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A Rotating-Coil Magnetometer 
for scanning transversal Field 
Harmonics in Accelerator Magnets
pasquale Arpaia1, Gianni Caiafa1,2 & stephan Russenschuck2

this paper presents a rotating-coil magnetometer that was designed and validated for scanning local 
transversal field harmonics, required for extracting so-called pseudo-multipoles in accelerator magnets. 
The magnetometer consists of four layers of flexible printed circuits with a track thickness of 40 μm. 
The design aimed at maximizing the sensitivity factors for field harmonics up to order 13 and at a 
compensation ratio for the main component in the same range of what is achievable with standard 
rotating coils. Key innovative features of the induction coil are the shape for minimizing the sensitivity 
to the longitudinal field component and the manufacturing technology. The design, the uncertainty 
analysis of the manufacturing tolerances, as well as preliminary application results are presented.

For magnetic measurements of accelerator magnets, the induction coil magnetometer is still the best trans-
ducer in terms of linearity, repeatability, reliability, and accuracy. Induction coils are applied to measure the field 
strength, direction, and field errors expressed as higher-order field harmonics1,2.

Magnetic measurements of accelerator magnets are usually performed with shafts containing a number of 
induction coils that are longer than the magnet length, and, therefore, cover also the fringe field regions. In fact, 
measuring the integrated transversal field components is often sufficient to validate the design and characterize 
the magnet, in particular for reproducibility in larger series. In other cases, the local field distribution measure-
ment is required. This is the case for fringe-field dominated magnets and when the measurements are to be used 
for track reconstruction in spectrometers. Fringe field-dominated magnets are short magnets with relatively wide 
apertures, where the effect of the magnet ends is not negligible3,4. The knowledge of the local field distribution 
in the magnets is also important for the study of the beam dynamics of insertion regions where the β-function 
changes rapidly5. The field distributions at the magnet extremities cannot be developed into Fourier series (i.e. 
the classical field harmonics), because the trigonometric functions do not constitute a complete orthogonal 
function set of the field solution6. This gives rise to Fourier-Bessel series and the so-called pseudo-multipoles7,8, 
which depend on the magnetic field variation along the magnet axis. There are several established techniques 
for acquiring the local field distribution9. One possibility is to measure the longitudinal profile by mapping the 
magnet bore with a 3D Hall sensor10,11 mounted on a displacement stage or by using magneto-electric flux gate 
or absolute magnetometry12,13. Another solution is to use a translating-coil scanner on the magnet mid-plane14. 
In the latter case, however, the transversal resolution (and the highest order of the field harmonics) is limited by 
the track widths of the single coils. In6, it was proven that the classical rotating-coil magnetometers cannot be 
used in regions where a significant longitudinal field component is present. The extraction of pseudo-multipoles 
from transversal field measurements on a reference radius requires a coil that intercepts only the radial field 
component, and thus is free of the voltage induced by the longitudinal field component. The main objective for 
the coil design is to achieve the same resolution and measurement uncertainty of the standard rotating coils with 
a signal-to-noise ratio of about 60 dB15.

In this paper, we propose a new concept of a short, rotating-coil magnetometer that does not intercept the 
longitudinal field component. The coil is designed as a four-layer, flexible printed circuit, with 40 μm thick tracks 
and 50 μm electrical insulation between them. The mathematical formulation, the measurement principle, and 
the measurement method with its numerical validation are presented in the Section “Method”. In the Section 
“Results”, the sensor design, the computation of the coil-sensitivity factors, the uncertainty analysis of the main 
coil parameters, the sensor production, and the validation experiments are presented.
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Method
Mathematical Formulation. The scaling laws derived from the integrated (2D) field harmonics in acceler-
ator magnets cannot be used in the 3D case, because these field harmonics do not constitute a complete, orthog-
onal function set of the 3D Laplacian. The entire theory of 2D field harmonics, is based on a complex potential 
determined by the integral field quantities in the magnet. Applying the concept of pseudo-multipoles4,6, the field 
distribution in the end-regions of the magnet can be reconstituted from measurements on the boundary surface, 
i.e., the transversal multipole field errors measured by a relatively short, (short with respect to the magnet length 
and compared to the standard harmonic coils often covering the entire magnet and its fringe-field regions), sad-
dle-shaped, induction coil. In a simply-connected, cylindrical domain, free of magnetized material and current 
sources, the field components can be calculated from a magnetic scalar potential φm obeying the Laplace equation
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where r, ϕ and z are the coordinates of a cylindrical reference system. Eigensolutions are given by a Fourier-Bessel 
series that can be approximated by the double sum
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where Cn + 2k,n(z) and Dn + 2k,n(z) are coefficients to be determined16,17. Inserting this expression into the Laplace 
equation yields a recursive equation for the coefficients. We obtain6
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where μ0 is the permeability of free space. Therefore

