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Priority Attachment: a 
Comprehensive Mechanism for 
Generating Networks
Mikołaj Morzy   1, Tomasz Kajdanowicz2, Przemysław Kazienko2, Grzegorz Miebs   3 & 
Arkadiusz Rusin3

We claim that networks are created according to the priority attachment mechanism. We introduce a 
simple model, which uses the priority attachment to generate both synthetic and close to empirical 
networks. Priority attachment is a mechanism, which generalizes previously proposed mechanisms, 
such as small world creation or preferential attachment, but we also observe its presence in a range 
of real-world networks. In this paper, we show that by using priority attachment we can generate 
networks of very diverse topologies, as well as re-create empirical ones. An additional advantage of the 
priority attachment mechanism is an easy interpretation of the latent processes of network formation. 
We substantiate our claims by performing numerical experiments on both synthetic and empirical 
networks. The two main contributions of the paper are: the development of the priority attachment 
mechanism, and the design of Priority Rank: a simple network generative model based on the priority 
attachment mechanism.

Motivation.  Many generative models of network formation have been proposed in the scientific literature1, 
and some of them have gained significant notoriety, for instance the random network model of Erdös and Rényi2, 
the small world model of Watts and Strogatz3, the cumulative advantage model of de Solla Price4, the scale-free 
model of Albert and Barabási5, stochastic block model6,7 or the forest fire model of Leskovec8. Each of these 
generative network models is based on some phenomenon which (as is often claimed) explains the underly-
ing process of network formation. For instance, in the case of the small-world model, the alleged phenomenon 
is the tendency of many systems to form tightly connected groups (small worlds) with incidental connections 
between groups serving as long distance bridges. In the case of the preferential attachment model the phenom-
enon which purportedly fuels the network formation process is the strong preference of vertices to connect to 
already well-connected vertices. In the stochastic block model, which is is a probabilistic model of the interactions 
between pairs of vertices, each vertex belongs to one of the groups or’blocks’, and each edge exists with a certain 
probability depending only on the vertices’ membership to the particular group. Fluctuations in the same block 
are stochastically equivalent, indicating their equivalent role in generating of the network structure. This model 
is popular because it can generate a wide range of large-scale networking patterns and can learn social structure 
in unweighted and weighted networks9–11.

Some of the network generators do not attempt to model real-world processes directly, but they rely on some 
mathematical formalism, like the sequence of Kronecker products applied to a small seed set of networks12. 
Recently, an interesting proposal has been formulated to model complex networks using a stochastic sequence 
of predefined base actions13 and turning the re-creation of an empirical network into an optimization problem.

For a long time, we have suspected that these individual phenomena are specialized instances of a more gen-
eral mechanism of network creation. The main reason for this forefeeling was the fact that the generative net-
work models seemed to be narrowly defined and each of them covered only a specific class of possible network 
topologies. A closer inspection of the generative network models further revealed that all of them were using, 
sometimes inadvertently, some type of prioritization while choosing target vertices during edge formation. The 
mechanism of prioritization using priority queues has a very long presence in almost all disciplines of science. In 
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psychology priority queues are believed to be the driving mechanisms of human attention14. In systems science 
priority queues play an important role in controlling and scheduling15,16 or in recommender systems for evolving 
networks17. In sociology there are strong clues that the stochastic queuing theory can provide valuable insights 
into human dynamics18–20. In ecology prioritization influences the inter-species interactions21–23.

In the domain of complex networks, the idea of network growth based on rankings was introduced by 
Fortunato, Flammini, and Menczer24. They have shown that substituting vertex feature distributions with global 
rankings of these features (both topological and non-topological) as the basis for preferential attachment, one 
always obtains a scale-free degree distribution in the resulting network. In this context a global ranking is a uni-
versal ordering of vertices common to all vertices, whereas a local ranking denotes an ordering of vertices as 
perceived by an individual vertex. In addition, they have proven that it is sufficient to use ranking samples in 
the network growth process, as long as these samples maintain the original partial order of vertices. However, 
the approach presented in this paper differs from24 in that we consider not only global rankings of vertices, but 
we allow local rankings as well. This is a fundamental difference since our model is not limited to scale-free net-
works, but can produce arbitrary network topologies. In addition, our model provides means for computational 
re-creation of empirical networks resulting in many instances of networks with nearly identical network profiles. 
It is a unique and promising property in the field of complex networks.

In order to verify whether the priority attachment can explain processes of network formation, we have devel-
oped Priority Rank, a simple generative network model. This model uses the priority attachment phenomenon 
to drive the network formation. Our experiments show that Priority Rank is capable of generating a very wide 
spectrum of networks. We were able to successfully re-create network topologies generated by the most popu-
lar generative network models, which suggests that the priority attachment mechanism is indeed the common 
denominator for these models. More importantly, examining the prioritization scheme, which resulted in the best 
re-generation of the original network, we could provide viable interpretations of the latent network generative 
process. This unique feature of the Priority Rank model is best pronounced in empirical networks.

Problems addressed.  Research on complex networks is constantly struggling with a serious methodological 
obstacle. Despite the vast availability of networks that can be analyzed, each individual network has its distinctive 
characteristics and presents to a researcher a single data point. Any attempt to generalize the results obtained on 
one network to other networks strives with inherent vulnerabilities. The choice of target networks is arbitrary 
and the transfer of discovered patterns has to be selective. Oftentimes, unspoken assumptions come into play, 
for instance, a phenomenon discovered in a few networks of a particular class is presumed to be applicable to 
all networks of this class. These assumptions are much more questionable than usually assumed and they signif-
icantly weaken the scientific appeal of a discovery. Let us consider the phenomenon of the shrinking diameter 
of a network8. Is it fair to conclude that this phenomenon should apply to all complex networks? Or maybe it is 
valid only for scale-free networks characterized by the preferential attachment mechanism of edge formation? 
Unfortunately, it is impossible to conduct a proper statistical inference since only one realization of each network 
is available. Furthermore, this problem cannot be addressed by sampling of networks, because sampling distorts 
the topology of networks to the point where sub-networks of a network loose their identifying properties25.

Another problem addressed in this paper is the inherent incompatibility of networks. Trying to analyze dif-
ferent networks and to make quantitative comparisons between them is very difficult, because in the realm of 
complex networks even minuscule perturbations of local topology can lead to significant differences in global 
network properties. This is true even for synthetic networks which have been generated from the same generative 
model and with slightly different parameters. Distributions of centrality measures, such as degree, betweenness, 
closeness or clustering coefficient, vary dramatically in response to minor changes of initial configurations26. As 
the result, statistical comparison of seemingly similar networks suggests a much greater variability and difference 
between networks, which makes any machine learning extremely difficult in the domain of complex networks. 
Without the access to diversified training, testing, and validation sets of networks, all patterns discovered in net-
works are bound to over-fit and not generalize well. Also, the relationships between network generation processes 
proposed in the literature are very unclear. Is the preferential attachment an alternative to the small world phe-
nomenon, or is it merely a supplementation? We note that there is no common language at the level of network 
generating processes, making the comparisons between different networks even more challenging.

Main findings.  The main contribution presented in this paper is the priority attachment mechanism of net-
work formation. We show how priority queues built on local rankings can lead to very diversified network topol-
ogies. The function, which generates these local rankings, yields itself to interpretation. As it turns out, popular 
generative network models can be easily mimicked by the priority attachment, and some of these models (pref-
erential attachment, cumulative advantage) are a special case of the priority attachment. The phenomenon of the 
priority attachment can be readily incorporated into a generative Priority Rank network model, which is a simple 
procedure of network creation. The Priority Rank model can produce networks with very different topologies 
using the same principle of priority attachment. Instead of using dedicated network models one can successfully 
force Priority Rank to produce random networks, preferential attachment networks, small world networks, and 
many more. The second main feature of Priority Rank is its applicability to empirical networks. Due to the pri-
ority attachment mechanism, which forms the basis of the model, it is possible to adjust Priority Rank to deliver 
networks with topology very similar to a given empirical network. The Priority Rank model has only to learn the 
distance function used in the priority attachment. We demonstrate Priority Rank’s ability to re-create empirical 
networks while preserving the distributions of centrality measures and other network characteristics. This ability 
allows for generating whole families of similar networks, thus, for conducting statistical inference on families of 
networks, etc.

