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Distinguishing core from 
penumbra by lipid profiles using 
Mass spectrometry Imaging in 
a transgenic mouse model of 
ischemic stroke
I. A. Mulder1, N. ogrinc potočnik2, L. A. M. Broos3, A. prop2, M. J. H. Wermer1, R. M. A. Heeren  2 & 
A. M. J. M. van den Maagdenberg1,3

Detecting different lipid profiles in early infarct development may give an insight on the fate of 
compromised tissue. Here we used Mass Spectrometry Imaging to identify lipids at 4, 8 and 24 hours 
after ischemic stroke in mice, induced by transient middle cerebral artery occlusion (tMCAo). Combining 
linear transparency overlay, a clustering pipeline and spatial segmentation, we identified three regions: 
infarct core, penumbra (i.e. comprised tissue that is not yet converted to core), and surrounding healthy 
tissue. Phosphatidylinositol 4-phosphate (m/z = 965.5) became visible in the penumbra 24 hours 
after tMCAO. Infarct evolution was shown by 2D-renderings of multiple phosphatidylcholine (PC) and 
Lyso-PC isoforms. High-resolution Secondary Ion Mass Spectrometry, to evaluate sodium/potassium 
ratios, revealed a significant increase in sodium and a decrease in potassium species in the ischemic 
area (core and penumbra) compared to healthy tissue at 24 hours after tMCAO. In a transgenic mouse 
model with an enhanced susceptibility to ischemic stroke, we found a more pronounced discrimination 
in sodium/potassium ratios between penumbra and healthy regions. Insight in changes in lipid profiles 
in the first hours of stroke may guide the development of new prognostic biomarkers and novel 
therapeutic targets to minimize infarct progression.

Ischemic stroke is a severe neurological event and its incidence in Western society is increasing1. Ischemic stroke 
generally occurs due to an interruption of blood supply, drastically decreasing glucose and oxygen concentrations 
within seconds. ATP levels drop rapidly, resulting in random ion leakage across the neuronal cell membrane. 
As a consequence, the ion balance in the tissue is severely disrupted, ultimately leading to cerebral ischemia. 
The ischemic territory consists of a core (necrotic tissue) that is surrounded by a border zone, the “penum-
bra”. Penumbra tissue has only partially reduced blood flow, just above the ischemic threshold level2. When the 
ischemia is not resolved in time, the penumbra will be converted to core tissue. The mechanisms involved in this 
transition are only partly known3–7.

During the ischemic event, different lipid pathways are activated by multiple lipids (for example phosphatidyl-
choline (PC) and Lysophosphatidylcholine (LPC)) and second messenger molecules that can act in a neuropro-
tective or neurodegenerative way6. Identification of the molecular species in the different regions of the ischemic 
area, especially in the early stages of infarct development, is crucial to identify the molecular mechanisms that 
may determine the fate of the penumbra.

Mass Spectrometry Imaging (MSI) is a powerful technique for identifying hundreds of molecules simul-
taneously within a single tissue section in a histological context8,9. This technique is particularly useful to 
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evaluate lipid distributions on tissue sections for which there are generally no antibodies available. MSI, specif-
ically Matrix-Assisted Laser Desorption Ionization (MALDI), has been applied in neurodegenerative diseases, 
including research on the distribution of Aβ peptides co-localizing with different elements10,11, neuropeptides in 
Parkinson’s disease12 and global changes in phospholipids in a transgenic mouse model for Alzheimer’s disease13. 
MSI offers the unique capability to simultaneously detect pathological hallmarks and related biomolecular pat-
terns of neurodegeneration, making it a powerful monitoring tool for disease pathogenesis and prognosis.

Here, we used MSI to assess changes in lipids between the penumbra and infarct core during the early stroke 
evolution in mice. Until now, studies have focussed on the distribution of phospholipids in the ischemic region 
compared to the healthy surrounding area of the brain and/or after 24 hours of ischemic stroke induction3–7,14. It 
was demonstrated that in the ischemic region Na+ is elevated with a concomitant reduction of K+ 3,5,6. As large 
changes in alkali cation concentrations influence the ionization efficiency of phospholipids, matrix effects may 
have confounded those results. Later studies reduced the matrix effect, by either desalting the tissue sections 
prior to MALDI or using an internal standard as a normalization factor, and revealed different distributions of 
phospholipids14,15. An increase of LPC (16:0) was observed in the ischemic region with concomitant membrane 
degradation of free fatty acids and the degradation of PCs into LPCs4,6.