Figure 1. Magnets directions: (i) longitudinal, axis z; (ii) radial, radius r; and (iii) transversal, flux field lines.
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Easier results are obtained when expressing the vertical field component on the horizontal plane:
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This series is truncated at n = 9 because it already requires the 8-th derivative of the leading dipole term C1,1 
with respect to the longitudinal coordinate z. It can be seen that the second derivative of the leading term, C1,1

(2) 
gives rise to a r2 dependence of the field as the term with coefficient C3,3. In other words, the dipole field roll-off in 
the magnet extremities yields a radial field dependence that resembles a (pseudo) sextupole.

A way to extract the pseudo-multipoles from boundary data is to measure the function B r z( , )n 0  that is a con-
volution of the transversal field harmonics Bn(r0, z) with the kernel defined by the sensitivity of the induction coil, 
(for coil lengths converging to zero, this kernel would converge toward the Dirac delta distribution and a decon-
volution of the measured signal would no longer be necessary), that is displaced step-by-step along the magnet 
axis, = ∗B r z B r z k r z( , ) ( , ) ( , )n n n0 0 0 , and then to solve
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for the unknown Cn,n. This can be done by a Fourier transform of the measured B r z( , )n 0 , that is,
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In Fig. 1, the axis z represents the longitudinal direction of the magnet, the radius r is on the radial direction, 
and the transversal direction is represented by the flux lines.

The Measurement Principle. The rotating-coil magnetometer is displaced step-by-step longitudinally 
along the magnet axis to measure the (convoluted) multipole-field errors as functions of the z-position. These 
functions are then deconvoluted by the kernels defined by the coil’s sensitivity functions of the corresponding 
harmonic order. The challenge is now to find a suitable order n of the pseudo-multipoles Cn,n and the 
highest-order derivatives Cn n

m
,

( ), in order to minimize the reconstruction uncertainty of the local magnetic field. 
The uncertainty of the method will also depend on the step size chosen for the longitudinal displacement of the 
transducer. Using computed field distributions and boundary values, a metric for the reconstruction uncertainty 
can be given by the residual RB expressed as the normalized root-mean-square error:
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where:
By(k): the y component of the reference field distribution,
B k( )y

p : the reconstructed y component of the field distribution,
k: the index of the sampling point,
K: the maximum number of sampling points,
By(K/2): the reference field component at the magnet center position.

Figure 2 shows the procedure for finding the maximum orders for n and m. The longitudinal distributions of 
the normal and skew harmonics are computed by means of the CERN field computation program ROXIE18 for 
a short, air-coil corrector dipole magnet, as shown on the left of Fig. 2. The field harmonics were computed at a 
50 mm reference radius, sampling every 1.2 mm along the magnet axis. The excitation current of the air-coil was 
set to 10 A, yielding a central field B1 of 37 mT. The optimum orders for n and m yield the functional specification 
for the induction-coil design. In particular, the maximum harmonic order imposes the coil opening angle, while 
the highest order derivative defines the required signal-to-noise ratio and imposes the sampling distance along 
the magnet axis.

Results of this analysis are shown in Fig. 3a, where the residuals are assessed for different combinations of n 
and m for the reconstruction of the field along a line on the magnet’s vertical plane (at position y = 50, x = 0 mm, 
which is at about 2/3 of the magnet bore radius). The roll-off at the magnet extremity is relatively smooth for 
the low-order dipole and sextupole components, therefore considering the higher-order pseudo-multipoles for 
derivatives m > 10 yields no improvement. Figure 3a also shows that the multipoles up to B9 (i.e., n = 9) must be 
considered. For simulated field and boundary data, oversampling, (the maximum step size is established by taking 
the highest spatial frequency in the distribution of the b3 component (m = 12), which in the case of the air-coil 
dipole corresponds to 10 mm, and consequently sampling the domain with a step size of 5 mm), along z does 

Figure 2. Method for assessing the design parameters: harmonic order n and derivative order m.

