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Asymmetric independence 
modeling identifies novel gene-
environment interactions
Guoqiang Yu1, David J. Miller2, Chiung-Ting Wu1, Eric P. Hoffman3, Chunyu Liu   4, 
David M. Herrington5 & Yue Wang1

Most genetic or environmental factors work together in determining complex disease risk. Detecting 
gene-environment interactions may allow us to elucidate novel and targetable molecular mechanisms 
on how environmental exposures modify genetic effects. Unfortunately, standard logistic regression 
(LR) assumes a convenient mathematical structure for the null hypothesis that however results in both 
poor detection power and type 1 error, and is also susceptible to missing factor, imperfect surrogate, 
and disease heterogeneity confounding effects. Here we describe a new baseline framework, the 
asymmetric independence model (AIM) in case-control studies, and provide mathematical proofs 
and simulation studies verifying its validity across a wide range of conditions. We show that AIM 
mathematically preserves the asymmetric nature of maintaining health versus acquiring a disease, 
unlike LR, and thus is more powerful and robust to detect synergistic interactions. We present examples 
from four clinically discrete domains where AIM identified interactions that were previously either 
inconsistent or recognized with less statistical certainty.

Detection of synergistic interaction between genetic or environmental factors aims to determine whether two 
or more known genetic or environmental factors jointly influence the risks of complex diseases1–3. Detecting 
such interactions is mainly driven by testing a specific biological hypothesis, and is fundamentally different from 
testing for association with a single factor while allowing for interaction with other factors1,3–5. In the context 
of hypothesis testing, ‘interaction’ is most commonly defined as a departure from additivity in a linear baseline 
model, under which these factors act independently to determine the response1–3. The choice of relevant statistical 
models may influence the accuracy and biological interpretation of inferred gene–environment interactions1,3,6,7.

Interaction as a statistical concept requires the exact definition of the additive effects of the factors involved, 
and should always be tested together with additive effects2,8,9. That is, statistical interactions can only occur after 
additive effects have failed to explain the response, which means nothing can be established without first mod-
elling the main effects – via a baseline independence model. Arguably, the most straightforward way to test for 
statistical interaction is to fit a logistic regression model (LR) with relevant interaction terms and then to test 
whether the interaction terms equal zero. While mathematically convenient, LR was not originated as a bio-
logical model and it is inconsistent in the presence of typically unknown confounders such as missing factors, 
imperfect surrogates, and disease heterogeneity (Methods and. Fig. 1a,c). Moreover, the LR model is symmetric 
or exchangeable with respect to disease status (see Methods), i.e. the LR mathematical form forthe probability of 
being healthy is the same as for the probability of being diseased. A plausible disease model, on the other hand, 
should be asymmetric with respect to disease status. In particular, one should get the disease if any of the risk fac-
tors are penetrant. Accordingly, being healthy requires all the risk factors to be inactive. Such a model is inherently 
asymmetric with respect to disease status (see Methods for mathematical details). A symmetric model such as LR 
is thus implausible as a disease model.
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Thus, we address the following question: under the null hypothesis that genetic or environmental factors act 
independently to determine health status, how should a baseline independence model be formulated to reflect the 
aforementioned asymmetric nature of healthy versus diseased?

We develop an asymmetric independence model (AIM) in case-control studies for modelling the null hypoth-
esis that attempts to mimic a sensible biological principle10 (Fig. 1b,d): given the independence of the marginal 
health status (‘healthy’ or ‘diseased’) determined probabilistically by the individual factors involved11, being 
totally ‘healthy’ requires the presence of all marginal ‘healthy’ statuses while being ‘non-healthy’ requires only at 
least one but not necessarily all marginal ‘diseased’ statuses. Fundamental to the success of our approach is that 
AIM mathematically conforms to this asymmetry by specifying being totally ‘healthy’ only if every acting factor 
maintains a marginal ‘healthy’ status, with the individual otherwise ‘diseased’ (Methods and Fig. 1d). Accordingly, 
in AIM the log-probability of being totally ‘healthy’ is linear in the factors whose coefficients correspond to the 
logarithms of marginal ‘healthy’ probabilities, whereas the log-probability of having disease is nonlinear in these 
factors (Methods and Eq. 6). Thus, a plausible disease model (AIM) is inherently an asymmetric one, unlike LR. 
Moreover, AIM is consistent even when the aforementioned confounders are present, both theoretically and 
experimentally, as seen in the sequel.

