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Identification of S-nitrosylation 
sites based on multiple features 
combination
Taoying Li  , Runyu Song, Qian Yin, Mingyue Gao & Yan Chen

Protein S-nitrosylation (SNO) is a typical reversible, redox-dependent and post-translational 
modification that involves covalent modification of cysteine residues with nitric oxide (NO) for 
the thiol group. Numerous experiments have shown that SNO plays a major role in cell function 
and pathophysiology. In order to rapidly analysis the big sets of data, the computing methods for 
identifying the SNO sites are being considered as necessary auxiliary tools. In this study, multiple 
features including Parallel correlation pseudo amino acid composition (PC-PseAAC), Basic kmer1 
(kmer1), Basic kmer2 (kmer2), General parallel correlation pseudo amino acid composition (PC-
PseAAC_G), Adapted Normal distribution Bi-Profile Bayes (ANBPB), Double Bi-Profile Bayes (DBPB), 
Bi-Profile Bayes (BPB), Incorporating Amino Acid Pairwise (IAAPair) and Position-specific Tri-Amino 
Acid Propensity(PSTAAP) were employed to extract the sequence information. To remove information 
redundancy, information gain (IG) was applied to evaluate the importance of amino acids, which is 
the information entropy of class after subtracting the conditional entropy for the given amino acid. 
The prediction performance of the SNO sites was found to be best by using the cross-validation and 
independent tests. In addition, we also calculated four commonly used performance measurements, i.e. 
Sensitivity (Sn), Specificity (Sp), Accuracy (Acc), and the Matthew’s Correlation Coefficient (MCC). For 
the training dataset, the overall Acc was 83.11%, the MCC was 0.6617. For an independent test dataset, 
Acc was 73.17%, and MCC was 0.3788. The results indicate that our method is likely to complement the 
existing prediction methods and is a useful tool for effective identification of the SNO sites.

Protein post-translational modifications play a very important role in the processing of protein, protein matu-
ration, as well as altering the physical and chemical properties of proteins. As a result, the space conformation, 
three-dimensional location and the stability of the proteins are likely change, which can lead to the function alter-
ation. Moreover, the structural features of the modified groups can produce a far-reaching impact on the proper-
ties, as well as, the functions of proteins. In 19981, the Nobel Prize for Physiology or Medicine was rewarded for 
breakthrough discoveries that showed nitric oxide to be a freely-diffusible signaling molecule and a secondary 
messenger. NO plays a vital role in the cardiovascular system2. It is noticed that S-nitrosylation (SNO) is the 
covalent interaction of nitric oxide with the thiol group of cysteine residues1,3 and is well characterized as a 
major source of NO bioactivity4. Many experimental methods have been applied for distinguishing the SNO sites, 
such as the biotin-switch technique (BST)5,6, SNO-Cys site identification (SNOSID)7–9, and the resin-associated 
capture (RAC)10. These experimental methods have successfully provided a very effective information in iden-
tifying the SNO sites. The BST was designed to purify and detect the SNO proteins, mainly composed of three 
principal steps: (i) The methylthiolation of free cysteine thiols with methyl methanethiosulfonate (MMTS); (ii) 
Reduction of SNOs to thiols with ascorbate; (iii) Ligation of the nascent thiols with N-[6-(Biotinamido)hexyl]-
3′-(2′-Pyridyldithio)-propionamide (biotin-HPDP)11. In combination with the traditional mass spectrometry 
(MS), BST has indeed contributed to discovering a lot of potential protein SNO sites12–15. A proteomic method 
called SNOSID, that identified the endogenous and chemically-induced SNOs in the proteins from tissues or 
cells, was also developed to determine the potential SNO sites on the cysteine residues in complex protein mix-
tures. Furthermore, RAC based method was also developed to detect the SNO proteins10. In 2009, Foster et al.16, 
explored a protein microarray-based approach to screen the SNO sites. These methods made great contribu-
tions to the development of the prediction of SNOs, however, to a certain degree, they were considered to be 
time-consuming and also had a relatively low throughput data. Recently, several machine learning approaches 
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have been proposed and have provided helpful information being used for further experimental verification of 
the protein SNO sites. Hao et al.7 developed a prediction tool for the SNO sites, which was based on the support 
vector machine (SVM)17 algorithm, and used a training dataset that consisted of 65 positive SNO sites and 65 
non-SNO sites. A few years later, Xue et al.2 proposed a method called GRS-SNO by using a group-based predict-
ing system based on 504 experimentally verified SNO sites in 327 unique proteins. Shortly afterward, Li et al.18  
established the predictor CPR-SNO and built a web server based on a coupling pattern encoding scheme. Xu  
et al.19,20 developed the iSON-AApair that takes into account, the effects of sequence correlation. More recently, 
Jia et al.21 used an Adapted Normal Distribution Bi-Profile Bayes (ANBPB) and Chou’s PseAAC composition 
constituting the feature vector. The composition of Zhang et al.22 were also based on the Chou’s PseAAC, by 
incorporating the various sequences derived feature.

