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Topological properties of a bipartite 
lattice of domain wall states
F. Munoz   1,2, Fernanda Pinilla1, J. Mella1,2 & Mario I. Molina1,3

We propose a generalization of the Su-Schrieffer-Heeger (SSH) model of the bipartite lattice, consisting 
of a periodic array of domain walls. The low-energy description is governed by the superposition of 
localized states at each domain wall, forming an effective mono-atomic chain at a larger scale. When 
the domain walls are dimerized, topologically protected edge states can appear, just like in the original 
SSH model. These new edge states are formed exclusively by soliton-like states and therefore, the new 
topological states are qualitatively different from the regular SSH edge states. They posses a much 
longer localization length and are more resistant to on-site disorder, in marked contrast to the standard 
SSH case.

The last years have witnessed a growing interest on one-dimensional models of non-trivial topological systems. 
This has been largely favored by the rapid advance of photonics and nano-photonics as an ideal playground 
to experimentally corroborate theoretical predictions1–3. Different experimental setups, such as plasmonic nan-
oparticles and phononic lattices, have been used as practical realizations of one-dimensional models4–8. This 
emergence of novel experimental escenarios, in turn, has motivated further theoretical research, often on basic 
aspects or phenomena beyond the scope of common electronic systems, such as non-linearities9,10 and Floquet 
insulators8,11,12. The interest on one-dimensional topologically protected modes is not only related to basic under-
standing, but to the practical implementation in the design of low-loss devices13,14.

Perhaps, the most studied one-dimensional model with a non-trivial topology is the Su-Schrieffer-Heeger 
model of polyacetylene15 (SSH). It consists on a tight-binding model for the bipartite lattice, and displays 
soliton-like localized edge states at domain walls (i.e. stacking faults of the bipartite lattice). Recently, this model 
has been the subject of generalizations in order to observe new phenomena16,17. Other one-dimensional models, 
not restricted to the bipartite lattice, have been proposed and realized, showing novel edge states6,18–20.

One of the main purposes behind the focus in simpler models as the SSH is to get insight on more complex 
systems or materials. For instance, depending on the termination, a non-trivial Zak phase in nanoribbons can 
arise, implying topologically-protected edge states21. Similarly, it was shown that some edges states in 2D systems 
with a negligible spin-orbit coupling -for instance some terminations of black phosporus- are indeed topologi-
cally protected22. Also, the natural extension of the SSH model to two dimensions can host different topological 
phases, even with a zero Berry phase23.

In this article we start by reproducing the results of the famous SSH model, Sec. 1, to set the notation and make 
its generalization easier. In Sec. 2, we introduce a new model, consisting on N interacting copies of the SSH model, 
originated from an array of domain walls. If the lattice of domain walls is dimerized -a bipartite lattice of domain 
walls-, we recover a SSH-like behavior formed by the superposition of localized modes. Naturally, this model has 
a non-trivial phase featuring edge states. In Sec. 3 the effect of disorder in the model is studied. Unlike the SSH 
model, the new edge modes are somewhat robust to on-site disorder.

The Bipartite Lattice
We start with a brief summary of the SSH model of polyacetylene15, or more precisely, the tight-binding formula-
tion of the bipartite lattice, see Fig. 1. We assume that the reader has some acquaintance with chiral symmetry, the 
SSH model and topological states of matter21,24. In the optical context, the edge states from this model have been 
experimentally observed and theoretically explained in photonic superlattices1,25.

In a finite bipartite lattice, the two different orderings (see, Fig. 1a,b) acquire a physical meaning. Localized 
edge states appears when the inter-cell coupling dominates. In this case, the edge states are sub-lattice polarized. It 
is tempting to call this phase ‘topological’, however in a finite chain the interaction between edge states is small but 
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not negligible, resulting in a finite interaction energy. Nevertheless, the edge states remain sub-lattice polarized 
and they determine the low-energy phenomena.

A stacking fault on the chain couplings results in a domain wall (DW), Fig. 1c, where a zero-energy localized 
state appears (called a soliton in the context of polyacetylene). Often, domain walls come into pairs, Fig. 1d. If 
their distance is not too large, they interact weakly developing low-energy modes. Therefore, the low-energy 
physics is dominated by DW states, and we can ignore the bulk’s valence and conduction bands, Fig. 1e. A peri-
odic set of DWs and its corresponding periodic lattice of DWs states leads to an effective mono-atomic lattice, 
Fig. 1f. However, if the array of DWs is dimerized, the low-energy states will be a bipartite lattice, see Fig. 1g,h. 
Such a lattice resembles the original SSH lattice and may have low-energy, topologically protected edge states. In 
the remainder of this article we will delve on this possibility.