Results
Validation of AIM on type 1 error using simulated datasets.  In the Supplement (Appendix D), we 
show that for all scenarios the empirical type 1 error produced by AIM closely approximates the expected type 1 
error, unlike LR. We also show for AIM that the Q-Q plot closely aligns with the diagonal line with no noticeable 
deviation even when the factors are correlated or imbalanced.

Comparative assessment of AIM on power of detecting interactions using simulated datasets.  
For power considerations, we simulated a comprehensive set of scenarios to examine how various model settings 
affect the performance (Appendix D and E). In most of the experiments, the ground-truth interaction models 
were based on an LR model with non-zero multiplicative interaction terms (Appendix D and E). The reason for 
this design is to assure that the LR approach is matched perfectly to the ground-truth interaction model and to 
show that the unsatisfactory power of LR is not in any way attributed to the interaction terms but rather is due to 
the LR baseline model. Note that even though AIM is not matched to the (LR) ground-truth interaction model 
(see Methods), AIM is guaranteed to be more powerful to detect synergistic interactions as shown in our exper-
imental results and newly proved theorems (Supplement, Appendix C.7). Also note that when the multiplicative 

Figure 1.  Mathematical formulation and illustrative comparison between LR and AIM. (a) Theoretical 
discrepancy between Logistic Regression (LR) prediction and ground truth probability in the case of missing 
variables (Appendix B). (b) Theoretical capability of the Asymmetric Independence Model (AIM) to accurately 
predict the ground truth probability in the case of missing variables. (c) Mathematical expression of LR. (d) 
Mathematical expression of AIM.

https://doi.org/10.1038/s41598-019-38983-z


3Scientific Reports |          (2019) 9:2455  | https://doi.org/10.1038/s41598-019-38983-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

interaction terms are used with full parameters, this gives the same ‘saturated model’ for both LR and AIM under 
the alternative hypothesis (Supplement, Appendix C.7.3). Because the interaction models are under the alterna-
tive hypothesis (e.g., based on a logistic regression model with a non-zero interaction term), the empirical power 
of AIM is directly, fairly compared with that of LR. In our assessment experiments, we use the same multiplica-
tive interaction terms to model the interaction between factors (interaction effect) in both LR and AIM under 
the alternative hypothesis, and then test any significant deviation of the alternative model’s likelihood from the 
baseline model’s likelihood.

Experimental results for different sample sizes show that AIM consistently exhibits higher power than LR; 
that is, to achieve the same power, AIM requires much fewer samples compared to LR (Fig. 2b). The relatively 
larger gain by AIM for smaller effect sizes with limited samples, which often occurs in real applications, is par-
ticularly beneficial (Supplementary Fig. S6a–c). Experimental results also show that AIM consistently produces 
higher power than LR with varying case-control ratio (Fig. 2c), allele frequency (Fig. 2d), and factor correlation 
(Fig. 2e). Concerning the impact of main effect size (additive portion) (Fig. 2f), we notice that AIM’s power 
quickly increases while LR’s power slightly decreases as the main effect size increases. These divergent trends may 
be expected because an interaction becomes more obvious when the main effect is accurately estimated by AIM. 
Moreover, it is practically advantageous that, to achieve both high sensitivity and specificity, AIM needs about 
half of the sample size required by LR (Fig. 2g). We again emphasize that, in all of these comparisons, the same 
(1000) data set realizations, based on a ground-truth LR model with interaction terms, were used to assess power 
for both LR and AIM. Thus, there is a fair comparative assessment of power between AIM and LR.

We also tested AIM on existing simulation data derived from real single nucleotide polymorphism (SNP) 
study data, as part of the New York City Cancer Control Project. This data set was used in previous studies on 
interaction detection in genome-wide association studies12,13. The data set includes sub-populations that possess 
one (or more) distinct interactions, with five interactions in total. The interaction models vary in the order of the 
interaction (up to 5-way interactions), genetic models, incomplete/complete penetrance, minor allele frequency, 
and marginal effects size. The interaction models jointly determine the disease status for each individual; thus, 
the disease status in this data set is generated in a fashion quite different from both the LR and AIM interaction 
models. Full details on this data set can be found in the literature12. Again, superior power of AIM is observed for 
this data set (Fig. 2h).