We assessed MALDI-MSI derived lipid profiles in three regions of interest (core, penumbra and healthy sur-
rounding tissue) at three time points (4, 8 and 24 hours) after transient middle cerebral artery occlusion (tMCAO) 
in mice. Additionally, we included a transgenic mouse model that expresses mutant hyperactive voltage-gated 
CaV2.1 Ca2+ channels that cause Familial Hemiplegic Migraine type 1 (FHM1)16. These mutants are particularly 
interesting for this study because a higher cerebral blood flow is required for tissue survival after tMCAO in these 
mice. Therefore, infarction already occurs in these mutants with milder ischemia compared to wild-type mice, 
which may also occur in patients and thereby increasing the translational value of our study. With this approach, 
we aimed to study in detail the regional lipid distribution in early ischemic stroked development.

Results
Linear transparency overlay, clustering pipeline and spatial segmentation reveal the penumbra 
and core in ischemic area. We used a histology-directed spatial segmentation approach (Fig. 1), employed 
to segment sections into ipsi- (ischemic) and contra-lateral (healthy) sides. This technique was combined with 
manual linear transparency overlay. This approach allowed us to successfully co-register the selected m/z values 
in positive ion mode with the Nissl-stained sections, annotated with the necrotic border. All of the selected ions 
perfectly align within the necrotic border, separating the ischemic region from the rest of the tissue (Fig. 1a). The 
software-derived spatial segmentation pipeline revealed a further segmentation of the positive ion mode data into 
ipsi-lateral sub-regions, i.e. core, penumbra and surrounding healthy tissue, which can’t be solely observed by 
histological staining. Prominent spatial regions are visualized already at 4 hours after tMCAO, as can be observed 
in the example of Fig. 1b.

Lipid profiles in core and penumbra in the acute phase of ischemic stroke. The segmented regions 
of the infarct were investigated by first manually drawing ROIs with the same number of pixels (Supplementary 
Fig. S1a). In the positive ion mode mean spectra we observed an increase in relative intensities of m/z = 756.6 
[PC(32:0) + Na]+ and 810.6 [PC(36:1) + Na]+, while m/z = 772.6 [PC(32:0) + K]+ shows a decrease in the core 
region compared to surrounding penumbra and healthy tissue at 4 hours post tMCAO. There are no relative inten-
sity changes observed at m/z = 760.6 [PC(32:0) + H]+ (Supplementary Fig. S1b). The same pattern is observed 

Figure 1. A schematic representation of the manual overlays of MALDI-MSI and Nissl stain with marked 
necrotic border in SCiLS Lab 2016b. The manual overlay was followed by a linear transparency overlay (a) of 
a selected m/z value (in the example m/z = 782.6 ± 0.3). The high intensity of the [PC(34:1) + Na]+ perfectly 
aligns within the necrotic border of the Nissl stain. (b) In the next step, the manual overlay was followed by 
a spatial segmentation pipeline built in the software. Once the segmentation map was created it detected 
prominent spatial regions ipsilateral, representing core, penumbra and healthy tissue, here at 4 hours after 
transient middle cerebral artery occlusion.
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when box plotting intensity variations of these ions (n = 3). In Supplementary Fig. S1c we show a similar varia-
tion in the healthy (ipsi and contra) and penumbra. However, a slight increase of variation in the core region for 
m/z = 756.6 is also shown, while m/z = 810.6 (Supplementary Fig. S1d) shows a gradual increase from healthy to 
the core. In contrast, m/z = 772.6 shows a larger decrease in the penumbra and core. The variation of signal inten-
sity at m/z = 760.6 is constant throughout the ROIs. While investigating the linear transparency overlays with 
selected lipid signals in negative ion mode, a clear difference was observed between the core and penumbra for 
m/z = 965.5 and m/z = 1045.5. The selected molecular species, specifically m/z = 965.5, showed an increase in sig-
nal intensity (increasing over time), but notably only in the border zone surrounding the core (Fig. 2). A decrease 
in signal intensity was observed in the infarct core at 4 hours that was more pronounced at 8 hours after the stroke 
induction. MS/MS analysis in negative ion mode identified m/z = 965.5 ion as [PIP(38:4) − H]− (phosphatidy-
linositol 4-phosphate) (Supplementary Fig. S3) and [PIP2(38:4) − H]−phosphatidylinositol 4,5-bisphosphate, 
(m/z = 1045.5) (Supplementary Fig. S4). Additional MS/MS of [PI(38:4) − H]− (phosphatidylinositol) was taken 
for comparison (Supplementary Fig. S2). The fragmentation spectra of all three PI and PIP species have been con-
sistent with the previously observed data17,18.