There are four main reasons, which make the Priority Rank model valuable:
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•	 Priority Rank is a comprehensive generative network model which can produce a very wide spectrum of 
network topologies, including the most popular network models.

•	 Priority Rank offers insights into the generative processes behind modeled networks. Classical machine 
learning algorithms can be used to find the most fitting distance function for the priority attachment mech-
anism. In most cases such a distance function is easily interpretable and provides explanations for the latent 
network formation process.

•	 Priority Rank allows us to generate multiple instances of networks with the same characteristics and distri-
butions, because the model discovers the main generative process of network formation. It should be noted 
that this is incomparable with network sampling which oftentimes distorts the profile of sampled networks. 
Instead, the Priority Rank model allows to multiply networks for the purpose of A/B testing, statistical infer-
ence, simulations, etc.

•	 Priority Rank does not require any hyper-parameters to be set a priori such as edge creation probability in the 
random network model or edge rewiring probability in the small world network. This feature of the Priority 
Rank model is very important because, contrary to popular belief, generative network models are very sensi-
tive to the initialization of these parameters.

Methods
Priority attachment.  The idea behind the priority attachment mechanism is fairly simple. Consider a new 
vertex which joins a network. The primary issue is the selection of target vertices to which the new vertex creates 
edges. Previously, several mechanisms have been proposed to model this selection process. For instance, in the 
Erdös-Rényi model the vertex selects target vertices randomly using the uniform distribution. In the Albert-
Barabási model the vertex selects target vertices with the probability proportional to the current degree of each 
vertex. According to the priority attachment mechanism each vertex has a local ranking which arranges all pos-
sible target vertices by their “importance” from the point of view of the new vertex. The new vertex selects target 
vertices with the probability proportional to their position in the local ranking. One should regard this local rank-
ing as the priority queue which orders all of the vertices of the network from the point of view of a single vertex. 
This means that each vertex uses its own local ranking while creating edges. In other words, the main mechanism 
of network formation is the attachment of vertices driven by their individual perception of priority of other verti-
ces, hence the name “priority attachment”. The power of the priority attachment mechanism stems from the fact 
that local rankings can be computed by arbitrarily complex distance functions which can either model real-world 
phenomena, or model adjacency matrices of empirical networks.

Interestingly, the topology of the generated network depends almost exclusively on the properties of the func-
tion D which is used to generate local rankings. Figure 1 through 6 present six different networks, each consisting 
of =n 50 vertices, generated by the priority attachment mechanism. Random network is generated for 

µ σ∼D v v N( , ) ( , )i j , i.e., when local rankings are random permutations of the set of vertices (Fig. 1). Small-world 
network is generated for = | − |D v v a v a v( , ) ( ) ( )i j i j  for an attribute which value is randomly chosen from a uni-
form distribution, ∼a v U( ) (0, 1). In other words, local rankings arrange vertices by the distance defined by the 
vertex’s attribute a(v), resulting in a strong preference for vertices in the local neighborhood (Fig. 2). Preferential 
attachment network is generated for =

ε+
D v v( , )i j deg v

1
( )j

, i.e., when local rankings simply represent the global 

Figure 1.  Random network.
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ranking of vertex degrees24 (Fig. 3). Cosine similarity network is generated if = −


D v v( , ) 1i j
v v

v v
i j

i j
, where 

= …v a a a[ , , , ]i i i i
m1 2  is a vector of numeric values, effectively linking vertices which are close in the vertex vector 

space (Fig. 4).
But priority attachment mechanism can be used to produce networks with more complex topologies. For 

instance, the function = −⁎D v v deg( , )i j
deg v
deg v

( )
( )

i

j
, where deg* is the maximum degree in a given network, produces 

a regular disassortative network with the degree assortativity coefficient = − .r 0 28 (Fig. 5). Another example is 
the function α α= + −D v v D v v D v v( , ) ( , ) (1 ) ( , )i j E i j H i j , where DE(vi, vj) is the Euclidean distance between ver-
tices vi, vj and DH(vi, vj) is the hierarchical distance between these two vertices (we assume that vertices belong to 
disjoint classes and that there is a total ordering between classes). When applied to the Priority Rank model, such 
distance function produces complex hierarchical structures (Fig. 6). Networks created with various functions D 
have different topologies and different degree distributions.

The main advantage of these simple distance function definitions is the fact that they are easily interpretable. 
For instance, when modeling a network of disease spreading it is likely that disease vectors would infect vertices 

Figure 2.  Small-world network.

Figure 3.  Preferential attachment network.
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in their close physical proximity. Thus, a distance function based on the physical distance between vertices (which 
generates small-world structures) would be a sound choice for a simple model of disease spreading. In addition, 
if one would like to differentiate the probability of edge formation based on additional factors (e.g., the transfer 
of a sexually transmitted disease is more likely between vectors of similar age), the incorporation of this factor 
into the distance function would be trivial. Similarly, when trying to model semantic relationships between words 
embedded in multidimensional space (a standard tool in the contemporary NLP), it is reasonable to assume that 
the proximity of word embeddings is an indication of some semantic relatedness of the words. A simple way to 
model these relationships would be to use cosine distance to define the distance function D.

Let us now formally define the priority attachment mechanism and present the Priority Rank model. Further, 
we will use the following notation.

Figure 4.  Cosine similarity network.

Figure 5.  Disassortative network.
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•	 = 〈 〉G V E,  is a network with the set of n vertices = …V v v{ , , }n1  and the set of edges =E v v{( , ):i j
∈ ≠v v V i j, ; }i j

•	 ∀ ∈ = …v V v a a a: [ , , , ]i i i i i
m1 2 , vertices are vectors of attributes,

•	 × →D v v V V( , ):i j  is the generic distance function which computes the distance between vertices vi and 
vj, such that > ⇔ ≠D v v i j( , ) 0i j  and =D v v( , ) 0i i . Distance function D does not have to be symmetrical.

•	 = 〈 … 〉−R v v v, , ,i i i i
n1 2 1  is a permutation of V\{vi} representing the local ranking of vertices for the vertex vi

According to the priority attachment mechanism, the probability of selecting a vertex vj as the target vertex 
for an edge originating from the vertex vi is inversely proportional to the position of the vertex vj in the ranking of 
vertices for vi. The probability mass function of selecting the ith element of the ranking is given by

=
∑

=
=
−

−
P i

i H i
( ) 1 1 1

(1)k
n

k n1
1 1

1

where Hn is the nth harmonic number, serving as the normalizing constant so that Equation 1 presents a proper 
probability mass function, i.e., ∑ == P i( ) 1i

n
1 . We will use Euler’s formula to approximate the nth harmonic num-

ber as γ≈ + +H nln( )n n
1

2
, where γ is the Euler-Mascheroni constant, γ = .0 57722. Algorithm 1 presents the 

pseudo-code for generating networks using the Priority Rank model. Procedure …sample m P([1, , ], ) samples 
an integer from the range 〈 … 〉m1, ,  without replacement using the probability mass function from Equation 1. 
We assume a constant out-degree k of vertices, following examples of well-established generative models such as 
Watts-Strogatz small-world model3 or the Albert-Barabási preferential attachment model5. In principle, however, 
the number of edges each vertex creates can vary from vertex to vertex. When using the Priority Rank model to 
re-create empirical networks, one can sample the out-degree distribution of the empirical network to obtain a 
particular value of k for a given vertex.

