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Jordan–Wigner transformations for 
tree structures
Stefan Backens1, Alexander Shnirman1,2 & Yuriy Makhlin3,4

The celebrated Jordan–Wigner transformation provides an efficient mapping between spin chains 
and fermionic systems in one dimension. Here we extend this spin–fermion mapping to arbitrary 
tree structures, which enables mapping between fermionic and spin systems with nearest-neighbor 
coupling. The mapping is achieved with the help of additional spins at the junctions between one-
dimensional chains. This property allows for straightforward simulation of Majorana braiding in spin or 
qubit systems.

The well-known Jordan–Wigner transformation relates spin-1
2

 operators to fermionic creation and annihilation 
operators. Thereby, it allows for mapping between spin and fermionic systems. It was originally used by Jordan 
and Wigner to define fermionic operators in the second quantization1. The Jordan–Wigner transformation intro-
duces non-local “string operators” to transform commuting operators of different spins into anti-commuting 
fermionic operators, and, in general, does not preserve locality. Nevertheless, it maps even-parity local fermionic 
Hamiltonians to local spin Hamiltonians; moreover, certain spin Hamiltonians in 1D (one dimension) are 
mapped to free fermionic Hamiltonians, which are readily solvable2.

Generalizations to higher dimensions were discussed in recent decades3–8. They map (even-parity) fermionic 
Hamiltonians to spin Hamiltonians, but even local quadratic fermionic terms are mapped onto operators which 
involve many, in principle infinitely many, spin operators (though in some cases3,5 the weight of the involved spins 
may slowly decay with distance). One may also consider introducing ancillary degrees of freedom. For instance, 
Verstrate and Cirac7 suggested doubling the number of degrees of freedom for a 2D lattice to achieve local, but 
not necessarily simple Hamiltonians in the spin language.

Thus, free fermionic Hamiltonians are often mapped to complicated operators in the spin language. In ref.9, a 
modified Jordan–Wigner transformation was proposed, such that a three-leg star graph of free fermions (with 
nearest-neighbor hopping) could be mapped to a three-leg star graph of spin chains (with nearest-neighbor cou-
plings). The mapping required the introduction of an extra spin-1

2
 in the vertex of the spin graph, coupled to the 

three spin chains locally via a specific 3-spin coupling. Furthermore, in ref.9 an alternative scenario was described, 
in which a three-leg spin graph with exclusively 2-spin interactions was mapped to a Kondo-like system of fermi-
onic chains coupled by one spin (cf. application in refs10,11). Here, we demonstrate that these transformations can 
be generalised to binary-tree structures of 1D chains, connected, acyclic graphs with no more than three edges at 
each vertex. Furthermore, we argue that this result can be directly generalized to generic, non-binary trees.

This kind of transformation is of special interest in particular since it can be used to simulate the physics and, 
notably, non-abelian statistics and braiding of fermionic Majorana modes12,13 in a (topologically non-protected) 
spin system. For the case of a T-junction geometry with a single topological segment in the chain providing two 
Majorana modes, this implementation was explicated in ref.14. Here we describe braiding operations between 
Majorana modes belonging to different topological segments in a system where the number of segments is arbi-
trary. A binary-tree structure may be viewed as consisting of many T-junctions; such structures may be useful 
for implementation (physical simulation) of the Majorana braiding operation15,16 with applications in topolog-
ical quantum computing. We also argue that such spin systems mimic fermionic quantum computers17, which 
can be efficient, e.g., in quantum-chemistry simulations. Namely, braiding or other logic gates between remote 
qubits naturally include Jordan–Wigner string operators, making these qubits fermionic. Encoding the popula-
tion of molecular orbitals in such qubits (see e.g., refs18,19) thus brings a considerable advantage for the computing 
algorithms.
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An explicit description of a Majorana braiding operation between two topological segments, implemented in 
the corresponding spin system, is given in the section Methods.

Results
Geometry and notations.  We consider spins on a tree-like lattice of the type depicted in Fig. 1. Each edge 
of the tree is a one-dimensional spin chain. The chains are connected at the vertices, and the whole structure 
indicates the notion of locality (in fact, we focus on nearest-neighbor couplings). In binary trees, they are con-
nected in triples and, in general, interactions between boundary spins from all three chains are allowed, so-called 
Δ-junctions10, indicating all three pairwise couplings. In the particular case when one of the three couplings in 
the junction vanishes, we obtain a T-junction, where all three chains have a common boundary spin. We also 
consider fermions on the same tree and discuss methods to convert between spin and fermionic systems.