Comparative assessment of AIM in the presence of confounders using simulated datasets.  
Specificity in detecting interactions can be greatly hampered by missing factors, imperfect surrogates, and disease 

Figure 2.  Comparative performance assessment of AIM and LR using extensive simulation datasets. Our 
extensive simulation studies evaluate the type 1 error and detection power of AIM and LR in a controlled 
setting, under varying parameter settings which characterize the population being studied, as well as under 
the three confounding scenarios prominently identified in this paper – missing factors, surrogate factors, and 
disease subtypes. The goal is to understand the performance effects of different parameter settings and of these 
scenarios on both models. (a) The empirical type I error (evaluated when the null hypothesis of no interaction 
is valid) at significance level 0.05. The gray region is the 95% confidence interval. (b) Power versus sample size 
with interaction effect size at an odds ratio of 1.5; and case fraction of 50% and the main effect size of 1.5 for 
both risk factors. (c) Power versus case-control ratio. The fraction of cases is varied by adjusting the baseline 
parameter in the LR model possessing an interaction term. The sample size is 2000 and the interaction effect size 
is 1.5. The main effect size for both risk factors is 1.5. (d) Power versus frequency of risk allele, with sample size 
2000, main effect size 1.5 for both risk factors, interaction effect size 1.5, and case fraction at 50%. (e) Power to 
detect an interaction versus correlation between the risk factors for AIM and LR models; both methods achieve 
their greatest detection power when risk factors are uncorrelated. (f) Power versus main effect size, with sample 
size 1000, interaction effect size 1.5, and case fraction 50%. (g) Sample size versus p-value threshold, with main 
effect size 1.5, interaction effect size 1.5, and case fraction 50%. (h) Statistical significance (log p-values) of five 
ground-truth interactions, as detected by the AIM and LR models (Appendix D–E).
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heterogeneity, where ‘interaction’ is most commonly defined as a departure from additivity in a linear baseline 
model in which these (‘imperfect’) factors act independently to determine the response (Fig. 1a,b). We inves-
tigated the impact of such confounders on the type 1 error both theoretically (Methods) and experimentally 
(Supplementary Fig. S4). Using extensive simulations with various model parameter combinations, we show that 
for all scenarios AIM maintains accurate and robust empirical type 1 error rates that match almost perfectly 
the theoretical significance level, in the presence of missing factors (Fig. 3a), imperfect surrogates (Fig. 3b), and 
disease heterogeneity (Fig. 3c). In contrast, for the same experimental settings LR produces inflated type 1 error 
rates (Fig. 3a–c) attributable to its mathematical inconsistency (Appendix B), resulting in more unwanted false 
positives specifically with larger main effect sizes.

Application of AIM on real venous thrombosis dataset detects interaction between variants of 
factor V and prothrombin contributing to increased risk of venous thrombosis.  As an example of 
gene-environment interaction, the synergistic influence of thrombophilic mutation (R506Q and G20210A) and 
oral contraceptive on venous thrombosis is well-established by multiple epidemiological studies (Table 1), with an 
observed odds ratio of 27.4 compared to the additive effect odds ratio of 9.3414,15. Mechanistically, R506Q substi-
tution in factor V involves one of three sites that are cleaved by activated protein C, resulting in augmented gen-
eration of thrombin; and G20210A mutation in the 3′ untranslated region of the prothrombin gene is associated 
with producing thrombin and activating factor Va16. In addition, oral contraceptives have long been recognized 
as a risk factor for venous thrombosis, with significant effect on producing thrombin via decreasing factor V and 
increasing prothrombin. Our AIM analysis of this case confirms the synergistic interaction with a p-value of 6.2e-
4, much more confidently than the p-value of 0.021 assessed by LR. This result confirms not only the previously 
reported synergistic interaction but also AIM’s ability to detect it correctly and surely (Methods).