In order to better illustrate the idea of priority attachment, let us consider an example of a simple network 
formation. Suppose that there are five people ..v v, ,1 5 described by name, age, and sex (see Table 1). Let us also 
assume that the distance function D is defined as in Equation 2. In other words, the social distance is defined in 
terms of the absolute difference of age, and the fact that two people share the same sex compensates for 10 years 
of age difference. In this example, people tend to form relationships with other people of similar age, and given 
two people of the same age, there is a preference to form relationships with people of the same sex. This model 
could be applicable, for instance, to the process of self-selecting students to form pairs in a large study group 
where the participants have no prior acquaintances. One possible instance of the network formation process 
driven by the priority attachment is presented in Fig. 7, assuming that each vertex always creates =k 2 outgoing 
edges. Individual priority rankings for each vertex, along with the value of the distance function and the proba-
bility of creating an edge to a vertex (computed using Equation 1), are presented in Table 2.

Figure 6.  Hierarchical network.
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=







| − | =

| − | +
D v v

v age v age v sex v sex
v age v age

( , )
[ ] [ ] , if [ ] [ ]
[ ] [ ] 10, otherwise (2)

i j
i j i j

i j

The process starts with Alice calculating her distance to all other vertices. The most similar vertex to Alice 
is Eve and she occupies the first position in the local ranking for Alice. Analogously, the most dissimilar vertex 
to Alice is Bob and he is placed at the end of the ranking. Inserting ranking positions into Equation 1 yields the 
final probabilities of selecting vertices as target vertices for newly created edges. For the sake of simplicity we have 
assumed that for each vertex the first two most probable targets have been randomly chosen while forming the 
network. If two or more vertices are equidistant from the given vertex, they receive the same position in the local 
ranking, which may contain gaps. As the result, probabilities of selecting vertices at certain positions of the local 
ranking may change (compare local rankings of Alice, Bob, and Cecil).

A visualization of the Priority Rank model mechanics is available at https://priorityattachment.ml.

Re-creating empirical networks.  Given an empirical network G, we are interested in finding the distance 
function D such that this distance function, when used inside the Priority Rank model, generates a network 
which is “similar” to the empirical network G. We find this functionality very useful, as it allows to generate 
whole families of networks. This, in turn, allows us to apply diffusion algorithms, social network analysis, or link 
prediction algorithms on several instances from the given network’s family. Note that simple random distortion 
of the original network is neither sufficient nor correct. For certain network topologies (e.g., for scale-free net-
works) random rewiring of a single edge can drastically change network characteristics. Likewise, a rewiring of 
a single edge can leave the network topologically identical to the original network, not allowing to test a given 
algorithm on a diversified population of networks. Our model enables us, to a certain degree, to discover the 
process underlying the network formation, and repeat this process many times, producing “similar” network 
instances generated using the same generative principle. We are, in fact, not interested in the exact re-creating of 
empirical networks, but rather in generating many similar networks which could be treated as instantiations of a 

Name Age Sex

v1 Alice 30 female

v2 Bob 40 male

v3 Cecil 25 male

v4 Diana 20 female

v5 Eve 35 female

Table 1.  Vertices of the toy network.

Figure 7.  Priority attachment process. Edges created at a given step, i.e., by a given person, are marked with 
solid lines.

https://doi.org/10.1038/s41598-019-40015-9
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single process. In the remainder of the paper, we use the term “to re-create a network” in this less strict sense, i.e. 
equivalent to “to generate a similar instance of the network”.

The problem of defining a robust and flexible measure of network similarity has been studied for many years 
and several network similarity measures have been proposed in the literature27,28. However, these measures tend 
to be computationally exhaustive and difficult to apply to really large networks. For this reason, we have decided 
to use a simple and well-understood network similarity measure. In order to measure the degree of network simi-
larity we compare the distributions of centrality measures using the Kolmogorov-Smirnov (K-S) non-parametric 
two-sample test of the equality of continuous one-dimensional distributions. The K-S test computes the maximal 
distance between cumulative distribution functions and provides rejection thresholds for the null hypothesis 
that the compared samples are drawn from the same distribution. The question remains, how to find the distance 
function D which produces networks that minimize the K-S statistic for centrality measure distributions.

Let δ(vi, vj) be the set of shortest paths between vertices vi and vj in the network G, and let δk(vi, vj) be the set of 
shortest paths between vertices vi and vj which pass through vertex vk. Finally, let Δ(vi, vj) denote the length of the 
shortest path between vertices vi and vj. A centrality measure is a function →V:  which assigns to each vertex 
a value representing the “importance” of the vertex in the network G. Four the most popular centrality measures 
include29:

•	 degree centrality =C v d v( ) ( )D i i  simply measures the number of vertices adjacent to the vertex vi. The assump-
tion here is that a vertex is important if it is directly connected to many vertices in the network.

•	 betweenness centrality δ= ∑ | |≠C v v v( ) ( , )B i j k i i j k,  measures the number of shortest paths between any pair of 
vertices which pass through vertex vi. This interpretation of importance highlights the influence of a vertex on 
communication pathways through the network.

•	 closeness centrality = ∑ Δ
| |

C v v v( ) ( , )C i V j i j
1  measures the average distance from the vertex vi to all other verti-

ces in the network. According to this definition, a vertex is important if it can quickly communicate with all 
remaining vertices in the network.

•	 page rank centrality α= ∑ + α
∈

−C v( )P i j v v E
C v

d v n:( , )
( )

( )
1

j i

P j

j
 measures the importance of a vertex as a recursive 

sum of importances of vertices adjacent to vi. According to this definition, a vertex is important if it connects 
to other important vertices in the network.

Sometimes it is possible to “guess” the distance function D given the description of the empirical network. 
Table 3 presents a list of simple distance functions that can be used when re-creating empirical networks. Some of 
these distance functions are self-explanatory (like degree, betweenness, closeness, and page rank distances which 

Rank Name Dist Prob

Alice

 1 Eve 5 48%

 2 Diane 10 24%

 3 Cecil 15 16%

 4 Bob 20 12%

Bob

 1 Cecil 15 39%

 1 Eve 15 39%

 3 Alice 20 13%

 4 Diane 30 9%

Cecil

 1 Alice 15 31%

 1 Bob 15 31%

 1 Diane 15 31%

 4 Eve 20 7%

Diane

 1 Alice 10 45%

 2 Cecil 15 22%

 2 Eve 15 22%

 4 Bob 30 11%

Eve

 1 Alice 5 45%

 2 Bob 15 22%

 2 Diane 15 22%

 4 Cecil 20 11%

Table 2.  Priority attachment local rankings with distances and vertex selection probabilities.

https://doi.org/10.1038/s41598-019-40015-9
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are simply the expressions of preferential attachment to vertices with high values of these centrality measures). If 
the empirical network consists of vertices with attributes, euclidean distance can be used to generate local rank-
ings of vertex priority. For the sake of simplicity we include only one- and two-dimensional euclidean distance. 
If vertices are described by numerical vectors, cosine distance can be utilized. The aggregate distance computes 
the distance on each pair of attribute values of compared vertices vi, vj, and then applies weights wk to distances 
computed on each attribute.