Lipid profiles in ischemic stroke evolution in core and penumbra. The same segmentation pipe-
line was used to investigate lipid profiles in the spatial regions across the three time points of stroke evolution. 
Probabilistic latent semantic analysis (pLSA) was used for the statistical analysis of data of the spatial regions 
(using the described spatial segmentation) (Fig. 3). The data obtained for negative and positive ion modes was 
best described with 7 and 10 components. The components with the clearest difference between the ipsi- and 
contra-lateral side are shown in Fig. 3. Components 4 and 9 exhibited the most marked difference in negative 
ion mode; components 1, 2 and 7 were most distinctive in positive ion mode. In negative ion mode the largest 
contributions to component 9 came from the m/z = 885.6 [PI (38:4) − H]−, which is known to differentiate grey 
from white matter. White matter was predominantly characterized by m/z = 834.6 PS(40:6) at (component 4). The 
negative mode ions that attributed most to the border zone of the ischemia are m/z = 909.6, 833.6 for component 
4 and m/z = 965.6 [PIP(38:4) − H]−,1045.5 [PIP2(38:4) − H]− for component 9. Changes in these compounds 
were visible already at 4 hours after tMCAO and increased up to 24 hours. The box intensity plots (Supplementary 
Fig. S5) for [PIP(38:4) − H]− show a larger variation of intensity at 4 hours and 8 hours in healthy ipsi- and con-
tralateral tissue and a decrease in the penumbra and core. The biggest variation is observed at 24 hours in the 
penumbra. For [PIP2(38:4) − H]− there is a bigger difference in relative intensities between the healthy tissue and 
between penumbra and core. At 24 hours the intensity variations in the penumbra become similar to the healthy 
tissue opposed to the core.

We also revealed the presence of cardiolipin (CL) lipids (found in the inner mitochondrial membrane and play 
a coordinating role in apoptotic cell death19) and ganglioside (GM) lipids (found in the outer layer of the plasma 
membrane and important in neuronal function and cell death7,20), although no changes with respect to spatial or 
temporal distribution relevant to ischemic infarct evolution were observed (Supplementary Table S2).

Figure 2. MALDI images showing the distribution of the PIP molecular family and accompanying Nissl 
stainings. Selected MALDI m/z images acquired at 50-µm spatial resolution showing the distribution of specific 
lipids m/z = 885.6 [PI(38:4) − H]−, m/z = 965.5 [PIP(38:4) − H]−, and m/z = 1045.5 [PIP2(38:4) − H]− in 
a SHAM WT mouse and at 4, 8 and 24 hours after transient middle cerebral artery occlusion measured in 
negative ion mode. The last column represents the linear transparency overlays of m/z = 885.6 [PI(38:4) − H]−, 
m/z = 965.5 [PIP(38:4) − H]−, and m/z = 1045.5 [PIP2(38:4) − H]− with Nissl staining at 24 hours after tMCAO.
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In positive ion mode, components revealed a clearer differentiation between the ischemic and non-ischemic 
hemispheres. Specifically, within the ipsi-lateral hemisphere, components 2 and 7 showed molecular profiles 
that correlated with the penumbra and core of the ischemia. Lipid species, m/z = 756.6 [PC (32:0) + Na]+ and 
m/z = 782.6 [PC (34:1) + Na]+ show high abundancy in the ischemic area compared to the lipid profile in the 
non-ischemic hemisphere. An increase of lyso-lipid intensities in the ischemic area, mainly [LPC (16:0) + H]+ 
(m/z = 496.4) and [LPC (16:0) + Na]+ (m/z = 518.5) (Fig. 4), can be induced by washing the tissue sections prior 
to MALDI analysis, which is in line with previous data4. The intensities of the LPC species seem to increase in the 
course of 24 hours (Fig. 4). In respect to the images, similar tradelines are observed for box intensity plots (n = 3) 
(Supplementary Fig. S5). The variation of intensities increase over the course of 24 hours for [LPC (16:0) + H]+ 
and [LPC (16:0) + Na]+ in the core. The same pattern is observed for the rest of the selected [PC+ Na]+ species 
in contrast to [PC (32:0) + K]+. MALDI images of additional lipid species in positive ion mode (washed and 
unwashed) at 4, 8 and 24 hours after tMCAO in WT mice can be found in Supplementary Table S1.