Application of AIM on real esophageal cancer dataset detects smoking-alcohol interaction con-
tributing to increased risk of esophageal cancer.  Epidemiological studies have shown the synergistic 
interplay of tobacco smoking and alcohol consumption on various cancers. Specifically, studies have shown that 
the combination of the two factors significantly increased esophageal cancer risk more than either of them sep-
arately, where alcohol may act as a cocarcinogen that enhances the carcinogenic effects of tobacco smoking17,18. 
However, the previously reported findings were inconsistent in that the evidence was significant in women and in 
all subjects but not in men (Table 2)18,19. Separately analyzing the groups of men, women, and all (Methods), AIM 
produces consistent evidence across these groups with p-values of 5.43e-6, 3.1e-3, and 2.11e-8, respectively. On 
the same dataset, contradictory results remain for LR (Methods).

Application of AIM on real esophageal cancer dataset detects ALDH2-alcohol interaction con-
tributing to increased risk of esophageal cancer.  Both the ALDH2 gene and alcohol consumption are 
known risk factors associated with esophageal cancer. Heavy alcohol consumption has been found to be a risk fac-
tor for esophageal cancer in many epidemiological studies20. When alcohol is metabolized in the liver, it is broken 
down to acetaldehyde, a carcinogen that binds to cellular protein and DNA. The ALDH2 protein is responsible for 
degrading the carcinogen, and a functional polymorphism in the ALDH2 gene significantly reduces such capac-
ity21. We re-analyzed the data of ALDH2-alcohol interaction effect on esophageal cancer to reinterpret marginally 
significant ALDH2 and alcohol consumption on the basis of their synergistic effects (Fig. 4). The significance 

Figure 3.  Empirical type I error rate at significance level 0.05 for LR (dark grey) and AIM (light grey). (a) A few 
missing factors with large effect size; (b) Surrogate markers with strong marginal effects; (c) Three subtypes.

Thrombophilic 
genetic risk mutation

Oral 
contraceptive Controls Cases

Odds 
ratio

− − 444 118 1

− + 166 86 1.95

+ − 33 42 4.79

+ + 7 51 27.4

Table 1.  Legnani et al. study: risk of venous thrombosis according to the presence of thrombophilic genetic 
mutation and the use of oral contraceptive.
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assessed by AIM produces a p-value of 7.4e-6, compared to a p-value of 2.5e-3 with LR, an almost thousand-fold 
improvement (Methods).

Application of AIM on real bladder cancer dataset detects NAT2-smoking interaction contrib-
uting to increased risk of bladder cancer.  Multiple carcinogens have been found in tobacco smoke, and 
these carcinogens may undergo both activation and de-toxification. The NAT2 gene encodes an enzyme that 
functions to both activate and deactivate arylamine and hydrazine carcinogens. The association of the NAT2 
slow acetylator with bladder risk, caused by the polymorphisms in the NAT2 gene, is quite well established22. We 
re-analyzed this bladder cancer dataset to confirm the NAT2-smoking interaction. The significance assessed by 
AIM produces a p-value of 0.0011, compared to a p-value of 0.015 with LR (Table 3). Multiple previous studies 
have consistently shown the interaction between the NAT2 gene and smoking on bladder cancer, where such 
interaction is evident because the observed odds ratio is 2.89 while the odds ratio in the presence of both factors 
is predicted to be 1.69 by the multiplicative model (Methods).

Discussion
Detecting synergistic interactions among risk factors is a fundamental task in clinical and population research. 
Few previous studies have addressed the problem of detecting interaction among known genetic or environmen-
tal factors3, and without exception, they adopt the LR framework3–5. However, while hypothesis testing using 
LR with interaction terms is a convenient solution and is widely used in practice, the LR framework is poorly 
powered and ill-suited under several commonly occurring circumstances, including missing or unmeasured risk 
factors, imperfectly correlated surrogates, and multiple disease sub-types. The weakness of LR in these settings 
stems from the way the null hypothesis is defined (Appendix B).