However, in most cases it is impossible to approximate the generative process of a network using a single, 
simple distance function. Given an empirical network, it is often precisely the aim of a researcher to deduce the 
guiding generative principle of a network. The main advantage of the Priority Rank model is its ability to derive 
the proper distance function D from the existing network, which, if applied to the model, would generate the 
network most similar to the original one. The learning task can be defined as follows. Consider a network 

= 〈 〉G V E, , and in particular, consider an edge ∈v v E( , )i j . For the Priority Rank model to re-generate this edge, 
it is expected the distance D(vi, vj) to be minimized, and at the same time, the distance D(vi, vk) should be maxi-
mized ∀ ∉v v v E: ( , )k i k . The network G provides the training data for a machine learning algorithm under the 
form of the adjacency matrix, which can be interpreted as a function:

× → =





∈
A V V A v v

v v E
: {0, 1}: ( , )

1, if ( , )
0, otherwisei j

i j

The positive cases in the training set consist of tuples … …v v v v( , , , , , )i i
m

j j
m1 1  for all pairs of vertices (vi, vj), 

which are adjacent in G, and the negative cases consist of tuples … …v v v v( , , , , , )i i
m

k k
m1 1  for all pairs of vertices (vi, 

vk) which are not adjacent in G. The training set can be fed into a classification algorithm, such as logistic regres-
sion, naive Bayes classifier, or SVM, to find patterns in vertex attribute co-occurrences which influence the prob-
ability of edge’s presence or absence. The model resulting from a classification algorithm can be interpreted as a 
condensed representation of the underlying principle of network formation. The last two distance functions pre-
sented in Table 3 represent the learning procedure. The linear regression distance uses the least-squares method 
to fit the linear regression equation to the training set, and the naive Bayes classifier distance uses the well-known 
naive Bayes classifier to predict the probability of existence of an edge between two vertices.

Results
The main result reported in this paper is the development of the attachment priority mechanism. In this section, 
we present the outcomes of conducted experiments. Their aim was to verify whether the priority attachment 
mechanism is capable of explaining the underlying network formation process. We have used four popular gen-
erative network models to produce synthetic networks, and we have collected 18 empirical networks from various 
domains to test the ability of the priority attachment to re-create these networks. The experimental protocol was 
as follows. Since we cannot guess which distance function will be able to best reproduce a given G, we have 
applied all distance functions presented in Table 3. Then, for the best three distance functions we have run the 
generation process 20 times, aggregating the results afterwards. Of course, most of the distance functions require 
values of attributes describing vertices. These values were not always available, for instance, in the case of syn-
thetic networks generated from theoretical network models. In such cases, we have created synthetic attributes for 
each vertex, generating four attributes: one ordinal, one categorical, two continuous. These attributes were gener-
ated from four different distributions: normal, uniform, log-normal, and the exponential distribution. For empir-
ical networks, we have generated synthetic attributes only when no vertex attributes were present in the data, 
otherwise we have used only the real features of vertices. To compare synthetic and empirical networks with 
networks generated by the Priority Rank model we have used a set of metrics presented in Table 4. The conformity 

Name Formulation

random distance µ σ∼D v v N( , ) ( , )i j

degree distance =
ε+

D v v( , )i j CD vj

1
( )

betweenness distance =
ε+

D v v( , )i j CB vj

1
( )

closeness distance =
ε+

D v v( , )i j CC vj

1
( )

page rank distance =
ε+

D v v( , )i j CP vj

1
( )

euclidean 1-D distance = | − |D v v a a( , )i j i j
1 1

euclidean 2-D distance = − + −D v v a a a a( , ) ( ) ( )i j i j i j
1 1 2 2 2 2

cosine distance = −
⋅



D v v( , ) 1i j
vi vj

vi vj

aggregate distance = ∑ =D v v w D a a( , ) ( , )i j k
m

k i
k

j
k

1

linear regression distance β=D v v W( , )i j ij , 
ε= … …W a a a a( , , , , , , )ij i i

p
j j

p1 1

naive bayes classifier distance =
ε

= |

= | +
D v v( , )i j

P C Wij
P C Wij

( 1 )

( 0 )

Table 3.  Distance functions considered in the paper.
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of centrality measure distributions is measured using the Kolmogorov-Smirnov two sample test. Recall that the 
null hypothesis of two sample K-S tests states that the compared samples are drawn from the same distribution. 
We reject the null hypothesis for p-values less than the significance level α = .0 05. Traditionally, p-value can be 
interpreted as the probability of incorrect rejection of the null hypothesis given the evidence. In our case, we ask 
the opposite question, i.e., we are interested in cases where the null hypothesis cannot be rejected. However, in 
this case the p-value looses its natural interpretation in the probability space.

Networks with simple generative processes.  Before presenting the results obtained on various syn-
thetic and empirical networks, we want to make the following note. Priority Rank model assumes that there is an 
underlying process of network formation, which can be discovered using the priority attachment mechanism. 
Obviously, if there is no such process, or if the process is too “messy” or too complex to produce a clear signal for 
the formation of the network topology, Priority Rank will not be able to re-create the network. Our conjecture is 
that Priority Rank can be regarded as a testing mechanism for the presence, strength and consistency of the net-
work formation process. Consider three networks −N N1 3 presented in Fig. 8. Each of them consists of either 

=n 100 or =n 1000 vertices, each vertex is responsible for the creation of =m 4 edges. All vertices have two 
numerical attributes X, Y drawn randomly from the uniform distribution in the range [0, 1]. One may regard 
these attributes as vertex coordinates, as used on the visualization in Fig. 8. After creating the edges, all networks 
are simplified: reciprocal edges are merged and the direction of edges is dropped, transforming networks into 
undirected graphs. When trying to re-create networks, we have used the Euclidean 2-D distance function pre-
sented in Table 3.

All three networks are generated using very simple processes which are based on the Euclidean distance 
between vertices:

•	 N1: each vertex selects its m-nearest neighbors and creates edges to them,
•	 N2: each vertex selects its =k 10 nearest neighbors and randomly draws m of them to which it creates edges,
•	 N3: each vertex selects its m

2
 nearest and m

2
 farthest neighbors and creates edges to them.

The first network is generated by a straightforward deterministic process of nearest neighbors selection. In the 
case of the second network, the process remains basically the same, but the two-tier selection introduces some 
non-trivial noise to the process output. Finally, although the third network is also generated based on vertex 
distances, the non-linearity introduced by the process (selecting at the same time the nearest and the farthest 
vertices) obfuscates the output of the process. We hypothesize that the Priority Rank model should successfully 
re-generate networks N1 and N2, but it should be inherently incapable of recreating network N3. Experimental 
evaluation fully confirms our suspicions. As can be seen in Table 5, the first two networks are re-created correctly, 
albeit with the partial exception of the closeness centrality distribution. When trying to re-create network N3, 
Priority Rank fails to find a suitable ranking of vertices for obvious reasons. In this network vertices explicitly 
choose their targets simultaneously from the head and tail of the distance-based ranking. The results are exacer-
bated when the greater network (N3 large) is considered. The Priority Rank tries to use the Euclidean distance, 
producing a small-world network as the result, which can be seen in the much larger values of the diameter and 

Symbol Meaning

pD p-value of the Kolmogorov-Smirnov test comparing the degree distributions of two networks

pB p-value of the Kolmogorov-Smirnov test comparing the betweenness distributions of two networks

pC p-value of the Kolmogorov-Smirnov test comparing the closeness distributions of two networks

d network diameter: the length of the longest shortest path in the network

ρ network density: the ratio of the number of existing edges to the maximum number of possible edges

L the average length of the shortest paths in the network

ρCD
2 Freeman’s centralization of the degree distribution of the network

Table 4.  Metrics used to compare networks.

Algorithm 1.  Priority Rank generative network model.
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average path length. For networks N1 and N2, the appropriate measures do not change with the increasing size of 
the network by an order of magnitude. Far from being a definitive proof, above results suggest that if a network 
has an underlying well-defined generative process, our model combined with the priority attachment mechanism 
is likely to discover this process. However, if the original process cannot be represented by means of considered 
simple distance functions, priority attachment approach fails.

Figure 8.  Networks with 100 nodes created by simple generative processes, and their node degree distributions. 
The processes: N1 − 4 nearest neighbors, N2 − 4 out of 10 nearest neighbors, N3 − 2 nearest and 2 farthest 
neighbors.