Figure 3. (a) Numerical results of the field reconstruction residual RB versus derivative m and harmonic order 
n. (b) By field component and reconstruction error (in percent) along z. n = [1, 9] and m = [2, 10].
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not improve the result, but can be useful for (noisy) data acquired form the magnetic field transducer. Figure 3b 
shows the By field component and the reconstruction error (in percent) for the pseudo-multipole analysis with 
n = [1, 9] and m = [2, 10]. The highest error occurs in the fringe field region where the field distribution has the 
fastest roll off.

Results
Sensor Design. The pseudo-multipoles are computed from the stepwise measurements of the transversal 
field components along the magnet axis. Therefore, the rotating-coil sensor must be insensitive to the longitudinal 
field component present in the magnet extremities. In other words, the integral over the v × B term along the coil 
end of the induction coil must be zero. When the induction coil is rotated, the integrated voltage is proportional 
to the flux intercepting the surface traced by this rotation, see Appendix A. This is shown in Fig. 4a for the clas-
sical tangential coil. Notice the surface elements that intercept the longitudinal field component. The proposed 
solution, shown in Fig. 4b, does not span any transversal surface when rotated about its axis.

The objective is to design a sensor with enough sensitivity to the higher-order field harmonics and the pos-
sibility to compensate for the main field component that is by four orders of magnitude higher. An engineering 
solution is to nest several induction coils on a cylindrical shaft. Figure 5a shows the cross-section of the con-
ceptual design. For an iso-perimetric coil, each turn remains on the same radius, and thus is not affected by the 
longitudinal field component when rotated around its longitudinal axis. Only the perpendicular field components 
will induce an electric field on the turn.

The sensor design is based on the equations for the complex sensitivity factors Kn of a single coil turn:
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“rad” indicates the radial component and “tan” the tangential component, r1 and r2 are the radii of the go and 
return tracks, n is the multipole order, and ϕ1 and ϕ2 are the angular positions of the tracks. Thus, for M loops we 
obtain
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where M is the number of loops in the induction coils, N is the number of layers, lm the length of the single loop of 
index m, n the harmonic order, and z1,m and z2,m are the complex coordinates of the m-th loop (see Fig. 5a and b).  

Figure 4. Sensor geometry: (a) tangential and (b) saddle-shaped, iso-perimetric coil.

Figure 5. Cross-section of Flexible Printed Circuit (FPC) induction coil, with main and compensation coils (a) 
top view (b).
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The design was optimized by means of the CERN field-computation program ROXIE. Two independent coils are 
combined on a common shaft. The central coil, with the smaller opening angle, is sensitive to higher-order field 
harmonics. The lower coil (with larger spacing between the turns) is designed to be sensitive only to the main 
dipole field component. From the theory of cos Θ coils1, we know that a single shell of π/3 rad creates the small-
est amount of higher-order field components outside the shell and therefore minimizes the mutual inductance 
coefficient to the magnet. The two induction coils are then connected in series with opposite polarity so that the 
main field component is canceled out, and thus the signal-to-noise ratio is increased. Figure 6 shows the result of 
the mathematical optimization: In red, the position of the main induction coil and, in blue, the compensation coil.

The computed (design) sensitivity factors for the main and compensation coils are shown in Fig. 7a. The 
results for the compensation scheme are shown in Fig. 7b. As the higher-order sensitivity factors scale with 1/rn−1 
it is appropriate to introduce a scaling factor, that is, the measurement reference radius Rref and define

= −S K
R

: ,
(16)

n
n

n
ref

1

where r is the measurement radius.
An important feature is the absence of a “blind eye” for field harmonics up to the 15-th order. The blind eye is 

the multipole order n at which the opening angle (δ) is an integer fraction of 2π. In other words, the coil is com-
pletely insensitive to a multipole of order n when nδ = 2π. The ideal compensation of the main field component is 
a mathematical abstraction, however. Manufacturing tolerances make it impossible to produce nested coils span-
ning identical surfaces. As a quality factor, the compensation ratio (also known as bucking ratio) is defined as:
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−

Q S
S S (17)c
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m
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where S1
m and S1

c are the dipole sensitivities of the main and compensation coils. Compensation ratios on the 
order of 100 are usually considered as an achievement. Figure 8a shows a 3D rendering of the coil design, and 
Fig. 8b shows a photograph of the first prototype.