To quantify the relative changes of prominent lipid species, we calculated fold changes as the mean ratio of 
signal intensity between ischemic (core, penumbra) and healthy ROIs (n = 3) at 4, 8 and 24 hours after tMCAO 
(Supplementary Fig. S7) with 95% confidence interval. Fold changes were expressed for S7 a) [LPC (16:0) + H]+ 
m/z = 496.4, S7b) [LPC (16:0) + Na]+ m/z = 518.5, S7c) [PC(32:0) + Na]+ m/z = 756.6, S7d) [PC(32:0) + K]+ 
m/z = 772.6 in positive ion mode and S7e) [PIP (38:4) − H]− and S7f) [PIP2 (38:4) − H]− in negative ion mode. 
Complementing previously observed data the largest increase of [LPC (16:0) + H]+ and [LPC (16:0) + Na]+ 
was observed in the core at 24 hours post tMCAO. Interestingly, the washed tissue didn’t show a significant 
increase at 24 hours post tMCAO for both selected species, though more pronounced in the MALDI ion images. 
[PC(32:0) + Na]+ and [PC(32:0) + K]+ show their respective fold increase/decrease in the core. The biggest dif-
ference is observed in the [PIP (38:4) − H]− ion. At 4 hours and 8 hours there is a fold decrease in the penumbra, 
while at 24 hours there is a clear increase in the penumbra. Similarly, to the MALDI images there is a significant 
decrease of the [PIP2 (38:4) − H]− in the core and penumbra starting at 8 hours post tMCAO.

Sodium/potassium ratio’s in the early phase of stroke evolution. As the sodiated/potassiated spe-
cies may change over the course of 24 hours after tMCAO, we performed high-resolution Secondary Ion Mass 
Spectrometry (SIMS) analysis to evaluate the Na+/K+ ratio. Principal component analysis was performed to 
determine the distribution of Na+ (m/z = 23) and K+ (m/z = 39) species and related molecular species. PC4 load-
ings plot (Fig. 5a) described with 0.293% variance reveals the distribution of species related with Na+ (positive 
loadings plot; green) and K+ (negative loadings; blue). The distribution of Na+ and K+ respective related species 
is shown in the RGB image score overlay of PC + 4 (green), PC − 4 (blue) and PC3 (red) (Fig. 5c). SIMS images 
of specific lipids, such as m/z = 756.6 [PC(32:0) + Na]+ and m/z = 772.6 [PC(32:0) + K]+, show a distribution 

Figure 3. Probabilistic latent semantic analysis (pLSA) loading plots and spectra of resulting components of 
the WT mice in negative (components 4 and 9) and positive (components 1, 2 and 7) ion mode 24 hours after 
transient middle cerebral artery occlusion.
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Figure 4. MALDI images showing the distribution of lyso-lipids and accompanying Nissl stainings. Selected 
MALDI m/z images acquired at 50-µm spatial resolution showing the distribution of lyso-lipids in a SHAM WT 
mouse and at 4, 8 and 24 hours after transient middle cerebral artery occlusion measured in positive ion mode. 
Each row of the selected species represents un-washed (top) and washed (bottom) tissue section.