Network pD pB pC |V| |E| d ρ L ρCD
2

Network/Closest 
function

N1 small 1.00 0.11 0.05 100 300
14.00 0.03 4.32 0.02 original network

14.00 0.03 4.60 0.02 euclidean distance

N1 large 1.00 0.13 0.00 1000 3996
67.00 0.00 28.11 0.00 original network

76.00 0.00 26.99 0.00 euclidean distance

N2 small 1.00 0.81 0.00 100 362
16.00 0.04 5.79 0.02 original

15.00 0.04 6.25 0.03 euclidean distance

N2 large 0.43 0.18 0.00 1000 4000
38.00 0.00 15.13 0.00 original network

50.00 0.00 17.14 0.00 euclidean distance

N3 small 0.00 0.11 0.00 100 200
6.00 0.02 2.25 0.12 original network

7.00 0.02 2.14 0.02 euclidean distance

N3 large 0.00 0.00 0.00 1000 3996
19.00 0.00 3.95 0.13 original

119.00 0.00 38.99 0.00 euclidean distance

Table 5.  Re-creation of process generated networks. Instances where the null hypothesis (samples drawn from 
single distribution) cannot be rejected are marked with bold font, as well as scalar network descriptors such as 
diameter d or density ρ that are regenerated within ±10% margin of the original value. Metrics are described in 
Table 4.
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Synthetic networks.  We have tested the ability of the Priority Rank model to re-create networks using both 
synthetic networks obtained from the theoretical network models, and empirical networks representing various 
domains. Generative network models used in our experiments include the following:

•	 Erdös-Rényi random model2: an empty network with =n 50 vertices is created, and then, for each pair of 
vertices an edge is formed with the probability = .p 0 4.

•	 Watts-Strogatz small world model3: initially, =n 50 vertices are connected in a ring topology, with each vertex 
connecting to its =k 3 neighbors, and then, each edge is randomly rewired with the probability = .p 0 01.

•	 Albert-Barabási scale free model5: initial topology of the network consists of n0 vertices forming a complete 
graph Kn0

, remaining vertices are added to the network sequentially until the desired number =n 50 of ver-
tices is reached, and each newly added vertex creates =k 3 edges to existing vertices, choosing target vertices 
with the probability proportional to their degrees, hence the alternative name of the model: preferential 
attachment model. The regular, linear preferential attachment is achieved for α = 1.

•	 Leskovec forest fire model8: vertices are added sequentially to the network, each out of =n 50 new vertex pro-
vides k edges to uniformly selected targets, and then adds more edges to direct neighbors of selected targets 
with the burning probability = .p 0 3, upon successful creation of a new edge the process continues recur-
sively. The model produces networks of low density and relatively large diameter, but with average shortest 
path lengths significantly lower than in the case of small world networks.

•	 Dorogovtsev-Goltsev-Mendes hierarchical model30: initially, the network consists of a single edge connecting 
two vertices, and in each step of the network growth an edge produces a new vertex which is immediately 
attached to both ends of the edge. Although the resulting network is not strictly a fractal, it has a strong hier-
archical structure with power law distributions of vertex degree and local clustering coefficient. In addition, 
the network contains multiple loops and is far from a trivial tree-like structure.

•	 Disassortative model: an empty network with =n 100 vertices is created and the following procedure is itera-
tively repeated. Vertices are ordered by their identifiers, the first 10 vertices create between 30 and 40 edges to 
randomly selected vertices from the range 〈 〉50, 100 , vertices from the range 〈 〉10, 50  create up to 15 edges to 
random vertices, and vertices from the range 〈 〉51, 100  create between 0 and 2 edges to random vertices. After 
each iteration self-loops and multiple edges are removed. The procedure continues until the degree assorta-
tivity coefficient falls below −0.4; this particular threshold has been set arbitrarily.

Synthetic network statistics and the corresponding statistics of networks generated by the Priority Rank model 
are shown in Table 6. For distributions of degree, betweenness, and closeness, a standard two sample 
Kolmogorov-Smirnov test at level α = .0 05 has been performed and cases when the null hypothesis cannot be 
rejected are marked with boldface, i.e., the null hypothesis states that the compared samples come from the same 
distribution. Please note, however, that even if the re-created value does not fulfill this condition, it is rarely sig-
nificantly different from the original since the original network descriptor is very small.

Erdös-Rényi random network.  The Priority Rank model is able to re-create Erdös-Rényi random network very 
well. As can be seen in Table 6, the network generated by the Priority Rank model reproduces all three centrality 
distributions of degree, betweenness, and closeness. It also retains the average shortest path length, and Freeman’s 
centralization of degree distribution. The only network statistic which is not duplicated is diameter. Overall, edges 

Network pD pB pC |V| |E| d ρ L ρCD
2

Network/Closest 
function

random 0.52 0.84 0.78 50 1007
2.00 0.40 1.59 0.11 original network

2.17 0.42 1.59 0.12 random distance

small world 0.01 0.05 0.05 50 150
11.00 0.06 4.54 0.01 original network

14.33 0.06 4.84 0.05 euclidean distance

scale free 0.37 0.08 0.05 50 144
3.00 0.06 1.53 0.25 original network

4.18 0.06 1.83 0.38 linear regression 
distance

forest fire 0.10 0.60 0.20 50 93
7.00 0.04 2.16 0.07 original network

7.09 0.05 2.37 0.08 euclidean distance

hierarchical 0.11 0.71 0.00 123 246
5.00 0.02 1.70 0.12 original network

6.00 0.02 2.08 0.16 degree distance

disassortative 0.28 0.37 0.00 100 510
8.00 0.05 2.85 0.11 original network

7.00 0.05 2.88 0.25 degree distance

Table 6.  Re-creation of synthetic networks. Instances where the null hypothesis (samples drawn from single 
distribution) cannot be rejected are marked with bold font, as well as scalar network descriptors such as 
diameter d or density ρ that are regenerated within ±10% margin of the original value. Metrics used to compare 
original networks and generated by Priority Rank model are in Table 4. The best fitting distance function was 
selected out of all enumerated in Table 3.
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are created randomly in the Erdös-Rényi model, so random distance function works very well because vertices 
have no preference for other vertices.

Watts-Strogatz small world network.  The initial topology of the ring is formed in one dimension. None of the 
considered distance functions was able to re-create the degree distribution, although the euclidean distance func-
tion managed to generate networks with similar betweenness and closeness distributions. The standard deviation 
of the K-S statistic is quite large, which weakens the result. The euclidean distance function used two synthetic 
attributes generated from exponential and normal distributions. The failure to re-generate the degree distribution 
is caused by the fact that Priority Rank does not have anything akin to random edge re-wiring, which is essential 
for the small-world model. The ring structure can be very easily reproduced. However, the presence of a few 
randomly re-wired edges, which reduce average path lengths in the network, is very difficult to mimic using any 
distance function. Apart from this deficiency, the Priority Rank model generates networks, which are very similar 
to the original small world network in terms of network diameter, density, and average shortest path lengths, these 
characteristics are re-created almost flawlessly.

As a matter of fact, Priority Rank is capable of producing small world networks. The main issue is with repro-
ducing the topology of a particular implementation of the Watts-Strogatz model. The original Watts-Strogatz 
model places all vertices on the circumference of a circle and attaches neighboring nodes. Thus, the proximity of 
vertices is defined by the Euclidean distance in two dimensions, with vertices artificially placed on a circle. This is 
a highly contrived scenario which bares little resemblance to any practical application of the model. On the other 
hand, we have assumed in our experiment that each vertex has a single numerical attribute. The proximity of 
vertices is defined by the one dimensional distance in the space of this attribute. For instance, one can interpret 
this attribute as yearly income. The distance function reflects the tendency of people to socialize within levels of 
financial hierarchy. Another example could be the tendency of people to form social ties with people of similar 
age, i.e., age is the attribute. Any scenario when the social network is driven by strong homophily can be modeled 
using our distance function, provided that the driver of homophily can be expressed by a single numerical attrib-
ute. For =n 100 vertices, neighborhood size of =m 4 and the probability of random edge rewiring =p 5% the 
Priority Rank model produces the network with the global clustering coefficient (also known as transitivity) of 

= .gcc 0 41. The native function igraph::sample_smallworld() from the igraph\R package with the same parame-
ters delivers a network with = .gcc 0 47. It is, in turn, far away from the network produced by Priority Rank using 
another degree distance function (the output network is scale free): = .gcc 0 10 as well as from the network pro-
vided by the random distance function (that mimics the Erdös-Rényi network): = .gcc 0 06. In our opinion, the 
Priority Rank model still produces valid small world networks defined as networks, which have disproportion-
ately large global clustering coefficient and relatively small average shortest path length.