In this report we propose the AIM framework as a biologically-inspired alternative to LR, based on the key 
observation that the mechanisms associated with acquiring a “disease” versus maintaining “health” are asymmet-
ric. We have shown that AIM analysis on benchmark real datasets not only more confidently confirms known 
interactions but also successfully reconciles inconsistent interactions. Across all of our real data set experiments, 
AIM demonstrated enhanced power compared to LR. We further checked the types of interactions and found 
that they are all synergistic – in all of these applications, carrying double risk factors engendered larger risk than 
expected based just on additive effects. Supported theoretically by newly proved theorems and experimentally by 
comprehensive simulation studies, we conclude that the extra power and robust specificity gained by AIM relative 
to that of LR is attributable to two properties rooted in the AIM formulation: its asymmetry and mathematical 
consistency. To the best of our knowledge, AIM represents the first model that mathematically preserves the 

Alcohol Smoking

Men Women All

Control Case
Odds 
ratio Control Case

Odds 
ratio Control Case

Odds 
ratio

never never 189 8 1 234 83 1 423 91 1

never ever 298 61 4.84 55 27 1.38 353 88 1.16

ever never 144 24 3.94 63 29 1.30 207 53 1.19

ever ever 777 562 17.1 19 36 5.34 796 598 3.49

LR (p) 0.81 0.014 5.10e-5

AIM (p) 5.43e-6 0.0031 2.11e-8

Table 2.  Joint association of alcohol drinking and tobacco smoking statuses with esophageal cancer risk.

Figure 4.  Re-analysis of the interaction between the ALDH2 gene and alcohol consumption.

NAT2 acetylation 
genotype

Smoking 
status Controls Cases

Odds 
ratio

Fast never 131 66 1

Fast ever 362 340 1.86

Slow never 199 91 0.91

Slow ever 438 637 2.89

Table 3.  Joint association of tobacco smoking status and NAT2 acetylation genotype with bladder cancer risk.
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asymmetry between being totally ‘healthy’ and ‘non-healthy’10 and explicitly relates its model coefficients to mar-
ginal ‘healthy’ probabilities. As a result, AIM guarantees a larger likelihood difference for synergistic interactions 
under alternative versus null hypotheses than that of LR (Appendix C–E).

Methods
LR overview.  Baseline LR posits a log-linear odds in terms of the posterior probability on healthy/diseased 
status, i.e.,

∑α α= + =

x
x

P
P

xlog
(diseased )
(healthy )

,
(1)i

N
i i

LR

LR
0 1

where x is the vector of N binary health status variables, and α is the vector of regression coefficients. In our dis-
cussion, ‘xi = 1’ means that the ith disease factor is active, and ‘xi = 0’ means that the ith disease factor is inactive. 
By some simple mathematical manipulations, LR can also be expressed as
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α α
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Because LR is adopted mainly for mathematical convenience but not biological plausibility, the vital and sta-
tistical relationship between the marginal |P x(healthy )iLR  and the overall |xP (healthy )LR  probabilities on health 
status is largely lost.

LR limitations.  Note that (2) and (3) have the same form, i.e. LR is symmetric with respect to disease status. 
This symmetric form is not biologically plausible considering causality of diseases. Specifically, a common con-
cept is that one may get the disease if any one of the risk factors are penetrant or active, whereas being healthy 
requires all of the factors to be inactive. This conceptual model is inherently asymmetric with respect to the two 
health statuses, diseased and healthy. In contrast, LR makes no distinction in mathematically defining diseased 
or healthy subjects.

Moreover, LR is invalid in the presence of many common confounders in practice. Because the prevailing 
scenario regarding complex diseases is that we often have incomplete knowledge of the true risk factors, the major 
confounders include missing/unmeasured factors and imperfect surrogates. We have shown that the LR paramet-
ric form is not invariant to these two effects and there is no way to “correct” LR for these potentially confounding 
effects in practice. For example, suppose there are three binary causal factors; when all three factors are observed 
we have model LR-3; Suppose now that the third risk factor is missing. If LR is invariant to missing factors, then 
marginalizing out the third risk factor from LR-3 should yield a model with the LR parametric form based on the 
two remaining risk factors. However, it is shown that the marginalized model does not have the LR parametric 
form (Fig. 1c and Appendix B). In a similar fashion, also by counterexample, we have shown that the prediction 
of health status by LR is not invariant to imperfect surrogates. In conclusion, in the presence of these common 
confounders, LR is theoretically biased which, as will be shown experimentally in this report, results in either 
inflated type 1 error or reduced power or both (Appendix D–E).