Each of the above mentioned methods had their own advantage, as well as, played an important role in the 
research for prediction of protein S-nitrosylation sites. However, it is noted that the prediction performance is not 
really satisfactory. Therefore, there is necessity to discover more efficient methods for the SNO sites identification.

In this study, we extracted nine types of features, including PC-PseAAC (25), kmer1 (20), kmer2 (400), 
PC-PseAAC_G (25), ANBPB (40), DBPB (38), BPB (40), IAAPair (39) and PSTAAP (18). In order to remove the 
redundant information, the information gain (IG) method was applied to select the features. Finally, the optimi-
zation of 425D feature vector (PC-PseAAC (25), kmer1 (20), kmer2 (180), PC-PseAAC_G (25), ANBPB (40), 
DBPB (38), BPB (40), IAAPair (39), and PSTAAP (18) was used to construct our prediction model. Our results 
suggest that IG can provide an improved performance, which is comparable to the one without the use of the IG 
method. The results indicated that selecting the IG feature is a promising method to predict the features with high 
dimension with the SNO sites.

Results and Discussion
Combination of different features. To evaluate the performances of the combined feature sets for sort-
ing SNO sites and non-SNO sites, we tested the prediction performances on the Jackknife test23, which is con-
sidered as the most objective and always yields a unique result for a given dataset21,24. The combined features 
were composed of the PC-PseAAC, kmer1, kmer2, PC-PseAAC_G25, ANBPB21, DBPB, BPB26, IAAPair19, and 
PSTAAP20,27 models and the detailed results are shown in Supplementary Table S1. The results show that the pre-
diction performance was enhanced through the combined features. As shown in Table 1, PC-PseAAC with the 
Acc of 62.82% was regarded as the basic features, and was then incorporated to kmer1 to improve the prediction 
performance, which reached the Acc of 64.83%. Secondly, combination of features PC-PseAAC + kmer1 were 
further incorporated with the component of kmer2 one by one, and new combined features PC-PseAAC, kmer1 
and kmer2 reached Acc of 64.89%. This process was terminated at feature combination PC-PseAAC, kmer1, 
kmer2, PC-PseAAC_G, ANBPB, DBPB, BPB, IAAPair, and PSTAAP, which increased the Acc to 74.24% and 
MCC17,28–30 to 0.4837. From the above, it can be concluded that the combined features can improve Acc of 11.42%. 
The parameters λ and the weight factor w were found to offer the best results for the features PC-PseAAC and 
PC-PseAAC_G and the optimized values were λ = 5 and w = 0.5.

Features selection via IG. To further improve the prediction performance, these features were optimized 
based on the above-mentioned IG optimization method. The four types of features PC-PseAAC, kmer1, kmer2, 
and PC-PseAAC_G are mainly related to the frequency of amino acids but are independent of the position of 
protein sequences. Hence, we optimized these four types of features based on the IG score of the amino acid res-
idues. Firstly, we sorted the importance of amino acid composition (AAC) and the amino acid pair composition 
(i.e. kmer2) by IG score, and then applied the incremental feature selection to find out the best feature subset for 
maximizing prediction performance. According to the final performance evaluation, the application of IG score 
on kmer2 was especially distinguishable. The detailed prediction performances for different number of features 
combination on 10-fold cross-validation were shown in Fig. 1. It can be seen that when the dimension for the 
feature vector selected to be 180, the predictive performance achieved the highest value with Sn of 72.79%, Sp 
of 74.64%, Acc of 73.71%, and MCC of 0.4741. However, there was no obvious improvement for the other three 
types features PC-PseAAC, kmer1, and PC-PseAAC_G. This could be due to the low dimensions of these three 
types of features (less than 50). On the contrary, the dimension of kmer2 was 400, and the feature matrix was an 