Figure 5. MRI, SIMS and MALDI images revealing the distribution of the infarct core in wild-type mice after 
transient middle cerebral artery occlusion. (a) PC4 loadings plot revealing the distribution of co-related species 
with Na+ (positive loadings plot-green) and K+ (negative loadings-blue), (b) RGB overlay of three PCs (red; 
PC-3, green; PC4, and blue; PC-4); (c) T2-weighted MRI image with delineated infarct border; MALDI image of 
(d) m/z = 756.6 [PC(32:0) + Na]+ and (e) m/z = 772.6 [PC(32:0) + K]+; (f) K+/Na+ ratio, (g) choline fragment, 
(h) phosphatidylcholine fragment in positive ion mode and (i) palmitic acid (16:0) m/z = 255, in ischemia 
24 hours after transient middle middle cerebral artery occlusion.
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similar to the acquired MALDI images (Fig. 5d and e) of consecutive sections. PC + 4 reveals a significant 
increase in Na+ and related species in the ischemic area opposed to the surrounding healthy tissue (Fig. 5c). 
The distribution of K+ and related species shows a slight decrease in the ischemic region (Fig. 5b), which is 
also observed when plotting the ratio between Na+ and K+ (Fig. 5f). The distribution of choline (m/z = 86) and 
phosphatidylcholine fragments (m/z = 184) is shown in Fig. 5g/h. Even though choline has a very homogeneous 
distribution across regions, the phosphatidylcholine fragments show a slight depletion in the ischemic core. In 
negative ion mode, fatty acids palmitic acid (16:0) m/z = 255, exhibit a homogeneous distribution across regions 
(Fig. 5i), very similar to the choline fragment.

Lipid composition in a transgenic mouse model with increased stroke vulnerability. Next, we 
assessed lipid profiles in a transgenic mouse model in which a higher cerebral blood flow is required for tissue 
survival after tMCAO, so the penumbra in these mutant mice is more easily converted to core tissue21. In Fig. 6 
the histograms of measurements in positive ion mode are shown for the different brain regions of wild-type (WT) 
and FHM1 mutant mice at 4, 8 and 24 hours after tMCAO. In FHM1 mutant mice a more pronounced discrim-
ination between the penumbra and healthy tissue was observed compared to WT mice. Moreover, the largest 
change in distribution patterns is seen in the penumbra in mutant mice at all time points as well as compared 
to the WT mice (Fig. 6). The scaled loadings (Supplementary Fig. S4) show the contribution of each individual 
molecular mass to the differentiation observed in the histograms between the healthy, penumbra and ischemic 
regions. The loadings plots indicate that the major difference corresponds mainly to the [M + Na]+ and [M + K]+ 
ions of the same lipid species.

Discussion
High-resolution SIMS imaging combined with rapid lipid detection with MALDI-MSI is able to identify molec-
ular profiles that can distinguish the ischemic and non-ischemic (healthy) regions after experimentally induced 
stroke. Data processing with linear transparency overlays and spatial segmentation made it possible not only to 
differentiate between ischemic and healthy mouse tissue already 4 hours after stroke induction, but also between 
infarct core and penumbra, which are not distinguishable at that time point with Nissl-stained images.

The most prominent difference between the ischemic and non-ischemic areas is governed by the Na+/K+ 
availability for the ionization of the molecular species. Lipid profiles revealed an extensive increase in Na+ spe-
cies, both from the penumbra to the core and during stroke development. The distribution of Na+ and K+ species 
shows a specific pattern: where Na+ species are high, species of K+ are low, and vice versa. This suggests that the 
intensity of sodiated “pseudo-molecular” ions, for example [M + Na]+, is dependent on the level of sodium ions 
present in the tissue, (idem for potassium or other ions). A plausible explanation is the massive failure of sodium/
potassium pumps within the ischemic area. This failure results in relative increase in sodium and decrease in 
potassium concentrations inside the cell due to passive diffusion influx of Na+ and efflux of K+ due to intracellu-
lar versus extracellular concentration and osmolarity differences4,22. The relative high intracellular levels of Na+ 
ions lead to the production of [M + Na]+ pseudo-molecular ions during the ionization process. Combined with 

Figure 6. Linear discriminant analysis histograms of wild-type (top row) and transgenic FHM1 mice (bottom 
row) of segmented ROI areas (healthy (black), ischemic (light grey) and borderzone (dark grey)) at 4, 8 and 
24 hours after transient middle cerebral artery occlusion.
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competition between K+ and Na+ ions for the same molecular species during the ionization, this will result in an 
apparent increase in detected [M + Na]+ signal and an apparent reduction in the detected signals of [M + K]+. 
This would imply that lipid species that are related to the Na+/K+ ratio should not be considered as reliable bio-
markers when studying ischemia.