A priori, the tree structures do not have a distinctive root and the edges do not have orientation. For the 
purposes of the transformation, however, we choose an arbitrary vertex as a root and assign to each edge (chain) 
an orientation away from the root. Based on this hierarchy, we introduce a notation for our further discussion 
by assigning a name to each vertex and chain in the tree: The root is denoted “0” and the three outgoing chains 
acquire numbers 1, 2, and 3. Then, step by step, each other vertex acquires a name α, identical with the incoming 
chain, while the two outgoing chains are assigned a longer name, αβ, with β = 1 or 2, see Fig. 1.

According to the orientation, the spins or fermions in each chain α are numbered from 1 to its length Lα; they 
are represented by the Pauli matrices σα j( )x y z, ,  and the fermionic creation/annihilation operators α α

†c j c j( )/ ( ), respec-
tively. To construct a fermion–spin transformation, we shall need ancillary spin operators, one per chain, which 
we assign to the vertex at the beginning of the chain. The corresponding Pauli matrices α

βS  are labelled with the 
vertex index α and the chain number 1, 2, or 3. An example is depicted in Fig. 1. The spin operators αS1,2,3 at each 
vertex α are spin components of the ancillary spin at this vertex.

To describe a fermion-spin transformation, we use separate Jordan–Wigner transformations for each chain α,

∏η σ σ=










α α α α

=

−
−c j j j( ) ( ) ( )

(1a)k

j
z

1

1

∏η σ σ=










α α α α

=

−
+†c j k j( ) ( ) ( ),

(1b)k

j
z

1

1

where σ σ σ= ±α α α
± j j i j( ) [ ( ) ( )]x y1

2
. The Klein factors ηα, with η =α 12 , are to be chosen to ensure proper (anti-)

commutation relations between operators in different chains20,21; they are discussed later. Similar to the standard 
Jordan–Wigner transformation, these relations ensure that a local quadratic fermionic Hamiltonian is also a local 
operator in the spin language (this does not hold if cycles are present). In particular, a useful corollary of these 
definitions,

σ = − = −α α α α α
† †j c j c j c j c j( ) 2 ( ) ( ) 1 1 2 ( ) ( ) , (2)z

shows that a (magnetic) field in z-direction corresponds to a local chemical potential at a fermionic site.

Free fermions and 3-spin couplings.  To complete the description of the transformation, we need to define 
the operators ηα. For the chains directly at the root, β = 1, 2, 3, we define the transformation exactly like in ref.9:

Figure 1.  Binary-tree structure consisting of fermionic or spin chains. In each chain, spins or fermions are 
numbered in the direction of the arrow. The descendent chains in the tree are identified by sequential numbers 
that are appended to the label of their parent chain. The root is the only vertex with no incoming edge and may 
have three outgoing edges. The notations for the vertices and the chains are explained in the text and evident 
from the diagram.
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η = .β
βS (3a)0

For any other chain, denoted by αβ with the parent chain α and β = 1, 2, the following definition applies:

∏η η σ=
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These definitions satisfy the conditions stated in the previous section.
Let us now consider various nearest-neighbour quadratic fermionic couplings and their spin counterparts 

under the constructed transformation. Within any one-dimensional chain, the Jordan–Wigner transformation is 
known to convert local quadratic fermionic Hamiltonians into local quadratic spin Hamiltonians; the factors 
η =α 12  in eq. (1) do not affect this. Therefore we will examine only the couplings at the vertices between different 
chains. There are two kinds of vertex couplings: those between a parent and a descendant chain and those between 
two descendant chains of the same parent. A coupling term of the first kind between chains α and αβ (with β = 1, 
2) has the general form

= + + . .α αβ α α αβ α α αβ
†H uc L c tc L c( ) (1) ( ) (1) h c , (4a),

which is transformed, using the relation (1), into

σ σ σ σ= − + . .α αβ α
β

α α αβ α α αβ
− − + −H S u L t L[ ( ) (1) ( ) (1) h c] (4b),

S

A coupling of the second kind between chains αβ and αγ (here β ≠ γ; β and γ can be 1 or 2; at the root, α is empty 
and β γ =, 1, 2, 3 with ancillary spin operators βS0 ) has the general form