Free boundaries.  The one-dimensional bipartite lattice, see Fig. 1a,b, has the Hamiltonian
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where t and v are the hopping amplitudes and each cell has two equal –but inequivalent– sites a, b (e.g. the 
sub-lattices). In spite of its simplicity, this system has a very rich physics. In the case of t < v, it has (almost) 
zero-energy and sub-lattice polarized edge states solutions. In the limit N → ∞ the zero-energy modes have a 
simple expression
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where ψL is localized at the left edge of the chain, with width ε = ( )log v
t

. The state ψR is localized at the right 
edge. α, β are normalization constants. For a finite chain size, N, the interaction between both edge states is small 
but finite ψ ψ〈 | | 〉 ∝ − εH eL open R

N
, forming a bonding and anti-bonding pair: ψ ψ±( )L R

1
2

, see Fig. 2a,b. In Fig. 2 the 
finite size effects open a band gap nearly 100 times smaller than the band gap of the bulk system.

The bulk-like states, have energies = ± + +E t v tv k2 cos( )2 2 , see Fig. 2, the band gap (i.e. excluding edge 
states) is ε| − | t v2 2 , validating our previous statement that bulk states are irrelevant for a low-energy 
description.

Figure 1.  (a,b) Scheme of the bipartite lattice, Eq. (1), where each cell -enclosed by a frame- has two sites. There 
are two cases: Intra-cell coupling stronger that the inter-cell coupling or the converse. No specific boundaries 
are implied for any of the schemes. (c) The SSH model: a domain wall defect (DW), see Eq. (4). At the DW a 
localized state appears, lying in the middle of the bandgap, see Eqs (5 and 6). (d,e) Two DWs, the length of each 
segment is exaggerated for ease in visualization. The green hexagon denotes the DW state (low-energy state), see 
Eq. (14). (f) A periodic lattice of DWs. Here, the effective low-energy description is a mono-atomic chain, see 
Eqs (10–12). (g,h) The Bipartite Domain Wall model (BDW): Dimerization of the DWs. Now, the low-energy 
behavior is a bipartite lattice, see Eqs (15–17), just like panels (a,b). The introduction and study of the BDW 
model is the subject of this article.
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Domain walls and periodic boundaries.  Both bonding schemes of the bipartite lattice, see Fig. 1a,b can 
coexist next to each other, meeting on a lattice defect called Domain Wall (DW), see Fig. 1c. If each subsystem 
consist of N sites, after imposing periodic boundary conditions, i.e. by setting ≡† †a aN2 0 , the whole lattice has two 
DWs, each with a localized state centered on it. The Hamiltonian of the full system is:
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We can use the previous solutions ψL, ψR, Eqs (2 and 3) as an ansatz for the DW states at = −j N0, 1
2

:
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where α, β are normalization constants. These solutions are valid for any value of t ≠ v. If v > t (or ε > 0), ψa is 
localized at j = 0 and ψb localized on = +j N 1

2
. A negative value of ε just reverses the positions of the DW 

centers.

A Lattice of Periodic Domain Walls
Monospaced and Periodic Domain Walls.  A bipartite lattice with M mono-spaced DWs –see Fig. 1f– has 
the following Hamiltonian
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where hN, h′N are SSH-like Hamiltonians, but with different topological phase. The periodicity in HPDW is two 
DWs, or 2N cells, but the spacing between domain walls is just N. This Hamiltonian is quite cumbersome, but if 
we focus on its low-energy excitations, it can be greatly simplified, by just keeping the superposition of modes ψa, 
ψb, at each domain wall, see Eqs (5 and 6). Using them as a basis, the effective Hamiltonian is:
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Each group of 2N sites is an effective ‘cell’ with two sub-lattices per cell (i.e. both DWs), just like in the stand-
ard bipartite lattice, but with just one single hopping t′. Therefore, the effective low-energy excitations are just like 

Figure 2.  Energy levels and edge states for a finite bipartite lattice in the topological phase (t < v). N = 10 cells 
(20 sites), =t 1, =v 3