Overall, [PC + Na]+ showed an increase in the ischemic core whereas [PC + K]+ showed an overall decrease, 
a finding which is in line with previous data in rats4. No clear changes in the ischemic or healthy tissue were found 
with respect to the PC [M + H]+ concentration. The same was true for [LPC (16:0) + Na]+ (m/z = 518.5), which 
was increased in the ischemic area, starting a few hours after tMCAO, and visible as a difference between the var-
ious ischemic regions at 8 hours after tMCAO (Figs 4, S5 and S7b). These results confirm findings in a study in rat 
pups where sodium adduct of LPC (16:0) was present in the ischemic area but not in the healthy tissue at 24 and 
48 hours after induction of the infarct4. LPCs have a relatively short half-life and are formed, together with fatty 
acids, as metabolic intermediates, during the breakdown of other lipids. LPCs increase as part of a neuroinflam-
matory response; an increased activation of PLA2 eventually results in increased neuronal damage6,22. This could 
explain the observed decreased intensity of m/z = 184 fragment ion in the infarct core.

During neuronal cell death, cell membranes become more permeable, extracellular Na+ and Ca+ enter the 
cell and glutamate is released, causing activation of NMDA receptors. This triggers multiple cascades such as 
peri-infarct depolarizations spreading in the penumbra and activation of multiple phospholipases like PLA2 
resulting in increased amounts of phosphatidylinositol (PI) in the borderzone. Additionally, second messenger 
lipids are released (1,2-diacylglycerol, (Lyso-)PA, (Lyso-)PC+ Na+). The latter, on its turn, activates PLA2 and the 
destructive circle continues, turning the penumbra further into necrotic core6,22.

A difference between the penumbra and the core region in the negative ion mode MALDI images was 
observed. Specifically, the distribution of m/z = 965.5 ion, identified as [PIP (38:4) − H]− showed an increased 
signal intensity in the penumbra surrounding the core area 24 hours after tMCAO. The more abundant decline 
of PIP2 compared to PIP in the infarct core is in line with data of several animal models for global and focal 
ischemia23–28. The signal transduction pathway involving hydrolysis of polyphosphoinositides (poly-PI) in the 
central nervous system is largely responsible for the control of the intracellular calcium homeostasis, as well as 
receptor activation via neurotransmitters, such as glutamate, acetylcholine, dopamine and serotonin28. Sustaining 
receptor-mediated Poly-IP signalling activity is highly energy-consuming, requiring several moles of ATP via 
PI and PIP kinases28. With the depletion of ATP during ischemia, PIP2 high-energy dependent turnover from 
PIP might be abolished, which could be the reason for the increased PIP concentration compared to PIP2 in 
the penumbra at 24 hours. Also, stimulation of the poly-PI pathway in the border zone might be part of an early 
event resulting in ischemia, which is also suggested by the rapid and transient increase of Ins(1,4,5)P after global 
cerebral ischemia28. These results suggest that the change in poly-PI levels is important for the fate of penumbra 
tissue. PIP and PIP2 levels, therefore, may serve as a signature biomolecular pattern to identify whether penumbra 
tissue is about to become necrotic.

The molecular distribution of cardiolipin and ganglioside were also investigated, since they both play an 
important role in the apoptotic signalling pathway7,19,20. CL has been shown to be affected by post-traumatic 
injury7,29–31. Catabolism of cardiolipin occurs by the catalysis of phospholipase A2 (PLA2). However, CL dis-
tribution patterns do not seem to be changed in the ischemic core in the early time course after tMCAO. One 
explanation could be that early after induction of ischemia (minutes-hours), necrosis has the upper hand, whereas 
apoptosis comes into play at a later stage of infarct development (hours-days)32. This time-dependant activation 
of different pathways leading to cell death has previous been shown in large detail33. GM, as part of the plasma 
membrane34, has been shown to ameliorate deficit after stroke35,36. Here we did not find a clear difference in 
GM-accumulation or degradation in the ischemic core or penumbra compared to the healthy tissue. We speculate 
that this process is activated at a later stage of infarct evolution.

In ischemic tissue of the transgenic mutant, at 24 hours after tMCAO, Na+ and K+ species seem to contribute 
more to the difference compared to WT mice. We hypothesize that this difference is due to a higher abundancy 
of sodium or potassium across the ischemic region in the mutant mice. For all three time points, especially at 
24 hours after tMCAO, the levels of sodiated species in the border zone are higher in mutant compared to WT 
mice.