Dimension Sequence encoding schemes Sn (%) Sp (%) Acc (%) MCC

25 PC-PseAAC 72.33 54.32 62.82 0.2699

45 PC-PseAAC + kmer1 68.67 61.36 64.83 0.3004

445 PC-PseAAC + kmer1 + kmer2 64.3 65.43 64.89 0.297

470 PC-PseAAC + kmer1 + kmer2 + PC-PseAAC_G 64.57 65.43 65.02 0.2997

510 PC-PseAAC + kmer1 + kmer2 + PC-PseAAC_G + ANBPB 65.53 72.84 69.37 0.3848

548 PC-PseAAC + kmer1 + kmer2 + PC-PseAAC_G + ANBPB + DBPB 65.94 72.84 69.57 0.3888

588 PC-PseAAC + kmer1 + kmer2 + PC-PseAAC_G + ANBPB + DBPB + BPB 65.94 72.96 69.63 0.3901

607 PC-PseAAC + kmer1 + kmer2 + PC-
PseAAC_G + ANBPB + DBPB + BPB + IAAPair 66.48 73.21 70.02 0.3979

645 PC-PseAAC + kmer1 + kmer2 + PC-
PseAAC_G + ANBPB + DBPB + BPB + IAAPair + PSTAAP 73.46 74.94 74.24 0.4837`

Table 1. Performance of the combination feature with different sequence encoding schemes in jackknife test.
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extremely sparse matrix and hence having IG reflecting a good performance. The results of the IG score ranking 
importance of amino acid residues and dipeptide are displayed in Fig. 2 and Fig. 3, respectively and the detailed 
results are shown in Supplementary Table S2. It is noteworthy that the amino acid residues K, M, and C and 
the dipeptides MG, VK, and ML exhibited a great contribution to the prediction performance. Fig. 2 and Fig. 3  
showed that the highest IG score reached 0.0156, 0.0112 and 0.0043 for the amino acid residues K, M, and C, 
respectively, while the highest IG score reached 0.0062, 0.0057 and 0.0047 for the amino acid dipeptides MG, VK, 
and ML, respectively.

Before the features selection, the prediction performance with the Sn of 73.46%, the Sp of 74.94%, and the 
Acc of 74.28%. After removing the irrelevant feature and then determining the optimal combination of fea-
tures, we then obtained the best prediction performance with the Sn of 73.60%, the Sp of 75.93% and the Acc of 
74.82, respectively. As can be seen, all of the three measurements have been improved slightly. But the prediction 

Figure 1. The predictive performance of different models based on incremental feature selection of features 
sorted by IG.

Figure 2. The IG score of each amino acid residues.

Figure 3. The IG score of each dipeptide.
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performance was not satisfied, it need us to make improvements on this work in the future. The results for the best 
predictive performance are shown in Table 2. An improved predictive Acc for the models that were trained with 
the optimized features was being seen when compared with the model with non-optimized features. As given 
in Supplementary Table S2, such 425 [PC-PseAAC(25) + kmer1(20) + kmer2(180) + PC-PseAAC_G(25) + AN
BPB(40) + DBPB(38) + BPB(40) + IAAPair(39) + PSTAAP(18)] features regarded as the optimal feature set for 
the selected model. Based on the 425 features, the predictive Sn, Sp, and Acc were 73.60%, 75.93% and 74.82%, 
respectively. These results indicate that the key amino acid residues and the key dipeptide used in optimizing the 
models can enhance the prediction performance of the SNO sites. Consequently, the features combined with 
key amino acid residues were applied to implement a novel and high-performance tool for identifying cysteine 
S-nitrosylated sites.

Comparison with other feature selection methods. In this paper, different feature selection meth-
ods were exploited for comparison. We made several comparisons for evaluating the performance of IG with 
Max-Relevance-Max-Distance31 (MRMD), a method for feature selection. MRMD contains two components, 
max distance and maximal relevance. The max distance selects a new feature which has the least redundancy in 
the residual of features, while the maximal relevance selects feature that has the strongest relevance to the target 
class.

We used four distance methods ED, COS, TC and Mean of MRMD to find out the best feature vectors combi-
nation through using 10-fold cross-validation. The detailed predictive performances are listed in Fig. 4. When the 
distance function ED was adopted, its best Acc achieved 73.32% with 356 features. And when the distance func-
tions are COS, TC and Mean, the predictive performance is the highest with 397, 398 and 43 features, respectively, 
whose corresponding predictive performance is 73.14%, 73.35% and 73.34%. Suppose that the total dimension 
of feature vector is 400, the influence of dimension reduction is not obvious when the distance function ED, COS 
and TC are used (the predictive performance is the best with 356, 397 and 398 features, respectively). However, 
the influence of dimension reduction is prominent when the Mean distance function is used (the predictive 
performance is the best with 43 features), which causes a lot of information lost in the feature vector. The best 
performances for different feature selection methods are listed in Supplementary Tables S8–11.

From Fig. 4A, we can see that although the performances of two methods, IG and four types of MRMD, are 
almost identical on the same datasets, Acc of IG has better advantageous. Meanwhile, its Acc is generally higher 
than that of MRMD method, including ED, COS, TC and Mean. Moreover, it has more advantages to achieve 
the dimensionality reduction of high-dimensional eigenvectors and unsure high Acc. From Fig. 4B–E, show the 
predictive performance of different dimensions eigenvectors are shown when MD is ED, COS, TC and Mean, 
respectively.