2
. The insets are the edge states in real space and a zoom to their energy (its scale is on the 

right border).
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those in a monoatomic chain with period N, see Figs 1f and 3a. The basis functions, located at the DWs, at sites 
2mN, (2m + 1)N are
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the functions ψ ψ† †,a b  are based in Eqs (5 and 6). While Eq. (5) is already symmetrically centered around 2mN, we 
need to multiply Eq. (6) by −e

1
2  to make it symmetrical around the DW at (2m + 1)N. The simple interpretation of 

this 1
2

 factor is that the center of symmetry is in the middle of two adjacent b sites, see the lower inset from Fig. 2.
The interaction between two localized states is, approximately:

ψ ψ′ = 〈 | | 〉t H (13)a k pdw b k, ,

Figure 3.  (a) Energy levels of an array of M = 12 DWs, with a spacing of N = 11 cells. The low-energy 
eigenstates -inside the green region-, are formed by interactions among DW states, see the inset. (b) Energy 
levels of a lattice of DWs, but with an alternate width, N = 14, N′ = 8, between successive DWs (M = 12 
replications were used). A new bandgap opens with topologically protected edge states in the middle, see the 
reddish region and the inset. (c) Representation of the effective Hamiltonian, for a few values of N, N′, see Eq. (18).  
(d) Dependence of t′, v′, and phase diagram of the winding number, nc, as a function of N, N′. In all panels 
t = 1.0, v = 1.5.
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where the normalization constants α′, β′ are almost independent of N, α′ ≈ .
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2 . For large values of 

N the first term in the parenthesis dominates, but in some contexts -like in optics- the most common arrays con-
sist of a limited number of waveguides.

The low-energy states given by Eqs (7) or (10), are no longer topologically protected, even though they are 
locally sub-lattice polarized (on a scale of N sites), but on a larger scale (NM sites) the sub-lattices are mixed. Also, 
their energy is genuinely finite, forming an s-band, Fig. 3a. This case was studied before in the continuum limit26 
and the results agree with ours.

New topological states and the bipartite lattice of DWs.  In this section we introduce a bipartite lat-
tice of domain walls, starting by its Hamiltonian, and derive its low-energy version, which is a new version of the 
SSH model, but with smaller hopping strenghts. As the SSH model, this new model has a phase with topologically 
protected edge states, see Fig. 3c. These new effective hoppings are strongly dependent on the distance between 
DWs, Fig. 3d. These predictions are confirmed by direct diagonalization of the full Hamiltonian, see Fig. 3b.

The distance between successive DWs can be dimerized, i.e. by setting the spacing from one DW to the next 
one as N cells to the right and N′ cells to the left. This changes slightly the Hamiltonian of a periodic lattice of 
DWs, from HPDW, Eq. (7) to the Hamiltonian of a bipartite lattice of DWs (BDW hereafter):
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where the limits in the sums of hN′ ′ ′h N  must change accordingly. This produces two different hopping strengths 
between domain wall states:
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where, for simplicity, we dropped the last term of Eq. (14), this approximation is valid if ′ N N, 1 –see Fig. 3d.
The effective Hamiltonian for the BDW becomes a copy of the one for a bipartite lattice, but with a larger 

length scale and lower energies, see Fig. 3c,d:
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Figure 3b shows the energy spectrum of the full Hamiltonian HBDW. Inside the bulk gap there appears a band 
of the states at the DWs, and a new gap opens inside (reddish region), and in the middle of it two zero-energy 
states appear. These states are built from DW states, localized at the edges of the system and are fully sublattice 
polarized (see inset in Fig. 3b).

The analogy with the regular SSH model24 in the periodic case is almost complete, in the limit of an infinitely 
long chain, M → ∞. The Fourier transform of the effective Hamiltonian, Eq. (15), gives
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where h(k) is the kernel of the Hamiltonian. We can decompose h(k) as a linear combination of the Pauli matrices 
σ�� = (σx, σy, σz),
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d  = (t′ + v′cos(k), v′sin(k), 0). Figure 3c shows the vector 
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d  for some values of N, N′, and keeping the origi-

nal hopping strengths constant. The geometric place of this vector is a circle and we can define a topological 
invariant related to it, the winding number or Chern number:
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the geometrical interpretation of nc is very simple, it counts how many times the curve 
→
d (k) encircle the origin. 