Sensitivity Factors and Sensor Length. Rotating-coil magnetometers are usually designed to be longer 
than the magnetic length of the magnet under test, or at least long enough to cover the entire fringe field area. For 
this reason, the sensitivity factors are given for the geometric mean lengths of the magnetometer. For short coils, 

Figure 6. Optimized design of the dipole compensated coil with a magnified view of the inner coil (insert).

Figure 7. Sensitivity factors Sn at Rref = 19.065 mm for the main and compensation coils (a) and for the 
compensated scheme (b).
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however, the coil-track thickness cannot be neglected with respect to their overall length. In particular, for coils 
produced in PCB (Printed Circuit Boards) technology, a certain gap size is required between the single turns, 
which increases the track thickness and limits the maximum number of turns. Therefore, the sensitivity factors 
must be expressed locally as a function of the longitudinal position within the coil. This yields the kernel for 
deconvoluting the measured multipole distribution. Let us consider a one-layer, flexible printed circuit of three 
induction coil tracks with external length L of 10 cm and a spacing of 1 cm between them, as illustrated in Fig. 9.

The spanned surface (i.e. the K1 value) for a series connection of the three turns is given by the cumulative sum 
over the contributions from the three turns, that is, the last row in Fig. 9. The finite difference of this sum yields 
the sensitivity function (convolution kernel) k1(z). Considering a flexible printed circuit with M turns, a total 
length L, and a step size t given by the distance between each turn in the coil end, we get for the n-th harmonic,

=
− +

− >V m i t i m
n

z z i m( , ) ( 1) ( ), for , (18)n m
n

m
n

2, 1,

where m ∈ 1, 2, …, M and i ∈ 1, 2, …, I, I = L/t. The sums of the contributions at I (last column in Fig. 9) are the 
sensitivity factors corresponding to the ones shown in Fig. 7a.
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In order to calculate the sensitivity function kn(zi), the finite difference of the sums over Vn(m, i) is required:
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for i ∈ 2, 3, …, I. The functions = −s z k z R( ) ( )/n i n i ref
n 1 for the induction coil are given in Fig. 10.

Figure 8. (a) 3D rendering of the coil design. (b) Photograph of the first printed circuit prototype.

Figure 9. Schematic of the sensitivity factor analysis.
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The main difference between the classical approach (coils that have a track thickness that is negligible with 
respect to the coil length), and the printed circuit technology, is that its sensitivity function varies with the multi-
pole order; see Fig. 11. Therefore, the geometric mean length does not correspond to the magnetic length. The 
deviation from the “hard-edge model”, which is employed in case of the classical coils is shown in Fig. 11.

The differences between the geometric mean and magnetic lengths (LG and LM) are given in Fig. 12 for the 
multipole order n.

Uncertainty Analysis. The sensor performance, in terms of compensation ratio and sensitivity, is affected 
by manufacturing tolerances during the PCB production. The uncertainty on the sensitivity factors is analyzed in 
order to derive the required production tolerances. Both random and systematic errors on the track positioning 
are considered. Uniformly-distributed, pseudo-random errors in the range of ±30 μm are considered for the track 
positions. The complex coordinates of each track are

=




+ 

 +





+ 

z r a x

r
i r a x

r
cos sin ,

(21)m

where a is the nominal arc length calculated by ROXIE, r is the nominal radius of the shaft, and x the random 
error. The assumption of a random error not exceeding ±30 μm is reasonable, because larger errors would lead 
to short circuits because the insulating thickness between turns is only 50 μm. The most sensitive parameter for 
quantifying the track-positioning error is the compensation ratio, see Eq. 17. Table 1 shows the resulting compen-
sation ratios for different levels of random errors.

The flexibility of the induction coil sensor may result in a lengthening or compression of the printed circuit 
during assembly on the shaft and therefore may result in systematic errors on the track positions. Simulations 

Figure 10. Compensated coil sensitivity along the induction coil (Rref = 19.065 mm).

Figure 11. Sensitivity functions sn(zi) along the extremities of the main induction coil and hard-edge model 
(geometric mean length).
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were carried out considering a maximum error of ±100 μm on the total width. Figure 13a shows the results of the 
compensation ratio for a dipole-compensated coil. The maximum acceptable systematic error that will ensure a 
compensation ratio higher than 100 is therefore ±80 μm. Apart from mounting/gluing the flexible printed circuit 
on the shaft, further significant errors arise from the radius tolerance on the shaft itself. Simulations were carried 
out considering a maximum error of ±300 μm on the nominal radius of 19.065 mm. For a compensation ratio 
larger than 100, the shaft tolerance must be better than ±200 μm; see Fig. 13b.