Comparison with other methods. To make a fair and fast comparison, we compared the prediction per-
formance of our predictor with GPS-SNO2, iSNO-PseAAC20, iSNO-ANBPB21, PSNO22, iSNO-AAPair19 on the 
Xu training dataset by running 10-fold cross-validation test 10 times. The results were shown in Table 3. Our 
constructed model exhibits the best prediction performance with Acc of 83.11%, which was 1.41% higher than 
the previous best-performing predictor iSNO-AAPair, and 7.44% higher than Acc achieved by PSNO. Our pre-
dictor also gave a MCC of 0.6617, which was 0.0317 higher than the method of iSNO-AAPair, and 0.1498 higher 
than PSNO. Furthermore, Sn of our predictor was 83.33%, which was 3.73% higher than Sn of iSNO-AAPair, and 
9.18% higher than PSNO. This comparison indicates that the proposed model is indeed promising and could at 
least play a role that complements the existing state-of-the art methods in this field. In addition, we tested the pre-
dictive power of our model with the powers of the SNOSite32, iSNO-AAPair19, iSNO-PseAAC20, iSNO-ANBPB21 
on the Li test dataset; and we also compared our model with the GPS-SNO2, iSNO-PseAAC20, iSNO-AAPair19, 
and PSNO22 methods on Xu test dataset. The performances of the above-mentioned models against two test 
datasets are summarized in Supplementary Tables S3 and S4. On the Li independent test dataset, our model 
captured proteins O00429 (site 367), P13221 (site 83), P43235 (site 139) as S-nitrosylation sites, while methods 
iSNO-AAPair and iSNO-PseAAC incorrectly predicted them as non-S-nitrosylation sites. On the Xu independ-
ent test dataset, our model captured proteins O70572 (site 176), P51174 (site 342), Q8VDG5 (site 308), Q9WVQ5 
(site 146), P55060 (site 344) as S-nitrosylation sites, while models iSNO-PseAAC and GPS-SNO incorrectly pre-
dicted S-nitrosylation sites as non- S-nitrosylation sites. To show the prediction results clearly, we summarized 
Sn, Sp, ACC and MCC that was achieved by each model in Table 4. As it can be seen that our predictor achieved 

IG Dimension Sequence encoding schemes Sn (%) Sp (%) Acc (%) MCC

645 PC-PseAAC + kmer1 + kmer2 + PC-
PseAAC_G + ANBPB + DBPB + BPB + IAAPair + PSTAAP 73.46 74.94 74.24 0.4837

425 PC-PseAAC + kmer1 + kmer2 + PC-
PseAAC_G + ANBPB + DBPB + BPB + IAAPair + PSTAAP 73.60 75.93 74.82 0.4952

425 PC-PseAAC + kmer1 + kmer2 + PC-
PseAAC_G + ANBPB + DBPB + BPB + IAAPair + PSTAAP 73.60 75.93 74.82 0.4952

425 PC-PseAAC + kmer1 + kmer2 + PC-
PseAAC_G + ANBPB + DBPB + BPB + IAAPair + PSTAAP 73.60 75.93 74.82 0.4952

425 PC-PseAAC + kmer1 + kmer2 + PC-
PseAAC_G + ANBPB + DBPB + BPB + IAAPair + PSTAAP 73.60 75.93 74.82 0.4952

Table 2. Features optimization based on IG on Jackknife test. Bold blackbody is the feature extracted by IG 
method.
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the performance with Sn of 60.47%, Sp of 77.69% and Acc of 73.17% on the Li test dataset. Among the other 
five methods, the best prediction performance was achieved by the method of Li et al., with Sn of 51.16%, Sp of 
69.42% and Acc of 64.63%. Our method is obviously superior to other methods. However on Xu test dataset, our 
predictor achieved the prediction performance with the Sn of 64.20%, the Sp of 75.00%, and the Acc of 70.17%, 
which is only better than iSNO-PseAAC with Sn of 50.2%, Sp of 75.1% and Acc of 62.8%. The results show that 
our predictor outperformed previous methods in terms of precision. But on the Xu test set, the results are not 
ideal, which may be caused as a result of not considering the physical chemistry properties. In the future work, we 
will consider more compressive features and further optimize the feature combination approaches.

Figure 4. The predictive performance of different models and the comparison of their. (A) Comparison on 
the predictive performance of different feature selection methods. (B) The predictive performance of different 
models based on incremental feature selection of features sorted by distance ED of MRMD. (C) The predictive 
performance of different models based on incremental feature selection of features sorted by distance COS of 
MRMD. (D) The predictive performance of different models based on incremental feature selection of features 
sorted by distance TD of MRMD. (E) The predictive performance of different models based on incremental 
feature selection of features sorted by distance Mean of MRMD.

