation (200 × g, 10 min, 20 °C) 
and platelet count was measured using a Sysmex KX 21 cell counter. Platelet-poor plasma (PPP) was obtained by 
centrifugation (1600 × g, 10 min, 20 °C).

RFVIIa (Eptacog alpha; Novoseven©, Novo Nordisk A/S, Danmark) was reconstituted according to manu-
facturer’s instruction and stored in aliquots of 35 µl at −80 °C for later use. These were diluted with NaCl 0.9% to 
obtain the desired concentration.

Thrombin generation experiments.  PRP was diluted with autologous platelet poor plasma (PPP) to 
produce platelet counts of 100,000, 75,000, 50,000 and 10,000/µl. Thrombin generation was performed using 
Calibrated Automated Thrombography according to Hemker et al. as reported previously20,27. This method allows 
the continuous tracing of thrombin generated in-vitro in a specific plasma sample over time. Thrombin gener-
ation assays were performed using a Fluoroskan Ascent plate reader (Thermo Labsystems, Helsinki, Finland) 
and Thrombinoscope© software (Thrombinoscope BV, Maastricht, the Netherlands). 20 µl of PRP-reagent (1 
pM tissue factor final concentration) or calibrator (both Thrombinoscope BV, Maastricht, The Netherlands) and 
rFVIIa in a final concentration of 1.5 µg/ml and 3.0 µg/ml were placed into respective wells of a 96-well-plate 
(Immulon 2 HB, Thermo Scientific). 80 µl PRP with the respective platelet counts were added. The measure-
ment was started by automatic dispensing of 20 µl fluobuffer-CaCl2 (20 mM Hepes, 140 mM NaCl, 5 mg/ml 
bovine serum albumin, and 16.7 mM CaCl2 final concentration, pH 7.35), containing a fluorogenic substrate 
(Z-Gly-Gly-Arg-amino-methyl-coumarin, Bachem, Bubendorf, 417 µM final concentration). Thrombin 
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generation profiles were recorded in triplicates. Further thrombin generation experiments were performed with 
platelet counts of 100,000 and 10,000/µl (+platelet poor plasma, PPP) and varying concentrations of rFVIIa (1.5, 
0.75, 0.38, 0.19, 0.09, 0.047, 0.023 µg/ml). The thrombin generation parameters lag time, endogenous thrombin 
potential (ETP), peak, time-to-peak (ttpeak) and velocity index (velix) were calculated from respective profiles. 
Figure 1 shows schematics of a thrombin generation trace with the corresponding parameters. The velix was cal-
culated with the formula [peak thrombin/(peak time − lag time)].

In a follow-up experiment, TFPI-depleted plasma (Sekisui Diagnostics, Lexington, MA) was reconstituted 
with recombinant TFPI (18 ng/ml or 48 ng/ml, Abcam, Cambridge, UK) to mimic neonatal or adult TFPI levels. 
Washed platelets from an adult donor were added to a subset of these plasma samples with platelet counts of 
100,000 and 10,000/µl, respectively, before CAT measurements.

Statistical analysis.  Data are presented as mean ± SD or relative changes ± SD. Differences within cord 
blood or adult samples were analysed using ANOVA. Corrections for multiple comparisons were made using 
the Holm-Šídák method (α = 0.05), and multiplicity adjusted P-values were calculated for each comparison. 
Graphpad Prism 6.0 (Graphpad software, San Diego, CA) was used for performing calculations and creating 
figures. The datasets generated and/or analysed during the current study are available from the corresponding 
author on request.

Ethical approval.  All procedures performed in studies involving human participants were in accordance 
with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards.
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