= + + . .αβ αγ αβ αγ αβ αγ
†H uc c tc c(1) (1) (1) (1) h c , (5a),

which is similarly mapped to

H S S u t
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where εβγν  is the Levi-Civita symbol.
Let us note that the transformation described can be generalized to arbitrary tree structures, beyond binary 

trees. Indeed, any higher-order vertex (with more that three edges) can be thought of as built out of three-edge 
vertices. For instance, Fig. 1 can be viewed as a five-edge vertex, which allows us to define the Klein factors for 
all chains outside of this figure: In that case, the internal chains in Fig. 1 are of length zero and do not contribute 
products to the Klein factors, but coupling terms involving more than three spins may appear.

XY spin system and fermionic Kondo model.  In this section, we consider a tree structure of spins with 
local XY couplings and use the Jordan–Wigner transformation backwards in order to find the corresponding 
fermionic problems. For a single 1D chain, the Jordan–Wigner transformation maps these to free fermions. In 
order to find the corresponding fermionic Hamiltonian for a tree structure, we use the generalized Jordan–
Wigner transformation defined in eqs (1) and (3). These involve ancillary spin operators α

βS , which commute with 
local spins σ(j), but not with the fermions c(j). We show below that the original XY spin model is equivalent to a 
Kondo-type model on the same tree with one impurity spin per vertex.

To simplify the resulting fermionic Hamiltonians, we introduce, instead of S, other spin operators at the inner 
vertices, α

β
S . We define
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where we introduced the notation

∏ σ=α α
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for the fermionic parity of chain α. As the products consist of Pauli matrices σz only, operators α
βS  inherit the 

commutation relations of α
β
S . In other words, S  are spin-1/2 operators, and one can verify that they commute with 

the fermionic operators.
Let us illustrate this with the example of Fig. 1:

= S S P P (8a)0
1

0
1

2 3
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(the grouping highlights the tree structure),
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The string (parity) operators guarantee that α
βS  commute with the fermionic operators of all chains.

Again, the Jordan–Wigner transformation is known to map XY-coupled spins in a 1D chain to free fermions, 
so we only have to examine the two kinds of vertex couplings, as we did in the preceding section. They result in 
Kondo-like couplings of the fermionic chains:

σ σ σ σ= + + . .α αβ α α αβ α α αβ
− − + −H u L t L( ) (1) ( ) (1) h c (11a),
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Thus, inter-chain couplings are controlled by the ancillary spins.

Majorana braiding and the spin representation.  In this section, we are interested in spin implementa-
tion of free-fermion models on tree structures. These can be applied, in particular, to realize (physically simulate) 
Majorana qubits and quantum logical operations using ordinary quantum bits.

Majorana modes arising in the topological phase of the Kitaev chain22, a one-dimensional fermionic system, 
can be braided in a T-junction geometry by local tuning of the chemical potential15. One can see from the discus-
sion above that similar to refs9,14, the corresponding spin model involves Ising couplings within the chains, the 
ancillary-spin-controlled Ising couplings at the junctions as well as a transverse magnetic field.

In the following, the spin indices are swapped for convenience, to ensure the resulting zz Ising couplings and 
the transverse field in the x direction. Furthermore, we use fermionic Majorana operators γα(m), which are con-
nected to the usual fermionic creation and annihilation operators c†, c in the following way: 
γ − = +α α α

†j c j c j(2 1) ( ) ( ) and γ = − −α α α
†j c j c j(2 ) i[ ( ) ( )]. They satisfy the anti-commutation relations,

γ γ δ δ=α β αβ+m n{ ( ), ( )} 2 , (13)mn

and allow us to express the transformation in a convenient form:
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σ γ γ⇒ = − .α α αj j j( ) i (2 1) (2 ) (14c)x

The Klein factors ηα are those defined in equations (3).
The transformation relates the topological (nontopological) phase in the fermionic chains to the ferromag-

netic (paramagnetic) phase of the spin system (for more details see Methods). Now we can simply translate into 
the spin system the unitary operator produced by, e.g., counter-clockwise braiding of Majorana modes γA, γB

15:

π γ γ=






U exp

4 (15)A B

(how this can be implemented may depend on the tree structure and the initial positions of γA and γB). In the case 
of two Majorana modes that are provided by one topological segment located in a single chain before and after the 
braiding, the Klein factors cancel in the spin representation, so the additional spin mediating the coupling at the 
junction does not influence the result of the operation and is left unaffected at the end14.