Dataset Test Method Methods Sn (%) Sp (%) Acc (%) MCC

Xu training 
dataset

the 10_fold cross-
validation test

GPS-SNO 45.01 73.33 59.9 0.1915

iSNO-PseAAC 67.01 68.15 67.62 0.3515

iSNO-ANBPB 67.33 73.78 70.77 0.4146

PSNO 74.15 77.04 75.67 0.5119

iSNO-AAPair 79.60 84.10 81.70 0.6300

Our predictor 
(maximum) 83.33 82.92 83.11 0.6617

Our predictor 
(average) 72.16 74.90 73.54 0.4704

jackknife test IG-SCORE 73.60 75.93 74.82 0.4952

Table 3. Compare with other methods performance on the training dataset.
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Conclusion
The prediction of SNO sites is essential for better understanding of the basic biological theory, clinical diagnosis 
as well as the pharmaceuticals. In this study, we introduce the IG which is a tool for the analysis of the importance 
of amino acid and its position used in feature extraction. Here, we focus on the characteristics of the amino acids 
with its sequence. Four out of the nine characteristics of the combination are related to the amino acid residues. 
The four types of features were screened using the IG method, and the best dimension of the feature vector was 
selected. Among these features, 180 important features were screened from the feature kmer-2 whose dimension 
was reduced from 400 to 180, with the best prediction performance, and Sn and Acc are reached 83.33% and 
83.11%, respectively. Theoretically, there is a lot of information in the protein structure when compared with the 
simple sequences, and this will be considered in the future scope of the work. With the development of internet 
and big data era coming, constructing databases33–40 and establishing powerful webserver are the direction of 
bioinformatics. Thus, making it convenient to most experimental scientists

Material and Methods
Datasets. The datasets were constructed using those of Li et al.22 and Xu et al.19,20 (henceforth named the Li 
dataset and Xu dataset, respectively). As described previously19,20,24, these datasets were derived on the basis of the 
experimental verification of the protein S-nitrosylation sites. Xu training dataset consisted of 731 positive SNO 
sites as positive samples and 810 non-SNO cysteine sites as negative samples from the 438 proteins with <=40% 
sequence similarity. These samples were used for training our prediction model. The Xu test dataset consisted of 
81 SNO sites and 100 non-SNO sites, and the Li test dataset included 43 SNO sites and 121 non-SNO sites. In this 
study, Xu and Li test datasets were applied to test the prediction performance of our model.

Considering that we have a protein peptide sample P in our datasets, which can be generally formulated by:

= … …− − − − − + + + − +R R R R C R R R RP ( ) (1)t t t t( 1) 2 1 1 2 ( 1)

where the subscript t is an integer, R−t is the t-th downstream amino acid residue from cysteine(C), Rt the t-th 
upstream amino acid residue, and so forth. The peptide was termed as SNO or non-SNO peptide depending on 
whether its center is a SNO or non-SNO sites, respectively. P belonged to one of two categories viz. the SNO sites 
(positive data) or non-SNO sites (negative data). In the current study, we selected t = 10. If the upstream or down-
stream in a protein was less than 10, the lacking residues were filled using the dummy code X. Thus, the training 
dataset S was formulated as (∪: in the set theory to formulate the union of datasets):

∪= + −S SS (2)

where the positive dataset S+consisted of 731 SNO cysteine sites, while the negative dataset S− contained 810 
non-SNO cysteine sites; The test dataset TLi and TXu was formulated as:

∪= + −T T T (3)Li Li Li

∪= + −T T T (4)Xu Xu Xu

where the positive dataset +TLi and −TXu contained 43 and 81 SNO peptide fragments, respectively; while the nega-
tive dataset −TLi and −TXu contained 121 and 100 non-SNO peptide fragments, respectively. For the reader’s conven-
ience, the three datasets used in this study are given in Supplementary Tables S5–7. The schematic flowchart of 
our work is being shown in Fig. 5.

Features extraction. Parallel correlation pseudo amino acid composition (PC-PseAAC). PC-PseAAC41 is 
the feature extraction approach that incorporates the contiguous local and the global sequence-order information 
to obtain the feature vector for the protein sequence. Given a protein peptide P (Eq. 1), the PC-PseAAC feature 
vector for P is given by:

Dataset Methods Sn (%) Sp (%) Acc (%) MCC

Li test dataset

SNOSite 74.42 28.1 40.24 0.0248

iSNO-AAPair 27.91 80.17 66.46 0.0858

Li et al. 51.16 69.42 64.63 0.1886

iSNO-PseAAC 58.14 63.64 62.2 0.1940

iSNO-ANBPB 74.12 59.5 63.41 0.2984

Our predictor 60.47 77.69 73.17 0.3588

Xu test dataset

GPS-SNO 44.5 81.0 64.7 0.2800

iSNO-PseAAC 50.2 75.2 62.8 0.3000

iSNO-AAPair 79.6 84.1 81.7 0.6300

PSNO 87.7 85.0 86.2 0.7200

Our predictor 64.20 75.00 70.17 0.3942

Table 4. Compare with other methods performance on the test datasets.
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where fi (i = 1,2, …, 20) is the normalized occurrence frequency of the 20 amino acids in the protein P; the param-
eter λ is an integer, representing the highest counted rank (or tier) of the correlation along a protein sequence; 
w is the weight factor ranging from 0 to 1; and Θj (j = 1,2, …, 20) is the j-tier correlation factor reflecting the 
sequence-order correlation between all the j-th most contiguous residues along a protein chain, which is defined 
as:
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where H R( )i1 , H R( )i2  and M R( )i  are the hydrophobicity value, hydrophilicity value, and side-chain mass, respec-
tively, of the amino acid Ri. It should be noted that before substituting the values of hydrophobicity, hydrophilicity, 
and side-chain mass into Eq. 7, they are all subjected to a standard conversion as described by the following 
equation:
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Figure 5. Flowchart of our predictor methodology.
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where H i( )1
0  and H i( )2