The two possible values of nc = {0, 1} defines the phase diagram of the system24, see Fig. 3c,d. If N > N′ the system 
is in the ‘topological phase’, that is nc = 1, conversely N < N′ is the trivial phase with nc = 0. In the remaining case, 
N = N′, the curve 

→
d  touches the origin and no topological index can be defined: the system became metallic. Only 

the case with nc = 1 has topologically protected edge states.
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While HBDW
eff  is useful to visualize the connection of the BDW and SSH models, it doesn’t capture other inter-

esting complex phenomena, such as disorder. In order to explore this, we will employ the full Hamiltonian, Eq. 
(15) in the next section.

Disorder in the BDW Model
The resilience of topologically protected states in the SSH model to off-diagonal disorder is well-known, as well 
as its weakness against disorder on the on-site energies27. The band gap due to off-diagonal disorder is not shown 
since in the SSH model it is below our numerical precision. For the edges states of the BDW model, it lies below 
10−4 for a disorder amplitude of δ = [0, 2t]. In smaller SSH chains the off-diagonal disorder is able to close the 
(residual) gap, but the chains considered in Fig. 4 are too large to show this effect.

The non-uniformity of on-site disorder directly breaks the chiral symmetry, destroying the topological protec-
tion. Figure 4a shows an almost linear band gap for the edge states of the SSH model.

The edge states of the BDW model are similar to their parent topological states, and they are –in principle– 
fragile to on-site disorder. However, the magnitude of the band gap due to on-site disorder is much smaller for the 
BDW edge states, see Fig. 4a. This can be partially explained as follows: While the SSH edge states are directly 
affected by the diagonal disorder, the BDW edge states are only affected by the averaged disorder over its charac-
teristic length εBDW –which averages to zero for large εBDW. In the Figure, the asymptotic-like band gap is well 
below the band gap of the bands formed by the DWs states, which in turn is much smaller than the bandgap from 
the SSH model. Given t = 1, v = 1.5, the characteristic length of the SSH model is ε .~ 2 5SSH  cells, or about 5 sites. 
Instead –for the same hopping strengths t, v– the characteristic length of the SSH model, see Eq. (17), is 
ε .~ 1 9BDW  supercells or 42 sites. To test the relationship between band gap and ε, one would naively compare a 
SSH and BDW chains with the same localization length of the edges states, by using different t, v in each chain. 
But, that comparison is unfair: while the SSH edge states are sub-lattice polarized, the BDW edge states also are 
sub-lattice polarized on the lattice of DWs. Therefore, one could expect a similar behavior of SSH and BDW 
chains when ε ε~ 2BDW SSH, this is achieved when t = 1, v = 1.1 in the SSH and t′ = 1, v′ = 1.5 in the BDW model. 
Figure 4b shows similar band gaps for both models when the previous condition is satisfied.

To understand the behavior of the BDW chain under on-site disorder, we show in Fig. 5 the averaged band 
gap when one of the hoppings, namely, v is varied, while keeping the other parameters fixed (t, δ). At moderate 
disorder (i.e. while the BDW increases linearly with disorder in Fig. 4a), δ = 0.5, both the SSH and the BDW 
models are similar: the band gap increases with v, which is to be expected since the localization lenght of edges 
states decreases with v. At each value of v the band gap of the BDW edge states is smaller than the gap from the 
SSH model: the BDW model has a band gap similar to the SSH with a smaller difference of the hoppings, t − v. 
Increasing the on-site disorder amplitude, δ = 1.0, Fig. 4b, the SSH bandgap is almost as twice as large for most 
values of v. But the BDW band gap doesn’t seem to increase appreciably: the resilience of BDW edge states to 
on-site disorder is a rather general feature and depends weakly of the original hopping amplitudes t, v. In contrast, 
the SSH model is fragile against disorder, especially when its hopping strengths are very different, that is, when 
i.e. εSSH comprises few sites.