Braiding neighbouring Majorana modes from two topological segments in different chains corresponds to a 
more complicated operation in the spin system. By choosing, e.g., γ γ= −m(2 1)A 1  and γ γ= −n(2 1)B 3 , we 
obtain:
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if the spins outside the ferromagnetic intervals are polarised in the x-direction. When expressed in terms of the 
Pauli matrices τ for the two ‘topological’ qubits involved (two ferromagnetic intervals, cf. ref.14), this gives

π τ τ=





−






.U S(1, 3) exp i

4 (17)
y z z

0 1 2

A detailed description of this operation in the spin language is given in the section Methods.
However, for two ‘topological’ intervals in the same chain we obtain a similar expression, but without the 

intermediate ancillary spin:

π τ τ=




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−






.U exp i

4 (18)
y z

1 2

Thus one obtains a two-qubit operation.
In a more general situation with arbitrary initial position of two distant braided boundaries (and associated 

Majorana modes), the braiding operation involves, apart from these two qubits, the ancillary spins at all interme-
diate vertices as well as the parity (qubit-flip) operators ∏σx for all intermediate qubit intervals. Thus, the braiding 
implements not a two-qubit operation but a multi-qubit operation (and also entangles qubits with the ancillas).

Here a few comments are in order: First, to achieve direct two-qubit gates between distant ‘topological’ 
qubit intervals, one can complement the described braiding operation with further operations involving inter-
mediate qubits. However, for the purposes of quantum computation one does not necessarily need two-qubit 
logic gates between distant qubits since two-qubit gates between neighbours are sufficient, as they form a 
universal set of gates together with single-qubit operations. Furthermore, one can also view this subtlety from 
a different perspective. Instead of thinking in terms of the qubit description, one can describe the operations 
in terms of the fermionic (Majorana) modes involved. Then the braiding operations implement two-fermion 
gates, and one deals with fermionic quantum computation. This viewpoint may be useful for simulations of 
fermionic Hamiltonians (see e.g. ref.18), including many-body solid-state models and complex individual 
molecules.

A further remark concerns the symmetry and the braiding procedure: Each of the chains considered 
belongs to the BDI symmetry class23, with a time-reversal-type symmetry   such that = 12 . In a single 
chain (19b), a Majorana zero mode appears at each boundary between topological and non-topological 
regions. A vertex connecting three chains can be viewed as an edge of a 1-D system. Here the symmetry 
becomes crucial24,25. If the   symmetry is preserved by the chain coupling at the vertex, the edge (vertex) 
carries an integer () ‘topological’ charge. In our case this allows for configurations with more than one 
Majorana zero mode at the vertex and an unwanted extra degeneracy when during the braiding procedure 
this vertex connects two or three ‘topological’ regions. A  -breaking chain coupling, however, places the 
system to the D class with a 2 invariant, and typically one (or no) Majorana zero mode exists at the vertex 
(cf. ref.15). In this case, no extra degeneracies arise during the braiding operations. In particular, this is the 
case for the coupling considered in ref.14.
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Discussion
The Jordan–Wigner transformation maps free fermionic Hamiltonians to local spin Hamiltonians. Furthermore, 
a nearest-neighbour hopping term is mapped to a local quadratic spin term. Some generalizations of the Jordan–
Wigner transformation to higher-dimensional lattices were proposed3–6, which, however, map a local hopping 
fermionic term to a spin term involving many, often infinitely many, spins on distant sites. Other approaches (e.g. 
ref.7) use ancillary degrees of freedom but also map free fermionic terms to fourth- or higher-order spin terms.

On one hand, this implies that only some unusual spin models may be analysed with the help of such trans-
formations. On the other hand, one could use a spin–fermion mapping to implement a fermionic model in a 
system built of spins (or qubits). With the motivation to implement fermionic (Majorana) degrees of freedom 
in a realistic qubit system, we have extended an earlier result of ref.9 to arbitrary tree structures. The resulting 
transformation maps nearest-neighbour fermionic terms to nearest-neighbour spin terms. Thus, it allows for an 
implementation of the Majorana physics in tree structures built out of qubit chains, extending the results of ref.14. 
This transformation provides, e.g., a spin equivalent of Majorana braiding operations. We have further shown that 
this construction can be generalized to arbitrary tree structures.