Albert-Barabási scale free network.  Priority Rank successfully re-creates degree and betweenness distributions, 
while struggling to preserve the distribution of the closeness centrality (the linear regression distance function 
barely manages to pass the K-S test). The Priority Rank model also builds networks with larger diameters than the 
original network, but the density and the centralization of the degree distribution are very close to original values. 
We also note that the networks generated based on Priority Rank, in which average shortest paths are slightly 
longer than in the original Albert-Barabási model. Nevertheless, we conclude that synthetic scale-free networks 
can be mimicked by the Priority Rank model sufficiently.

Leskovec forest fire network.  The Priority Rank model can re-create forest fire networks very precisely. The best 
results are obtained when using euclidean distance based on one attribute with values drawn randomly from 
the normal distribution. Such distance function delivers networks with similar centrality measure distributions 
(degree, betweenness, closeness), and with very similar diameter, density, average shortest path lengths and 
degree distribution.

Dorogovtsev-Goltsev-Mendes hierarchical network.  The Priority Rank model is capable of successful generating 
hierarchical network structures, such as pseudo-fractal topologies of the Dorogovtsev-Goltsev-Mendes network. 
The only centrality measure that has not been reproduced is the closeness. Network density is reproduced exactly 
whereas the remaining descriptors are rather close to their original values.

Disassortative network.  As can be expected, the degree distance function was the best choice for re-creating 
disassortative networks. Distributions of degree and betweenness are re-created very well together with density 
and the average shortest path length. The diameter of the network is almost reproduced, and the only network 
descriptor which significantly differs from the original is Freeman’s degree centralization.

Overall, the Priority Rank model can easily mimic synthetic networks produced by popular network genera-
tive models. A simple substitution of the distance function allows the Priority Rank model to produce instances 
of random networks, small world, scale-free, forest fire, hierarchical, and disassortative networks. In addition, one 
can easily introduce different variations of these generative models by modifying the distance function used to 
compute local priority rankings. This flexibility and ability to generalize multiple models is a unique and practical 
feature of the Priority Rank model.

Empirical networks.  Apart from popular generative network models, the Priority Rank model can generate 
networks with topologies not available through traditional models if provided with a suitable custom distance 
function. However, the most interesting and valuable property of the Priority Rank model is its ability to learn 
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the generative processes of empirical networks and to generate multiple instances of these networks. The exper-
imental evaluation of this feature is carried out on networks listed in Table 7 and in the Supplementary Material. 
They are provided by The Colorado Index of Complex Networks31 and The Network Repository32. Metrics used 
to compare empirical networks and networks generated by the Priority Rank model are presented in Table 4. 
Statistics of original networks along with corresponding ones for the networks generated by Priority Rank are 
shown in Table 8.

•	 American bisons: The Priority Rank model correctly captures the underlying network structure and can 
re-create the network to a sufficient extent. All centrality measure distributions are retained in the gener-
ated networks, and these networks exhibit densities, and average shortest path lengths similar to the original 
network. The Priority Rank model slightly underestimates the diameter and the centralization of the degree 
distribution. Since the original network resembles the Erdös-Rényi random network, no wonder that the 
random distance best matches recreation process. Since Priority Rank is capable of re-creating the American 
bison network, this means that one could generate multiple instances of this network and belief that the gen-
erated instances reflect the same principle guiding the formation of the original network. These new networks 
could be interpreted as observations of another herd of bisons, or snapshots of the same group for different 
periods. This may be very useful for simulation purposes while analyzing transmission of a disease between 
individual animals living in the wild. Network instances generated with Priority Rank could be used as mul-
tiple alternative scenarios.

•	 Bighorn sheep: The Priority Rank model very convincingly re-creates the topology of the original network 
maintaining distributions of all centrality measures, density and the average shortest path lengths. The gen-
erated networks have slightly smaller diameters than the original one, and the reciprocity is over-estimated. 
This experiment, however, supports our general claim that the Priority Rank model can discover the latent 
generative principle of an empirical network. The page rank distance aggregates the importance of all animals 
in the herd. Intuitively page rank reflects the true importance of animals given the history of dominance 
relationships. For the sake of brevity, we report only on the best fitting distance function for each network. 
Nevertheless, we have analyzed several different distance functions for each network. In this case, very sim-
ilar results were obtained for two distance functions, which both made use of the age attribute. Naive Bayes 
classifier distance and linear regression distance functions are machine learning algorithms which map the 
relationship between two animals’ ages onto the probability of the existence of the dominance relationship 
between these animals. These two distance functions were close competitors of the page rank distance func-
tion. Thus, the interpretation of these distance functions allows us to extract a general principle of this par-
ticular network formation.

•	 C. elegans: The Priority Rank model generates networks which are very similar in terms of degree and 
betweenness distributions to the C. elegans network, but we were unable to re-create a similar distribution 
of the closeness centrality measure (this could be due to a large number of vertices in the network). Also the 
distance, the density and the average path lengths are faithfully re-created with Priority Rank. One missing 
characteristic of the original network is the reciprocity. Our model cannot capture this feature using the close-
ness distance function. We note, however, that adding reciprocity to the distance function is straightforward. 
It is sufficient to include a component that would diminish the estimated distance between vertices vi and vj, 
if an edge (vj, vi) is already present in the network.

Type Name Description

biol-chem

american bison Dominance relations among a group of American bison bulls

bighorn sheep Dominance interactions among a group of female bighorn sheep

C. elegans Neural connections of the C. elegans nematode

mouse visual cortex Neuron interactions in the mouse primary visual cortex

enzyme 108 Enzyme interaction network

cage5 Cage model of DNA electrophoresis

social

political books Co-purchase of books about U.S. politics on Amazon

primary school Contacts among students and teachers at a primary school in Lyon

vickers 7th graders Friendships among seventh grade students in Victoria, Australia

freeman researchers E-mail messages exchanged between researchers

terrorists Social associations of 9/11 hijackers

karate club Friendships among members of a university karate club

illinois high school Friendships among male students in a small high school in Illinois

marseille high school Contacts among students in a high school in Marseilles

misc

CAG Integer matrices used in characteristic polynomials computations

power network Symmetric structure of the standard test of the power system network

football Foosball player contracts between countries

st. marks ecosystem Carbon-flow among species in St. Marks National Wildlife Refuge

Table 7.  Empirical networks used in the experiments.
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•	 Mouse visual cortex: This small network is very difficult to re-create, most probably due to the fact that its 
generative process may be complex. Unfortunately, the source network does not contain any additional attrib-
utes and we have to rely only on topological features of the network. In this case, the best result is obtained for 
the page rank distance which creates networks similar to the scale free model. The Priority Rank model is able 
to produce networks with very similar degree and betweenness distributions.

•	 Enzyme 108: The Priority Rank model using euclidean distance can re-generate all centrality measure distri-
butions and obtain very similar values of diameter, density, and the average shortest paths length. The euclid-
ean distance measure uses two synthetic attributes drawn from the uniform distribution. A distance function 
tends to produce networks similar to the small world model, and the enzyme 108 network definitely belongs 
to this network family. This small-worldliness of enzyme 108 is best manifested in the density and the aver-
age shortest path length, which are the largest among all analyzed networks. Interestingly, although Priority 
Rank had problems re-creating the synthetic small-world network, it manages to approximate the real world 
example of a small-world network very faithfully. Look at Illinois high school to see the same Priority Rank 
behavior. This might indicate that the original small-world model proposed by Watts and Strogatz over-sim-
plifies the reality and the priority attachment based on the similarity of attributes is a better representation of 
real network formation phenomena.