In conclusion, the infarct evolution was clearly shown by 2D-renderings of multiple PC and LPC isoforms. 
The penumbra became clearly distinguishable from the core at the 8-hour time point after tMCAO, as evidenced 
by differences in the levels of PIP and PIPI2. These lipids, therefore, could serve as early ischemic markers. Further 
research is needed to investigate whether or not increased levels of PIP and PIP2 in combination with the ratio 
between both could indicate if the compromised penumbra will convert into core tissue or not.

Materials and Methods
Animal protocol. All animal experiments were approved by the Animal Experiment Ethics Committee of 
Leiden University Medical Center and all experiments were performed in accordance with relevant guidelines 
and regulations. Male FHM1 mutant mice and their WT littermates, age 3.5 months ± 2 weeks, were used.

Experimental stroke was induced using the widely used tMCAO model37. Isoflurane (3% induction, 1.5% 
maintenance) in 70% pressurized air and 30% O2 was used as anaesthetic. Additional, Carprofen 5 mg/kg, s.c. 
(AST Farma B.V.) was given before surgery. During surgery the mouse body temperature was maintained at 
~37 °C using a feedback system. The MCA was occluded using an intraluminal silicone-coated nylon monofila-
ment (Doccol cooperation), for 30 minutes. Thereafter the filament was removed to allow for reperfusion. After 
surgery, mice were allowed to wake up in a temperature-controlled incubator (Peco Services Ltd) kept at ~33 °C 
for 2 hours with easy access to food and water. On a subset of animals, SHAM surgery was performed using the 
same protocol, only without insertion of the filament.
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Magnetic resonance imaging. A subset of animals were scanned 24 hours after tMCAO surgery, to evalu-
ate the infarct region in vivo, using a small-animal 7 T MRI system (Bruker BioSpin) under isoflurane anesthesia. 
A Multi Slice Multi Echo (MSME) sequence protocol was run with TR/TE of 4.000 ms/9 ms, 20 echoes, 2 averages, 
matrix 128 × 128 mm, FOV of 2.50 cm, bandwidth 59523.8 Hz, slice thickness of 0.5 mm and 16 slices (no gap). 
Quantitative T2 maps were calculated using Paravision 5.1 software (Bruker BioSpin).

Sacrifice and histology. Per time point, 4 mice were sacrificed at 4, 8 and 24 hours after tMCAO and at 
24 hours after SHAM surgery using the in situ funnel-freezing technique38 because this technique limits molec-
ular post-mortem degradation as much as possible compared to other existing sacrificing techniques. In brief, 
under deep anaesthesia (3% Isoflurane in 70% pressurized air and 30% O2), the brains were frozen in vivo using 
liquid nitrogen. Using a funnel placed onto the skull, with the posterior rim at the lambdoidal suture, liquid 
nitrogen was poured continuously onto the skull for 3 minutes. Thereafter, the brain was dissected onto dry ice to 
prevent defrosting of the tissue. The excised and frozen brain was stored until further use at −80 °C.

Using a cryostat microtome (Leica Microsystems) set at −21 °C, 12 µm coronal sections (between −0.10 and 
+0.40 from Bregma) were cut. Consecutive brain sections (3 per brain) were randomly thaw-mounted (in max. 
3 seconds) onto indium tin oxide (ITO) coated glass slides (Delta Technologies). In total, 120 sections were ana-
lysed with MALDI-MSI. After MALDI-MSI analysis, matrix removal was performed using 70% EtOH where after 
sections were stained for Nissl substance with Cresyl Violet to enable analysis of the infarct core region.

SIMS-MSI. All TOF-SIMS analyses were performed using a PHI nanoTOF II instrument (Physical 
Electronics) with a 60 keV Bi3

2+ liquid metal ion gun for MS imaging experiments37. The analytical field-of-view 
(FOV) was in 400 µm × 400 µm with 512 pixels × 512 pixels, resulting in a 0.8 µm pixel size. The sample dose was 
in all cases at or below the static limit (1013 ions cm−2). The sample bias was set at 3 kV. The TOF-SIMS (MS1) and 
tandem MS (MS2) data were collected simultaneously in positive ion polarity as described in Fisher et al.39. The 
tandem MS experiments were performed using 1.5 keV CID with Argon gas estimated to be 1 × 10−3 Pa in the 
collision cell39. In the course of each acquisition, mass spectral information at each image pixel was collected in 
the m/z range of 0–3000, and saved into a raw data stream file in both positive and negative polarity.