It must be noted that these mappings involve an enlargement of the original Hilbert space, due to the addition 
of spins α

S  to the system. Thus, the degeneracy of all states is multiplied by a factor of 2 to the power of the number 
of inner vertices, but the accuracy of the mapping is not affected.

Finally, we would like to mention that experimental realizations of the 3-spin interactions crucial for our 
mapping were discussed in the literature (see, e.g., refs14,26).

Methods
Spin representation of two-interval Majorana braiding.  To obtain a spin representation for a fermi-
onic T-junction of Kitaev chains, we use the transformation given in eq. (14). This yields14:

∑= +
α

α
=

H H H
(19a)
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3

0, int

∑ ∑σ σ σ= − − +α α α α α
= =

−α α

H h j j J j j( ) ( ) ( ) ( 1)
(19b)j
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0,
1 1

1

∑ ε σ σ= −
αβγ

αβγ
αβ

γ
α βH J S1

2
(1) (1),

(19c)
S z z
int 0

a system of Ising spin chains with a local transverse magnetic field hα(j), which corresponds to the locally tunable 
chemical potential in the fermionic system. Assuming J > 0, any interval of spins with h J in one of the chains 
is ferromagnetic, whereas h J results in a trivial (paramagnetic) phase. The three chains are linked by the com-
ponents of an additional central spin S0 via 3-spin couplings of strength =αβ βαJ J . This structure is depicted in 
Fig. 2.

Now we consider the spin equivalent of braiding Majorana modes from two different topological intervals in 
the fermionic system. The topological intervals and adiabatic shifts of their boundaries within a chain can be 
translated to the ferromagnetic intervals in the spin representation exactly as for a single topological interval14: 
The fermionic-parity ground states | 〉 | 〉0 , 1  of a topological interval correspond to linear combinations

≡
↑↑↑ + ↓↓↓

0
2

,
(20a)

≡
↑↑↑ − ↓↓↓

1
2 (20b)

Figure 2.  Ising spin chains in a T-geometry. A fermionic T-junction suitable for Majorana braiding15 has a spin 
representation of this structure14, which is described by the Hamiltonian in eq. (19). The couplings between 
three Ising spin chains are mediated by the components of an additional spin S0, cf. ref.9 and eqs (4, 5). The 
system can be manipulated by tuning transverse fields (not depicted here) that act on the individual spins σα(j) 
of the three chains.
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of the ferromagnetic spin eigenstates. However, two-interval braiding cannot be effected in such a way that at 
most one of the 3-spin couplings in equation (19c) is relevant at each step. Therefore, the coupler spin S0 under-
goes a generally non-trivial rotation in the process, which we will examine in the following.

Initially, the topological/ferromagnetic intervals have to be prepared, e.g., in the first and third chain at some 
distance from the coupler spin S0. We assume that = = >J J J 012 13 23  for illustration. First, we consider an initial 
state with the spins in both intervals and the coupler aligned in the +z-direction:

ψ = ↑↑↑ ⊗ ⊗ ↑↑↑ ⊗ ↑ .   S (21)0 1 2 3 0

Here the indices denote the three spin chains; the corresponding arrows indicate the spin orientation in ferro-
magnetic (↑/↓) and paramagnetic areas (). They symbolize the locations of the ferromagnetic intervals in the 
T-junction geometry (Fig. 2), but the calculation does not depend on the specific interval lengths and distances 
to the coupler. The first step comprises shifting the right boundary of the first interval (i.e., one Majorana mode in 
the fermionic system) into the second chain, which results in the state

⟩ ⟩ ⟩ ⟩ ⟩  S (22)1 1 2 3 0ψ| = | ↑↑↑ ⊗ |↑↑ ⊗| ↑↑↑ ⊗ | ↑ .

With ⟩| ↓S0  as initial coupler state, the spins in the second chain in eq. (22) would just be flipped compared to 
those in the first chain.