0  represent the original hydrophobicity value and the original hydrophilicity value of the i-th 
amino acid respectively; and M i( )0  is the mass of the i-th amino acid side chain.

General parallel correlation pseudo amino acid composition (PC-PseAAC_G). The PC-PseAAC_G approach42, 
not only incorporates the comprehensive built-in indices extracted from the AAindex43, but also allows the users 
to upload their own indices to generate the PC-PseAAC_G feature vector. For a given a protein peptide P (Eq. 1), 
the PC-PseAAC_G feature vector of P is defined as:

= … … λ+x x x x xV [ , , , , , , ] (12)T
1 2 20 21 20

where

Θ

Θ
Θ

λ
=











∑ + ∑
≤ ≤

∑ + ∑
+ ≤ ≤ +
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= =

−

= =
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f w
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f w

u
x

(1 20)

(20 1 20 )
(13)

u

u

i i j j

u

i i j j

1
20

1

20

1
20

1

where fi (i = 1,2, …, 20) is the normalized occurrence frequency of the 20 amino acids in the protein P; the param-
eter λ is an integer, representing the highest counted rank (or tier) of the correlation along a protein sequence; w 
is the weight factor ranging from 0 to 1; and Θj (j = 1,2,…,20) is called the j-tier correlation factor reflecting the 
sequence-order correlation between all the j-th most contiguous residues along a protein chain, which is defined 
as:

∑Θ
λ

Θ λ=
−

< <λ

λ

λ
=

−

+L
R R L1 ( , ) (0 )

(14)i

L

i i
1

In this case, the correlation function is given by:

∑Θ
µ

= −
µ

=
R R H R H R( , ) 1 [ ( ) ( )]

(15)i j
u

u i u j
1

2

where µ is the number of physicochemical indices considered; H R( )u i  is the u-th physicochemical index value of 
the amino acid Ri; H R( )u j  is the u-th physicochemical index value for the amino acid Rj. It should be noted that 
before substituting the physicochemical indices values into Eq. 14, they were also all subjected to a standard con-
version as described by the following equation:

=
− ∑ =
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− ∑




= =

H i
H i
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u
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H i

H i
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20 ( )
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i u i
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0

1
20 0

1
20 0( )
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2

where H i( )u
0  is the u-th original physicochemical value of the i-th amino acid.

Basic kmer (kmer). Basic kmer44 is the simplest approach to represent the proteins by a numerical vector, in 
which the protein sequences are represented as the occurrence frequencies of k neighboring amino acids45. Given 
a protein sequence P (Eq. 1), the kmer feature vector of P is formulated as follows:

− = … … < ≤x x x x iV(kmer 1) [ , , , , , ] (0 20) (17)i
T

1 2 20

− = … … < ≤y y y y iV(kmer 2) [ , , , , , ] (0 400) (18)i
T

1 2 400

where xi and yi are the normalized occurrence frequency of the 20 amino acid residues and 400 dipeptides in the 
protein P, respectively.
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Bi-Profile Bayes (BPB). BPB26 comprehensively considers the information contained in the two aspects of pos-
itive and negative samples that have been successfully applied in many fields of bioinformatics and has made 
effective predictions26,46–48. Given a protein peptide P (Eq. 1), the BPB feature vector of P is defined as:

= … …+x x x x xV [ , , , , , , ] (19)n n n
T

1 2 1 2

where V is the posterior probability vector; …x x x, , , n1 2  represents the posterior probability of each amino acid 
at each position in positive peptide sequence datasets; …+x x, ,n n1 2  represents the posterior probability of each 
amino acid at each position in negative peptide sequence datasets. Two position-specific profiles for final model 
training, positive position-specific profiles and negative position-specific profiles, were generated by calculating 
the frequency of each amino acid at each position in the positive datasets and negative datasets, respectively.