MALDI-MSI. Prior to MALDI analysis 2,5-dihydroxybenzoic acid (DHB) and Norharmane matrix were 
applied to sections at 15 mg/mL and 7 mg/mL in 2:1 chloroform:methanol (v/v), respectively with a TM-sprayer 
(HTX technologies), using 12 passes at 40 °C, 0.1 mL/min flow rate, 10 psi spray pressure, at 2-mm spray spac-
ing, 1200 mm/min spray velocity, and with a 40-mm sprayer nozzle distance to sample. Consecutive sections 
were desalted with 50 mM ammonium acetate prior to applying matrix coating. All data was acquired on a Bruker 
RapifleX MALDI Tissuetyper™ system operating in reflectron mode (Bruker Daltonik GmbH) with a nominal 
acceleration potential of ±20 kV. MSI data was acquired using a 50 × 50 μm2 raster and a 20 × 20 μm2 beam 
scan area for each polarity with 200 laser shots accumulated at each pixel. The average acquisition rate was 23 
pixels/second. Data was acquired in the m/z range of 400–1000 for positive and 600–1600 for negative ion mode. 
Mass calibration was performed before each analysis using red phosphorous clusters in positive and negative ion 
mode. The accurate mass and MS/MS profiles from the tissue sections were acquired on the 9.4 T SolariX FT-ICR 
(Bruker Daltonik GmbH) and the Synapt G2Si (Waters) in sensitivity mode using 30 eV collision energy.

Multivariate data analysis. For batch statistical analysis over SIMS-MSI, data was converted into a Matlab 
matrix by in-house developed software. Once the mean spectrum files were created they were subjected to peak 
picking using the in-house developed Matlab PEAPI compiled program. The peak list was than integrated over 
the whole images and Matlab format files were created. The ion images were normalized and reconstructed using 
HisDistGUI software.

The 2D-datasets were processed using Scils (Bruker Daltonik GmbH) software. The data was TIC-normalised 
using weak de-noising deterministic installation for both polarities. Automatic peak-picking was performed 
using the default segmentation pipeline. After acquisition each section was imported into SCilS 2016b. The data 
was subjected to the segmentation algorithm. Each individual tissue section was annotated and segmented into 
the three relevant regions of the infarct; core, penumbra and surrounding healthy tissue. The resulting sets of m/z 
values were used to perform pLSA. Ten components were calculated for the negative and seven for the positive 
ion mode. The components that were representing the matrix distribution were not considered for further eval-
uation. The generated components gave distinct distributions within the tissue and thereafter each spectrum was 
presented as a weighted combination of these components. The resulting components and spectra are shown in 
Fig. 3. Box plots of selected m/z values were created in order to see the intensity variations within the selected 
ROIs of healthy, core and penumbra tissue (n = 3). The mean ratio of signal intensity between ischemic (core, 
penumbra) and healthy ROIs (n = 3) with the same number of spectra at 4 h, 8 h and 24 h was calculated and 
expressed as fold increase/decrease with 95% confidence intervals of prominent m/z values.

After the components were calculated, the second set of analyses was performed in order to elucidate potential 
molecular differences between ischemia-relevant areas for wild-type and mutant mice separately. The segmenta-
tion algorithm differentiated specific ROIs in each data set. The selected data sets were converted from the Scils 
(.sl) format into Matlab matrix by an in-house programmed Python script. Once the mean spectrum files were 
created they were subjected to peak picking with the in-house Matlab PEAPI compiled program. The ROIs were 
created by the in-house Matlab Trifttricks 1.52 software. On the whole collection of data sets we performed linear 
discriminant analysis (LDA) displaying different score histograms (Fig. 6) and the corresponding loadings spec-
tra (Supplementary Figs S2 and S3). The histograms are described within the first discriminating function (DF1) 
revealing the maximum difference within the groups selected. All of the data is described with 80% variance.
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Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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