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Semiconductor Hyperbolic 
Metamaterials at the Quantum 
Limit
Inès Montaño1,3, Salvatore Campione  1, John F. Klem1, Thomas E. Beechem1, Omri Wolf1,2, 
Michael B. Sinclair1 & Ting S. Luk1,2

We study semiconductor hyperbolic metamaterials (SHMs) at the quantum limit experimentally using 
spectroscopic ellipsometry as well as theoretically using a new microscopic theory. The theory is a 
combination of microscopic density matrix approach for the material response and Green’s function 
approach for the propagating electric field. Our approach predicts absorptivity of the full multilayer 
system and for the first time allows the prediction of in-plane and out-of-plane dielectric functions for 
every individual layer constructing the SHM as well as effective dielectric functions that can be used to 
describe a homogenized SHM.

Hyperbolic metamaterials (HMs)1–3 are a special class of metamaterials made of metallodielectric multilayers that 
have been under intense investigation recently because of the extreme anisotropy that can be created artificially4–9. 
Possible implementations include alternating subwavelength layers of positive and negative permittivity materials4, 
nanowire arrays10,11, and multilayer graphene12–14. Optical phase diagrams show that HMs can behave as effective 
dielectric (ε ε >⊥, 0), effective metal (ε ε <⊥, 0), or exhibit Type I (ε ε< >⊥ 0, 0), or Type II (ε ε< >⊥0, 0) 
hyperbolic character, where ε , and ε⊥ denote in-plane and out-of-plane effective medium dielectric functions, 
respectively. The frequency dependent optical properties of an HM depend on the filling factor (i.e. the ratio of 
metal/conducting media to dielectric) as well as the optical properties of the metallic and dielectric layers. 
Hyperbolic metamaterials can have extremely large densities of states (infinite in the lossless effective medium 
limit) which can greatly enhance spontaneous emission15–19, enhance near-field thermal energy transfer20,21, and 
lead to enhanced absorption processes22,23. Because at mid-infrared frequencies highly doped semiconductors 
behave like metals (ε ε <⊥, 0), it has recently been discovered that semiconductor hyperbolic metamaterials 
(SHMs) can be fabricated using epitaxial growth of alternating layers of deeply sub-wavelength doped and undoped 
semiconductor layers4,24,25. SHMs offer unprecedented control of carrier concentration, layer thicknesses, and 
interface smoothness when compared to conventional metal/dielectric counterparts26,27, and also feature higher 
carrier mobilities. With epitaxial growth, highly doped layers can be as thin as few nanometers which enables this 
class of metamaterials to support very large wave momentum and hence large photonic density of states.

Of key importance for light-matter interaction physics and device applications of HMs is the actual determi-
nation of the effective permittivities of the hyperbolic metamaterial where the specific multilayer structure of the 
HMs is replaced with an effective medium with uniform properties in each direction. Effective medium theories 
have become ubiquitous and extraction or prediction of effective permittivities of multilayered materials has been 
a topic of intense research for quite some time28–34. While effective permittivities of traditional metallodielectric 
multilayers can generally be calculated in a straightforward way, e.g. see30, the situation is different for SHMs, 
particularly SHMs at the quantum limit. In SHMs the metal layers are replaced by highly doped semiconductor 
layers that although they behave like a metal cannot necessarily be described by an isotropic Drude model as it 
would be appropriate for a metal layer. In nanoscale semiconductor multilayer structures the composite physical 
properties are determined by the eigenstates (wavefunctions and eigen energies) of the system which in turn 
are determined by the nanoscale dimensions and relative placement of the layers and not the bulk properties. 
As a result, the electromagnetic response of a quantum well can be altered dramatically through bandstructure 
engineering and can depend strongly on confinement effects, doping, and many-body interactions. An example 
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for the extreme tunability was given in35, where the crossover from confined plasmon mode (Berreman mode, 
isotropic Drude permittivity), to multisubband plasmon (anisotropic permittivity), to intersubband (ISB) plas-
mon (highly anisotropic permittivity) was achieved by decreasing the thickness of a highly doped quantum well. 
This tunability of the light-matter coupling through bandstructure engineering is the reason why electromagnetic 
modeling of SHMs is not as straightforward as that of metallodielectric HMs. In SHMs the highly doped quantum 
well layer can have a very anisotropic electromagnetic response which has to be quantized in order to describe the 
SHMs through effective permittivities.

In this article, we present a new theory that combines a microscopic density matrix approach for the material 
response and a Green’s function approach for the propagating electric field. This approach allows us for the first 
time to predict in-plane and out-of-plane dielectric functions for every individual layer constructing the SHM as 
well as effective dielectric functions for a homogenized SHM.