•	 Cage5: The degree distance function reproduces distributions of degree and betweenness, but cannot re-cre-
ate the original distribution of the closeness centrality. As for the topology of the generated network, the 

Network pD pB pC |V| |E| d ρ L r ρCD
2 Network/Closest function

american bisons 0.23 0.27 0.67 26 313
4 0.46 1.57 0.59 0.31 original network

3 0.44 1.59 0.42 0.19 random distance

bighorn sheep 0.33 0.68 0.17 28 250
5 0.32 1.90 0.12 0.16 original network

4 0.34 1.86 0.31 0.31 page rank distance

C. elegans 0.35 0.35 0.00 279 2993
7 0.04 2.88 0.47 0.21 original network

7 0.04 2.83 0.04 0.13 closeness distance

mouse visual cortex 0.95 0.95 0.00 29 44
2 0.05 1.08 0.00 0.11 original network

4 0.06 1.76 0.12 0.18 page rank distance

enzyme 108 0.05 0.54 0.24 38 164
15 0.22 5.85 1.00 0.10 original network

14 0.26 5.39 0.58 0.06 euclidean distance

cage5 0.77 0.89 0.00 72 940
6 0.18 2.22 0.56 0.31 original network

7 0.18 2.10 0.23 0.40 degree distance

political books 0.31 0.73 0.00 105 441
8 0.04 2.92 0.00 0.08 original network

7 0.04 3.00 0.14 0.12 euclidean distance

primary school 0.81 0.00 0.00 242 8317
4 0.29 1.77 0.00 0.14 original network

4 0.30 2.03 0.30 0.22 euclidean distance

vickers 7th graders 0.78 0.78 0.37 29 376
3 0.45 1.60 0.67 0.32 original network

3 0.48 1.59 0.42 0.32 closeness distance

freeman researchers 0.83 0.09 0.96 32 460
3 0.45 1.56 0.79 0.55 original network

3 0.45 1.58 0.51 0.52 betweenness distance

terrorists 0.68 0.82 0.00 62 304
5 0.16 2.95 1.00 0.28 original network

8 0.14 2.84 0.07 0.28 degree distance

karate club 0.86 0.06 0.00 34 78
3 0.13 1.27 0.00 0.19 original network

4 0.14 1.68 0.04 0.19 closeness distance

illinois high school 0.53 0.61 0.06 70 336
12 0.07 3.97 0.50 0.09 original network

11 0.08 3.91 0.35 0.06 aggregate distance

marseille high school 0.10 0.02 0.00 126 1710
6 0.11 2.03 0.00 0.11 original network

6 0.11 2.40 0.10 0.31 linear regression distance

CAG 0.89 0.09 0.00 72 940
6 0.18 2.22 0.56 0.31 original network

7 0.11 2.55 0.12 0.23 betweenness distance

power network 0.75 0.91 0.09 39 46
11 0.06 4.39 0.00 0.04 original network

13 0.08 4.77 0.00 0.03 random distance

football 0.98 0.32 0.00 35 118
3 0.10 1.30 0.00 0.19 original network

4 0.11 1.88 0.13 0.31 degree distance

st. marks ecosystem 0.89 0.09 0.00 54 353
7 0.12 2.87 0.02 0.34 original network

7 0.11 2.55 0.12 0.23 betweenness distance

Table 8.  Re-creation of empirical networks from Table 7. Instances where the null hypothesis (samples drawn 
from single distribution) cannot be rejected are marked with bold font, as well as scalar network descriptors 
such as diameter d or density ρ that are regenerated within ±10% margin of the original value. Table 4 contains 
metrics used. The considered distance functions are in Table 3.
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Priority Rank model generates very similar networks in terms of diameter, density, average shortest path 
length and degree centralization. Our model underestimates the reciprocity of the network, most probably 
due to the fact that the degree distance function alone cannot account for the increased probability of recip-
rocal relationships.

•	 Political books: This network is easily re-created with the Priority Rank model using the euclidean distance 
function based on a single discrete attribute, which reduces the function to a simple binary flag comparison. 
This result agrees very well with our intuition. One can interpret the synthetic discrete attribute as an indica-
tor of a broad book category, and two books are purchased together if they belong to the same category. The 
Priority Rank model re-creates degree and betweenness distributions, but fails to retain the original distri-
bution of closeness. Also the diameter, the density, the average shortest path length, and the centralization of 
degree are very similar to the original network. The difference in the reciprocity estimation results from lack 
of direction of edges in the original network. The Priority Rank model produces inherently directed networks. 
This example illustrates well the ability of the Priority Rank model to discover the latent process of network 
formation and provide simple, interpretable explanations of the underlying network structure.

•	 Primary school: The main challenge that this network poses is the density of social interactions and very 
short average shortest path lengths. The Priority Rank model re-creates this network reasonably well using 
the euclidean distance function on a single discrete attribute. Similarly to the political books network, a sim-
ple comparison of a discrete attribute is sufficient to produce a good approximation of the original network. 
Although the Priority Rank model cannot reproduce original distributions of betweenness and centrality, the 
degree distribution is very well preserved. The remaining topological characteristics of the network are also 
retained, except for the reciprocity — for the same reasons as for political books network. The interpretation of 
the distance function is similar to the political books network, namely, the discrete attribute serves as a label of 
a coherent social group and students have a strong preference to create relationships within the social group 
they belong to.

•	 Vickers 7th graders: The Priority Rank model re-creates this network perfectly using the closeness distance, 
where the closeness of the vertex is computed on incoming edges. With the exception of the reciprocity 
(slightly underestimated), all the remaining network profile is re-created precisely. One reason for this result 
is the fact that multiple types of edges have been flattened to a single layer in the original network, making 
the guessing of edge existence a bit easier. Incoming closeness seems to be a very reasonable explanation for 
edge presence. Popular students who have been nominated by many peers have indeed high value of inbound 
closeness centrality. Using this measure to generate ranking lists in the Priority Rank model yields good 
approximations of the original network. Again, we see how the Priority Rank model provides a simple and 
interpretable explanation of the latent network generation process.

•	 Freeman researchers: An interesting feature of this network is the fact that it represents communication pat-
terns in the pre-internet era. As expected, the network is characterized by very high reciprocity, low diameter 
and average shortest path length. The best distance function uses betweenness centrality. Our model not only 
re-generates identical distributions of centrality measures, but also captures all the remaining network statis-
tics. Again, only the reciprocity has not been matched, due to the fact that the betweenness distance function 
is not capable of taking the existence of an edge into consideration. Since the network represents the flow 
of communication between people, it is not surprising that the best distance function uses the betweenness 
centrality. It ranks network vertices according to their impact on the communication pathways through the 
network. We find this result to be a strong indication that the Priority Rank model really can provide a viable 
explanation for the phenomenon driving the network formation.

•	 9/11 terrorists: Similarly to the network of researchers discussed above, the Priority Rank model re-creates 
the 9/11 terrorists network precisely. Although the distribution of closeness centrality is not preserved, the 
remaining network characteristics are almost identical to the original network. The choice of the distance 
function is also obvious. The network has been gathered post hoc in a way to outline the associations of a 
selected group of terrorists, and, as the result, these terrorists possess prominent degrees in the network. 
Again, the interpretation of the distance function is straightforward and the result supports our claim about 
the explanatory power of the Priority Rank model.