Sensor Production. The sensor was produced at CERN by the PCB service of the EP-DT-EF section. The 
first prototype is shown in Fig. 8b. The total length is 98.2 mm, the width is 61 mm and the thickness 240 μm. The 
main coil consists of 59 loops with an area of 0.129 m2 and magnetic length for the sensitivity K1 of 84.308 mm. 
The compensation coil consists of 11 turns with a magnetic length of the K1 sensitivity of 90.982 mm.

Sensor Validation Experiments. As a first functional test of the prototype transducer, the electrical resist-
ance was measured to verify the continuity between the four layers of the printed circuit. As a proof of principle, 
magnetic measurements were carried out on transfer-line dipole magnet, powered at 150 A. The dipole has an 
air gap of 100 mm × 134 mm. The longitudinal profiles of the field harmonics were measured both by a classical 
radial coil and by the new iso-perimetric coil. A first multipole scanning was performed along the center of the 
magnet, where the transversal field distribution is almost symmetric. Along this trajectory, the magnetic flux den-
sity has only B3, B5, and higher-order odd multipole components. In a second run, the magnet was mapped along 
a track located close to the pole (displaced track). In this way, higher-order skew and normal field components 

Figure 12. Differences between the geometric mean and magnetic lengths as a function of the multipole order n.

Figure 13. Compensation ratio of a dipole-compensated coil with systematic error in PCB width (a) and 
compensation ratio of a dipole-compensated coil at varying the tolerance on the shaft radius (b).

Position uncertainty Dipole compensation ratio

none 130000

±20 μm 17000

±30 μm 16000

Table 1. Compensation ratios for different track-positioning errors.
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can be expected19. The axis of this scanning track is displaced by x = 20 mm and y = −30 mm from the center of 
the magnet bore. Figure 14 shows the main field profile at the magnet center. The dashed red and the continuous 
blue lines represent the profile measured with the iso-perimetric sensor and the classical radial coil, respectively. 
The dashed blue line represents the difference in tesla.

Figure 15a shows the differences between the B1 field components measured with the classical and 
iso-perimetric coils: the difference of the scan along the central axis (as in Fig. 14) is highlighted in red, and along 
the displaced track, in blue. Figure 15b shows the computed field component Bz as a function of the longitudinal 
position, and Fig. 15c the derivative of the computed component Bz. The difference between the two measure-
ments (using the classical and iso-perimetric coils) is higher in case of the displaced track. This is due to the 
quadrupole field component present along the displaced trajectory. In the magnet end regions, this component 
gives rise to higher asymmetric, longitudinal field components as seen in the in the numerical field computation20 
(Fig. 15b). Using the classical coil, voltages are induced in the extremity, which affect the measured B1 component 
that, consequently, cannot be used for extracting pseudo-multipoles.

Figure 14. Main field profile along the magnet center axis measured with the iso-perimetric coil (dashed red) 
and the radial coil (solid). The dashed blue line is the difference in tesla.

Figure 15. (a) Differences between the B1 field components measured with the classical and iso-perimetric 
coils. Red: For the scan along the central axis. Blue: For the scan along the displaced track. (b) Computed Bz field 
component as a function of the longitudinal position. Red: Central axis. Blue: Displaced track. (c) Derivative of 
the computed Bz component. Red: Central axis. Blue: Displaced track.
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Conclusions
A rotating-coil magnetometer was developed and realized at CERN. The aim is to measure the longitudinal mag-
netic field profiles of magnets with large fringe fields. The proposed rotating coil magnetometer is based on a flex-
ible printed circuit mounted on a cylindrical shaft, such that all turns remain on the same radius (iso-perimetry). 
The uncertainty analysis yields production tolerances of ±80 μm (systematic) on track positions and ±200 μm on 
the shaft radius. The sensitivity factors for short PCB coils become functions of the coil length that varies with the 
multipole order. This sensitivity function is the kernel of convolution with the field distribution in the magnet. 
First results have demonstrated that the iso-perimetric coil is less affected by the longitudinal field components 
(compared to the classical design). This effect is more obvious when the magnet is measured along a trajectory 
displaced from the magnetic axis. The reason is the asymmetric field distribution in the magnet extremities.
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