Asymmetric independence model.  In developing the AIM null hypothesis model, we assume that risk 
factors independently exert effects on health status, expressed mathematically as

∏| = |=x xP c P c( ) ( ), (4)i
N

i i1

where ∈c {0/healthy, 1/diseased}i  is the latent ‘local’ disease status random variable coupled to each factor xi, i.e., 
with the ci assumed statistically independent of each other given the status of xi. We also assume that the factor 
being active is required for the local status to be ‘diseased’, i.e., = | = =P c x( 1 0) 0i i ; on the other hand, the active 
factor probabilistically causes the local status to be “diseased” based on the conditional probability 
φ = = | =P c x( 1 1)i i i . As one example, in one of the two esophageal cancer studies, there are two binary factors, 
x1 and x2, representing presence/absence of smoking and alcohol consumption, respectively. Each of these factors 
is coupled to a local disease status variable, ci, =i 1, 2. The probability = | =P c x[ 1 1]1 1  is the propensity for 
disease ( =c 11 ) given that an individual is a smoker. Likewise, there is a propensity for disease given that the 
individual is an alcohol consumer, = | =P c x[ 1 1]2 2 . We further assume that an overall healthy status occurs only 
if every active factor does not cause its local status to be ‘diseased’, expressed mathematically as

∏= | = = = |=xP c P c P c x( 0 ) ( 0) ( 0 ), (5)i
N

i i0 1

where c0 is a ‘background’ status accounting for sporadic disease occurrence that cannot be explained by any 
active factor, with probability φ = =P c( 1)0 0 . Then, AIM can be expressed as
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∑β β| = − + ={ }xP x(diseased ) 1 exp , (7)i
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i iAIM 0 1

where the regression coefficient can be explicitly interpreted as the logarithm of the local healthy probability, i.e., 
β = − = | = = = | =P c x P c xlog[1 ( 1 1)] log ( 0 1)i i i i i .

Because mechanisms of being healthy and diseased are different, in contrast to LR, AIM is specifically formu-
lated to be asymmetric with respect to disease status, with the log-probability of being healthy a linear function 
of the factors (6) whereas the log-probability of being diseased is clearly nonlinear (7). Furthermore, AIM is sup-
ported by several well-accepted biological models, including the heterogeneity theory10 and the two-hits theory 
of cancer11 (Appendix C.4). While we have argued that AIM is more biologically plausible than LR, we believe the 
most compelling support for AIM comes from the invariance of this model, unlike LR, in the presence of com-
mon confounders such as missing factors, imperfect surrogates, and disease heterogeneity. We emphasize that no 
modifications of the model given in (6) and (7) are needed to achieve AIM’s invariance to these confounders. The 
mathematical proofs of AIM’s invariance to these common confounders are given in (Appendix C.5–7). We also 
point out that, similar to the logistic regression model, AIM can readily account for covariate effects, if observed, 
by including extra terms corresponding to these covariate factors. Lastly, we have shown that maximum likeli-
hood estimation of the AIM model is a convex optimization problem and we have developed an efficient learning 
algorithm (Appendix C.2–3).

Likelihood function for AIM.  Consider a case-control population = = …X i Mx I{( , ), 1, , }i i  where x i is 
the factor vector for the i-th subject and =I 1i  for a case and =I 0i  for a control. Let =y x[1 ]i i

T and = b bb [ ,0 1
… b, , ]N . The likelihood of X under the AIM model is:

= ∏ = | = |=
−XP P C P Cx x[ ] [ 1 ] [ 0 ]AIM i

M
AIM i AIM i{ 1}

I 1 Ii i, with the log-likelihood given by: ≡bL( ) log
= ∑ += – –XP eb I b y I( [ ; ]) ((1 ) log(1 ))T

AIM i
M

i i i
b y

1
T

i .
This is a convex function of the parameter vector b (Appendix C.2) with the resulting maximum likelihood 

estimation (MLE) learning problem a convex optimization problem, amenable to finding the global maximum.

Likelihood ratio test for AIM.  Given a case-control population X, one performs MLE to learn the AIM null 
hypothesis model (no interaction), with log-likelihood XP blog( [ ; ])nullAIM . To test for an interaction between 
factors xi and xj one adds an interaction term of the form β x xij i j to the AIM posterior in equations (6) and (7) and 
MLE-learns the AIM alternative posterior, with parameter vector balt and log-likelihood XP blog( [ ; ])AIM alt . A 
s t andard  log- l ike l iho o d rat io  tes t  ( t he  s ame one  appl ied  for  LR)  i s  t hen  appl ied  to 

−X XP Pb b2(log( [ ; ]) log( [ ; ]))AIM alt AIM null  since the AIM log-likelihood ratio is asymptotically chi-squared.