Double Bi-Profile Bayes (DBPB). DBPB is an improvement of BPB that was proposed by Shao et al.24. As men-
tioned above, BPB is the posterior probability of each single amino acid at each position in the positive and 
negative datasets, while DBPB is the posterior probability of each two adjacent amino acids at each position in 
the positive and negative datasets. Given a protein sequence P (Eq. 1), the DBPB feature vector of P is defined as:

= … …− − + −x x x x xV [ , , , , , , ] (20)n n n
T

1 2 1 ( 1) 1 2( 1)

where V is the posterior probability vector; … −x x x, , , n1 2 1 that represents the posterior probability of each dipep-
tide at each position in positive peptide sequence datasets; …− + −x x, ,n n( 1) 1 2( 1) represents the posterior probabil-
ity of each dipeptide at each position in the negative peptide sequence datasets. Two position-specific profiles for 
the final model training, positive position-specific profile and negative position-specific profile were generated by 
calculating the frequency of each amino acid pair at each position in the positive datasets and negative datasets, 
respectively.

Adapted Normal distribution Bi-Profile Bayes (ANBPB). ANBPB21,49 is the improvement of BPB in another 
aspect. Given a protein sequence P (Eq. 1), the ANBPB feature vector of P is defined as:

= … …+p p p p pV [ , , , , , , ] (21)n n n
T

1 2 1 2

where …p p p, , , n1 2  is the posterior probability of each amino acid at each position in positive peptide sequences 
datasets; …+p p, ,n n1 2  is defined based on the posterior probability of each amino acid at each position in negative 
peptide sequences datasets. The posterior probability …p p p, , , n1 2 2  was coded by the adapted normal distribu-
tion as follows:

∫π
= ϕ =

−∞

−p x e( ) 1
2

dt
(22)i

x t
2
2

where ϕ(x) is the standard normal distribution function and the detailed description of the formula is given21,49.

Incorporating Amino Acid Pairwise (IAAPair). The posterior probability of every two adjacent amino acids and 
each two next nearest amino acids at each position in the positive peptide sequence datasets is subtracted from 
in the negative peptide sequence datasets19. Given a protein sequence P (Eq. 1), the IAAPair feature vector of P 
is defined as:

= … … − + −p p p pV [ , , , , , ] (23)j n n
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where V is the posterior probability vector (in this feature, the C in the middle of peptide sequence must not be 
omitted). When ≤ ≤ −j n1 1 pj is the representative posterior probability of every two nearest amino acids, 
and when ≤ ≤ − + −n j n n[( 1) ( 2)] pj is the representative posterior probability of each two next nearest 
amino acids. +pi,j and −pi,j represent the posterior probability of every two nearest amino acids and each two next 
nearest amino acids at each position in positive and negative peptide sequence datasets, respectively. 
± = + − −p p p( ) ( )i j i j i j, , ,  is the feature vector.

Position-specific Tri-Amino Acid Propensity (PSTAAP). The posterior probability of every three adjacent 
amino acids at each position in the positive peptide sequence datasets is subtracted from in the negative peptide 
sequence datasets20,27. Given a cysteine peptide fragment P (Eq. 1), the feature vector of PSTAAP for P is defined 
as follows:
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where V is the posterior probability vector; +pi,j represents the posterior probability of each tri-amino acids at 
each position in the positive dataset; −pi,j represents the posterior probability of each tri-amino acids at each 
position in the negative dataset; ± = + − −p p p( ) ( )j i j i j, ,  is the feature vector.

It should be indicated that recently a very powerful web-server called ‘Pse-in-One’25, and its updated ver-
sion ‘Pse-in-One2.0’45 have been established and can be used to generate any desired feature vectors for protein/
peptide and DNA/RNA sequences according to the user study needs or desires. In the current study, the feature 
vectors PC-PseAAC, PC-PseAAC_General, and basic kmer are obtained from the web-server.

Information Gain (IG). The IG44,46–48 method is usually used to rank the importance of positions and amino 
acid residues. IG measures the decrease in entropy when a given feature is used to group values of another (class) 
feature. The entropy of a feature X is defined by:

where {xi} is a set of values of X and P(xi) is the prior probability of xi. If Y is considered as another feature, the 
conditional entropy of X is defined as:
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∑ ∑| = − | |P y P x y log x yH(X Y) ( ) ( ) (( ))
(33)j

j
i

i j i j2

where |P x y( )i j  is the posterior probability of X with the value yj of Y. The amount by which the entropy of X 
decreases reflects the additional information about X provided by Y and is called the information gain:

| = − |IG(X Y) H(X) H(X Y) (34)

According to this measure, Y has a stronger correlation with X than with Z, if IG (X|Y) > IG (Z |Y). It is 
obvious that Y represents the amino acid type, when extracting the IG score for positions. On the other hand, Y 
represents the amino acid frequency, when extracting IG score for amino acids.

Calculating IG score of positions and amino acid residues:

 (1) The importance of positions: The 20 amino acid residues (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, 
W, and Y) were coded into digits from 1 to 20. The query sequences segments were coded into an X-di-
mension digital sequence (protein).

 (2) The importance of amino acid residues: The amino acid frequency in the surrounding sequence query site (the 
site itself is not counted) was calculated. The query sequences were also coded into a 20-dimension feature.