•	 Karate club: Priority Rank is capable of re-creating the structures of the original network, with the notable 
exception of the closeness distribution and the overestimated average shortest path length. The best distance 
function and perfect network explanation is the closeness distance. Recall that the network represents social 
contacts within the karate club community at a university. The community has split in half due to a conflict 
between the two principal members, the administrator and instructor. Almost all of the members of the orig-
inal club have links to one of the leaders of the club. Thus, one may conclude that the members had a strong 
preference to prioritize social contacts to these leaders, who are the two vertices with the shortest average 
paths to all the remaining vertices.

•	 Illinois high school: The most distinguishing feature of this network is its very large diameter and relatively 
high average shortest path length. Theoretically, this network tends to follow the small world network model 
of Watts and Strogatz. The Priority Rank model re-generates this network almost perfectly, retaining the dis-
tributions of centrality measures and all other network descriptors. As expected, the best fitting is obtained 
for the aggregate distance function. This function compares the values of two attributes randomly drawn 
from the normal distribution. As a result, vertices with many similar attribute values tend to form com-
munities (small worlds), with very few edges interconnecting these communities, hence the large network 
diameter. One may conclude that the evolution of these types of small world networks is primarily driven by 
the homogeneity of vertices constituting communities. We find it surprising that the Priority Rank model 
struggled to re-create the synthetic small world network, whereas it re-creates real world examples of small 
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world networks very convincingly. In our opinion, this indicates that the assumptions behind the small world 
model of Watts and Strogatz are not fully supported by empirical networks.

•	 Marseille high school: Surprisingly, the Priority Rank model has struggled to reconstruct this network, not 
being able to re-create distributions of betweenness and closeness. However, despite the problem with retain-
ing the original centrality measure distributions, the networks generated by Priority Rank are very similar 
w.r.t. the remaining network characteristics. The best distance function is linear regression, which indicates 
that the attributes of vertices (class, sex) are crucial for inferring the existence of relationships. This is even 
more encouraging than previous examples where networks have been re-created using synthetic attributes. 
The linear regression distance function can be easily interpreted. It even provides quantitative estimations of 
the latent network generative process by means of regression coefficients.

•	 CAG: The main focus of this experiment was to check whether Priority Rank is capable of capturing the gen-
erative process of highly atypical network induced by integer matrices used in computations of characteristic 
polynomials. Our model re-creates degree and betweenness distributions, as well as most of the descriptors of 
the original network, except reciprocity. Since the best fitting function is the degree distance, we are tempted 
to conclude that the CAG network is generated primarily by the preferential attachment mechanism.

•	 Power network: This dataset representing the structure of power stations connections is challenging due to its 
very low density, large diameter and lack of degree centralization. Despite this, the Priority Rank model suc-
cessfully reproduces the network, preserving all the distributions and measures. The best results are obtained 
for the random distance function, suggesting a haphazard setup of the network.

•	 Football: Priority Rank produces networks very similar to the original network, with slightly over-estimated 
average shortest path length and degree centralization. The former is probably caused by the greater diam-
eters than the original network. As expected, the best fitting function is the degree distance. It reflects the 
socio-economic reality of the process underlying the network formation: poorer countries are exporting best 
players to a few countries where very wealthy football clubs reside. Here we can see that the Priority Rank 
model provides an interpretation of the latent network formation mechanism, even if the mechanism involves 
complex socio-economical processes.

•	 St. Marks ecosystem: In this experiment, we were particularly interested in discovering the underlying gen-
erative process of network formation. We can see that the Priority Rank model re-generates this network very 
accurately, preserving distributions of degree and betweenness and producing very similar diameters, densi-
ties, and average shortest path lengths. The betweenness distance turned out to be the best function. It is not 
surprising given the fact that the network focuses on modeling flows within the ecosystem. Again, we believe 
that the Priority Rank model discovers the main generative process of this network formation.

Discussion
In this paper, we have developed the priority attachment, a plausible principle of network formation. We have 
shown that priority attachment can generalize previously proposed mechanisms of network formation, such as 
the small world phenomenon or preferential attachment. The second major contribution of this paper is the 
introduction of the Priority Rank model, a comprehensive generative network model which utilizes the priority 
attachment principle. The Priority Rank model is capable of mimicking both synthetic networks produced by 
popular generative network models, as well as re-creating empirical networks. The priority attachment mecha-
nism requires a distance function to compute local rankings for each vertex. The interpretation of the distance 
function allows us to infer the properties of generated networks in case of synthetic networks. More importantly, 
it captures the nature of the generative process imprinting formation of empirical networks. In our opinion this 
is the most valuable and handy feature of Priority Rank. The ability to discover the guiding principle of network 
formation facilitates generation of multiple similar but slightly different realizations for a given network, resulting 
in the whole population of networks. The stochastic nature of the priority attachment mechanism provides a 
small degree of randomization required to introduce variance into such population of networks, while preserving 
distributions of centrality measures and network profile at the same time.

Additionally, the Priority Rank model and a suitable distance function can provide a network generation 
principle that better matches real networks than the other well-known generative models. The Enzyme 108 and 
Illinois high school networks are quite typical examples of small-world networks that are better represented by the 
Priority Rank model than by the Watts-Strogatz model3.

Many different applications of the Priority Rank model can be enumerated. Apart from the obvious substitu-
tion of multiple generative network models by a single model, the Priority Rank model can be used for A/B testing 
of networks. Using our model, series of networks with a given profile may be generated. As a result, statistical 
inference on networks is possible owing to presence of many network instances belonging to the same family 
as the original one, which represents only a single data point. Priority Rank facilitates the simulation of various 
scenarios for network formation and growth. Given a model of network formation principle under the form of 
the distance function, we can predict evolution of networks.

Priority Rank is an early implementation of the priority attachment principle, which is capable of creating 
or re-creating networks of varying topologies, but it should not be regarded as a final model. In fact, in the next 
section we outline several limitations of the current model and we sketch possible solutions. But despite some 
deficiencies of the Priority Rank model we see strong evidence in favor of our main claim, namely, that priority 
attachment is a generalization of previously proposed network formation principles and can successfully be used 
to explain the emergence of many network topologies.
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Limitations.  The main focus of this paper is the introduction of the priority attachment, an important and 
useful mechanism of network formation. Priority Rank, on the other hand, is a generative model which uses the 
priority attachment when generating networks. As such, Priority Rank has certain limitations which are unavoid-
able, since every network model has to make a compromise between accuracy and simplicity. Firstly, we note that 
the Priority Rank model does not always re-create empirical networks fully. It seems that the closeness distribu-
tion is notoriously difficult to reproduce. Also, we note the lack of a mechanism which would allow us to easily 
account for the reciprocity. Of course, this can be introduced into the model by modifying the distance function 
to put more weight to existing edges.

Another shortcoming of the current model is the fact, that while trying to re-create an empirical network, 
the search for the suitable distance function is performed via brute force approach. As of now, we are searching 
through the parameter grid of a fixed set of template distance functions and finding the distance function which 
best reproduces the input network. This is both time consuming and ineffective, as the search space is limited. 
Possible solution to this shortcoming would be to replace currently used distance functions by a single universal 
distance function discovery module. We believe that for larger networks, where adjacency matrices contain suf-
ficient amount of information, the application of neural networks to form distance functions is a viable direction 
of future research. As of now, our experimental evaluation is limited to fairly small empirical networks due to an 
excessive cost of brute force searching for a matching distance function. We have not put additional effort into 
optimizing this brute force approach, because we are currently working on a universal distance function discov-
ery by a machine learning model.

Finally, we note that the amount of randomness in the Priority Rank model is limited, which is most pro-
nounced in the inability of the model to re-create small world networks (at least the networks produced by the 
Watts-Strogatz model). There are two places where randomness can be introduced into the Priority Rank model: 
either the distance function can produce random results for a subset of vertices, or one can modify the rank prob-
abilities used by the model to select target vertices from local vertex rankings. The latter can be achieved, e.g., by 
flattening the distribution of probabilities of picking vertices at given positions in the ranking. This issue, will be 
another subject of future research.
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