Figure 4.  Average band gap between the edge states of the SSH and BDW models, as function of the width of 
the on-site disorder. The hoppings for the SSH and BDW curves are t = 1.0, v = 1.5 and N = 8, N′ = 14 for the 
BDW model (same total number of sites were used for the SSH model). The SSH-ε curve has t = 1, v = 1.1. The 
horizontal dashed line is the bandgap of the DW states (SSH bulk band gap is 1.0).
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To get a deeper insight on the effect of disorder on both, the SSH and the BDW models, we calculated the 
inverse participation ratio (IPR)28:

= ∑ | |

∑ | |
IPR

c
c( )

,
(22)

n n

n n

4

2 2

where cn is the wavefunction amplitude at site n. A completely localized state has IPR = 1, and a fully delocalized 
wave has IPR = 1/N, with N being the length of the chain. To introduce disorder into the SSH and BDW models, 
we add a random amount to the diagonal and/or the off-diagonal terms of the Hamiltonians. This random value is 
taken from a uniform random distribution of width δ. For diagonal disorder it is irrelevant whether the disorder 
averages to zero or not, since only differences in the on-site terms are meaningful. Figure 6 shows IPR for both, 
on-site and off-diagonal disorder (considering just nearest-neighbors). The Blöch states of the SSH lattice become 
localized with disorder, regardless of whether it is on-site or off-diagonal disorder. The regular Blöch states of the 
BDW have a very similar behavior -they are Blöch states too-, but they are slighty more localized for any finite 
value of δ. This is a consequence of the ‘fragmentation’ of the extended states (valence and conduction bands) into 
smaller groups with smaller bandgaps –see the green region in Fig. 3b. In the BDW model there is another type 
of Blöch states, these formed by the interaction between DW states, forming a wavepacket, see the green region 
of Fig. 3a,b. The IPR of these states is very similar to the regular Blöch states, and for clarity they are not included 
in Fig. 6.

The BDW’s edges states (right panels in Fig. 6) show a sudden jump of the IPR doubling its value for tiny 
amounts of on-site disorder. When δ is of the order of the interaction between the edges states, they no longer 
form an bonding anti-bonding pair, ψ ψ±( )L R

1
2

, but instead they localize at the left or right edge. Due to the 
smallness of the energy involved in this process one can think of it as an artifact (i.e., the IPR should be ~0.18 for 
no disorder), but it shows that a very small on-site disorder can prevent the occurrence of charge fractionalization 
in the model29.

After reaching δ | − |~ t v , the edge BDW states have a similar IPR, almost independent of the strenght of the 
on-site disorder δ: despite being localized by the chiral symmetry, the model allows a localization length of several 
sites, preventing a delocalization by on-site disorder. In contrast, the SSH edge states have an important delocali-
zation due to the on-site disorder: the chiral symmetry already localized them to a few sites, and the breaking this 
symmetry overcomes the localization due to the disorder itself, the IPR decreases. This behavior, markedly differ-
ent on both models, is consistent with the opening of a band gap by on-site disorder, Figs 4 and 5.

Finally, in regard to off-diagonal disorder, it increases the IPR of the bulk states of the SSH and BDW models. 
It also slightly increases the IPR of the edges states of both models. This is consistent with the absence of band gap 
due to off-diagonal disorder.

Conclusions
We have examinated a generalization of the SSH model of polyacetylene to an array of domain walls focusing on 
the corresponding localized states. Under a mono-spaced lattice of domain walls an s-band appears in the middle 
of the bandgap, whose modes are formed by an extended superposition of the localized domain wall states.

If, instead, the domain walls form a bipartite lattice, a new bandgap appears in the middle of the extended 
domain wall states. This new configuration can host topologically-protected edge states, resembling the SSH 
model but on a much larger spatial scale and lower energies. A simple low-energy description was given, includ-
ing the phase diagram of the system’s topological invariant.

The modes derived from domain walls states have interesting properties related to on-site and off-diagonal 
disorder. While in some aspects -such as the bandgap magnitude- they are more resilient to on-site disorder than 

Figure 5.  Average band gap between the edge states of the SSH and BDW models, as function of the hopping 
strength v. Different panels have a different on-site disorder amplitude δ. The hopping t = 1 for both panels, and 
N = 8, N′ = 14 for the BDW model (same total number of sites were used for the SSH model).
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SSH edge states, an almost negligible amount of disorder suffices to localize the wavefunction on a single edge 
-unlike the SSH edges states.

We believe that an understanding of the properties of low-dimensional systems in the presence of topological 
disorder (DWs) and local disorder (Anderson) is a necesary step towards the design of future robust low-loss 
devices. The effect of nonlinearity on the topological robustness of these systems is another subject of interest 
(under investigation) and will be reported elsewhere.
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