 (3) Calculation of the IG score for positions by (1) and the IG procedure was performed. Subsequently, the 
calculation of the IG score for amino acid residues by (2) and the IG procedure was done. Then, we ranked 
the corresponding positions and amino acid residues by their IG score and selected the key positions and 
key amino acid residues.

In this work, we used the IG score to calculate the importance of amino acid residues:

∑ ∑

∑

| = − |

= −

× | |

∈ ∈

∈

P x log x P y

P x y log x y

IG(X Y) H(X) H(X Y)

( ) (( )) ( )

( ) (( ))
(35)

i i

x y
i

x
j i j

(0,1)
2

(0,1)

(0,1)
2

j

Equation (36) is divided into two parts, the former is the entropy H(X) of class X, and the latter part is the 
conditional entropy |H(X Y)i  of X a given amino acid Y.

Suppose the number of training samples is N. Initially, we count each training sample. Subsequently, if each 
characteristic yj is added in the training sample x, two times will be counted once:

= =
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( 0) (41)
j

j

j

Max-Relevance-Max-Distance (MRMD). MDMR31 is a feature selection method for reducing dimen-
sionalities, which can be further divided into two aspects.

 (1) One is the relevance between sub-feature set and target class. Here, Pearson’s correlation coefficient is 
exploited to measure the relevance. With the increase of Pearson’s correlation coefficient, the relevant 
between feature and target class also increases.

 (2) The other is redundancy of sub-feature set. Three kinds of distance functions are utilized to calculate the 
redundancy. The larger the feature distance, the lower the redundancy for sub-feature set becomes.
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The features with large sum of relevance and distance would be chosen as the ultimate sub-feature set. Finally, 
the sub-feature set generated by MRMD has low redundancy and strong relevance with the target class.

In order to describe the algorithm clearly, we listed some functions in following section. Given the input data-
sets tabled as N instances, M features = = …i MF {f , 1, , }i  and the target class C, the aim is to find a subspace of 
M features, which is selected from the M dipeptides original space, and makes the greatest contribution to classify 
the target class C.

Max-relevance (MR). Making the greatest contribution for classifying the target class condition and this often 
requires the maximal relevance for the target class C on the subspace, which needs us to select a feature set with 
the highest relevance to target class C. We use the Pearson’s correlation coefficient to measure positive correla-
tion and negative correlation. Because it is suitable for calculating continuous variables and easy to implement, 
Pearson’s correlation coefficient is adopted as the measure of relevance between feature and target class C.

The value of MR for feature i can be defined as follows.

=



→→



 ≤ ≤i MmacMR PCC (1 )

(42)i F Ci i

where →
Fi

 is a vector composed from ith features from each instance, and →
Ci

 is also a vector whose every element 

comes from the target class C of each instance. Their Pearson’s correlation coefficient is defined as 


→→



PCC

F Ci i

.

Max-Distance (MD). MDMR proposed a new approach to realize Max-Redundancy based on distance func-
tion, namely maximal distance, to measure the level of similarity between two feature vectors. There are three 
types of distance functions that can be chosen, which are Euclidean distance, cosine similarity and Tanimoto 
coefficient. Compared with the commonly used methods, Euclidean distance is easier to calculate. As compared 
to the Euclidean distance, cosine similarity focuses on the angle between two vectors. The last one, Tanimoto 
coefficient, is also called Jaccard coefficient in the broad sense. Under the binary condition, it is similar to Jaccard 
coefficient. For each feature, its value of distance defined as follows is based on t three types of distance functions 
mentioned above. According to the following formula, we can obtain their values for the feature i ( ≤ ≤i M1 ) 
EDi, COSi and TCi, respectively.

∑=
−




→→



 ≤ ≤ ≠

M
ED k M k iED 1

1
(1 , )

(43)i F Fi k

∑=
−




→→



 ≤ ≤ ≠

M
COS k M k iCOS 1

1
(1 , )

(44)i F Fi k

∑=
−
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 ≤ ≤ ≠

M
TD k M k iTD 1

1
(1 , )

(45)i F Fi k

From three formulas above, we have four ways to obtain the final value of MD.

= ≤ ≤max i MMD ED (1 ) (46)i i

= ≤ ≤max i MMD COS (1 ) (47)i i

= ≤ ≤max i MMD TC (1 ) (48)i i

= + + ≤ ≤mean i MMD 1
3

(ED COS TC )(1 ) (49)i i i i

We can obtain top m features which are considered to be the sub-feature set with minimal redundancy by MD.

MRMD. The criterion used for combining the two constraints above is called “Max-Relevance-Max-Distance” 
(MRMD). After having done all the above preparations, we could start to select the features subspace. The algo-
rithm optimizes the following condition.

For a specific problem, the condition for feature selection take into consideration that the MR is not as impor-
tant as MD. Therefore, the variables wr ≤ ≤ M(1 w )r  and wd ≤ ≤ M(1 w )d  are the weights of MR and MD, 
respectively.
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