Evaluation of type 1 error.  Extensive experiments evaluating type 1 error for AIM and LR are found in the 
Supplementary Information.

Theoretical Characterization of Interaction Detection Power for AIM and LR.  Extensive experi-
ments evaluating detection power for AIM and LR are found in the Supplementary Information, with a theoreti-
cal proof of AIM’s superior power given in Appendix C.7.

Detecting interaction in venous thrombosis dataset.  The interaction between thrombophilic muta-
tions and oral contraceptive is well-established, with multiple epidemiological and mechanical studies14,15,23,24. In 
the Legnani et al. study, the odds ratio associated with the use of oral contraceptive but no thrombophilic genetic 
risk mutation is 1.95, and the odds ratio associated with genetic defects but no use of contraceptive is 4.79. There 
is strong evidence of interaction. Indeed, by applying LR, we get a p-value of 0.021, which is statistically signifi-
cant. There are 947 subjects in the Legnani et al. study. When all the frequencies of the risk factors and the effect 
size are kept the same, we estimate that, to achieve the 0.05 significance level, LR requires 676 subjects, while AIM 
needs only 303 subjects. For the Martinelli et al. study, the odds ratio associated with the presence of both risk 
factors is expected to be 11.9, compared to the observed value of 18.1. Both studies have the same effect direction, 
that is, the observed odds ratio is larger than the expectation. Due to the limited sample size, the conclusion is not 
statistically significant in the Martinelli et al. study. The p-value generated by LR is 0.618 and the p-value obtained 
from AIM is 0.183. To achieve the 0.05 significance level, the estimated sample size associated with LR is 4391, 
while AIM requires just 614 subjects.

Detecting smoking-alcohol interaction in esophageal cancer dataset.  The data are divided into 
three groups – males, females, and all subjects. In each group, we calculate the interaction effect based on LR and 
AIM. We can see that the new model consistently generates smaller p-values than LR. In the males group, the 
p-value is 5.43e-6 based on the new model, while it is 0.81 for LR and far from being considered significant. We 
also estimate the sample sizes required for the two models to achieve the 0.05 significance level, again assuming 
that all the frequencies of the risk factors and the effect size are kept the same. In the males group, LR needs 
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131413 subjects, compared to just 374 subjects required for AIM. In the females group, LR needs 339 subjects 
and AIM needs 235. In the all group, 596 subjects are necessary for LR, while 312 subjects are sufficient for AIM.

Detecting ALDH2-alcohol interaction in esophageal cancer dataset.  The data were collected from 
the first study of the ALDH2-alcohol interaction effect on esophageal cancer. The original report discovered the 
interaction effect via LR, which was confirmed by follow up studies to be a true interaction21. The distribution 
of the cases and the controls are presented in Fig. 4. There are in total 343 subjects in the study. When all the fre-
quencies of the risk factors and the effect size are kept the same, we estimate that, to achieve the 0.05 significance 
level, LR requires 142 subjects while AIM needs only 64 subjects.

Detecting NAT2-smoking interaction in bladder cancer dataset.  Multiple studies have con-
sistently shown the interaction between the NAT2 gene and smoking on bladder cancer. Table 3 presents the 
non-meta-analysis study with the largest sample size. Choosing the bladder cancer risk for “never smoked” and 
NAT2 fast acetylator as the reference, the odds ratio associated with “smoked before” (i.e., an individual who has 
smoked before) and NAT2 fast acetylator is 1.86, and the odds ratio associated with “never smoked” and NAT2 
slow acetylator is 0.91. According to the multiplicative model, the odds ratio associated with the presence of both 
risk factors should be 1.69, while the observed odds ratio is 2.89. So an interaction is evident. There are 2264 
subjects in the study. When all the frequencies of the risk factors and the effect size are kept the same, we estimate 
that, to achieve the 0.05 significance level, LR requires 1449 subjects and AIM needs 796 subjects.
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