The non-trivial part begins when the second ferromagnetic interval is also shifted to the junction, while the 
spin orientation of the ferromagnetic intervals remains fixed. One can verify that for any initial state, including 
superpositions, the final state at this stage is always the same as in the case when the second ferromagnetic inter-
val is adiabatically shifted towards the junction at = =J J 013 23 , and only then these couplings are slowly turned 
on. This observation simplifies the further calculation. Indeed, at the end of this stage, the coupler spin rotates to 

adjust to the change of its effective magnetic field from the z-direction to the space diagonal 












1
1
1

1
3

:

ψ ϕ ϕ
= ↑↑↑ ⊗ ↑↑ ⊗ ↑↑↑ ⊗







↑ + ↓






π
  S e Scos

2
sin

2
,

(23)2 1 2 3 0
i

04

where ϕ π< <0 /2 and ϕ =cos 1/ 3 . Similarly, at the next stage, when the ferromagnetic interval in the first 
chain is shifted away from the junction, the coupler spin adjusts to the x-direction:

 ψ = ↑↑↑ ⊗ ↑↑ ⊗ ↑↑↑ ⊗ | ↑〉 + | ↓〉 .S S1
2

[ ]
(24)3 1 2 3 0 0

Retracting the remaining ferromagnetic interval back to the third chain is a trivial step again:

  ψ = ↑↑↑ ⊗ ⊗ ↑↑↑ ⊗ | ↑〉 + | ↓〉 .S S1
2

[ ]
(25)4 1 2 3 0 0

Unlike in the case of single-interval braiding14, the coupler spin does not return to its initial state at the end of 
the operation (see, however, discussion near eq. (18)). In eqs (24), (25), we have dropped the overall phase factor 
that can be linked to the geometric phase of the spin evolution. It turns out to be the same for all states of interest 
to us (cf. eq. (26) below) and will be omitted.

For other initial conditions, the operation can be treated similarly, giving the complete result

⊗ ⊗ ↑ → ⊗ ⊗ | ↑〉 + | ↓〉   S S S1
2

[ ]
(26a)1 3 0 1 3 0 0◆◆◆ ◆◆◆ ◆◆◆ ◆◆◆

   S S S1
2

[ ]
(26b)1 3 0 1 3 0 0◆◆◆ ◊◊◊ ◆◆◆ ◊◊◊⊗ ⊗ ↑ → ⊗ ⊗ | ↑〉 − | ↓〉

   ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩S S S1
2

[ ]
(26c)1 3 0 1 3 0 0|ΔΔΔ ⊗ | ΔΔΔ ⊗ | ↓ → − |ΔΔΔ ⊗ | ΔΔΔ ⊗ | ↑ − | ↓

S S S1
2

[ ]
(26d)1 3 0 1 3 0 0   |ΔΔΔ ⊗ | ⊗ | ↓ → |ΔΔΔ ⊗ | ⊗ | ↑ + | ↓⟩ ◊◊◊⟩ ⟩ ⟩ ◊◊◊⟩ ⟩ ⟩

with placeholders {◆, ◊} = {↑, ↓}. The initial as well as final state of the second chain is always | 〉 2. Using the 
parity eigenstates (20), we can verify that eqs (26) indeed correspond to the Majorana braiding. For instance,

⊗ ⊗ ↑ = ⊗ ⊗ | ↑〉

→ ⊗

+ ⊗

= | 〉 ⊗ | 〉 ⊗ | ↑〉 + | 〉 ⊗ | 〉 ⊗ | ↓〉 .

↑↑↑ + ↓↓↓ ↑↑↑ + ↓↓↓

↑↑↑ ⊗ ↑↑↑ + ↓↓↓ ⊗ ↓↓↓ | ↑〉+ | ↓〉

↑↑↑ ⊗ ↓↓↓ + ↓↓↓ ⊗ ↑↑↑ | ↑〉− | ↓〉

S S

S S

0 0

[ 0 0 1 1 ] (27)

S S

S S

1 3 0 2 2 0

2 2

2 2
1
2 1 3 0 1 3 0

1 1 3 3

1 3 1 3 0 0

1 3 1 3 0 0
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In addition to the ferromagnetic intervals, the superposition involves the coupler spin, in accordance with the 
expressions (16), (17), which are compatible with the results (26).

Note that the coupling J13 is not necessary for the operation we considered here. The choice of J13 = 0 simplifies 
the coupler rotations and leads to the same results.
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