Methods
Effective conductivity model. Studies of highly doped quantum wells have shown that the Coulomb inter-
action can yield an effective coupling of all active intersubband excitations that causes the excitation of a unique 
collective mode, the multisubband plasmon. Previous attempts to quantize the electromagnetic response of highly 
doped quantum wells have focused on capturing this effect (called the depolarization effect) by using an effective 
out-of-plane conductivity, σ⊥ , which approximates the impact of the depolarization effect on the light-interac-
tion35–39. In the following we will refer to these models as effective conductivity models (ECMs). In an effective 
conductivity model, the optical absorption of a single quantum well per unit area is approximated using
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where z  is along the out-of-plane direction, ωJ z( , )z  is the z-component of the current density, ωE z( , )z  the 
z-component of the total electric field, and ωE ( )0  the external field. Note, that in Eq. 2 σ⊥  describes only the non-
retarded response of the electric current to the external field, ωE ( )0 , not the response to the total field, ωE z( , )z

38. 
In this framework the single quantum well is represented by an anisotropic layer with an effective thickness Leff  
that is characterized by a spatially uniform out-of-plane permittivity. This spatially uniform out-of-plane permit-
tivity is calculated by relating the out-of-plane conductivity of the doped quantum wells, σ⊥, to the corresponding 
effective conductivity35,36,39
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In Eq. 3 εr is the relative background permittivity, ωn is the transition frequency and ωp n,  the plasma frequency 
associated with the intersubband transition → +n n 1 between consecutive subbands. The plasma frequency can 
be expressed as
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where fn is the oscillator strength, ∆ = −+N N Nn n n1  is the difference in sheet carrier density, and Leff n,  the cor-
responding effective length36. The two main advantages of this approach are that it allows a) quantization of the 
electromagnetic response through a simple formula and b) easy generalization to account for nonparabolic sub-
bands. However, it is important to note that ε⊥

ECM is not the effective permittivity of the metamaterial. Instead 
ε⊥

ECM only describes the approximate optical response of a homogeneous slab of quantum well material with an 
effective thickness Leff  that can differ quite substantially from the physical quantum well thickness38. To compli-
cate matters even further, Eq. 4 shows that the slab can not necessarily be described by one effective thickness, 
since each active transition can have its own effective length. This creates an ambiguity regarding how to practi-
cally calculate an effective permittivity of the metamaterial from ε⊥

ECM.
We show in the following that for certain SHMs, the effective-conductivity model can be used to approximate 

the permittivity of the quantum well layer using ε ε≈⊥ ⊥
QW ECM, i.e. approximating =L Leff n QW, . In this case ε⊥

ECM 
can then be used to calculate the electromagnetic response using the transfer-matrix approach or to calculate 
effective out-of-plane permittivities using the standard anisotropic effective medium approximation. However, 
this approach has to be used with caution as it will ultimately fail if the SHM contains more complicated quantum 
well structures as e.g. double quantum well structures or even single quantum wells where either the optical 
response is not dominated by next-neighbor transitions40 or the effective lengths differ too strongly from the 
physical quantum well thickness.

Spectroscopic ellipsometry method. We have recently presented an experimental approach to extract 
the needed permittivities of SHMs using spectroscopic ellipsometry34. Fitting measured ellipsometry data 
we obtained the anisotropic permittivities of the individual quantum well and barrier layers and then com-
puted effective in-plane and out-of-plane dielectric functions of SHMs by employing the anisotropic effective 
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medium theory (for details see34). As we have shown in34, employing either the individual permittivities using a 
transfer-matrix approach (anisotropic superlattice model) or instead employing the effective permittivities using 
the anisotropic effective medium approximation (anisotropic effective medium model) both allowed us to suc-
cessfully recover spectral as well as angular properties of measured absorptivity/emissivity spectra of the consid-
ered SHM32.

Microscopic model. In this work, we now present a corresponding theoretical approach to determinate 
the electromagnetic response of SHMs. The presented theory is a combination of microscopic density matrix 
approach for the material response and Green’s function approach for the propagating electric field in the struc-
ture and allows us to predict the absorptivity of the SHM as well as permittivities of the individual quantum well 
and barrier layers (anisotropic superlattice model) and effective in-plane and out-of-plane dielectric functions 
for the homogenized SHM (anisotropic effective medium model) in excellent agreement with experimental data 
obtained from ellipsometry measurements. Additionally, our theory shows that measured absorptivity spectra 
alone are insufficient in confirming the accuracy of extracted or calculated effective permittivities as these meas-
urements are not sensitive enough to unambiguously capture the detailed electromagnetic response of SHMs.

In our model the local electric field in the n-th layer of a SHM is determined by solving the inhomogeneous 
self-consistent integral equation
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where =± ±ˆ ˆ ˆe p s( )n n n( ) ( ) ( )  for p-polarized (s-polarized) light and ±E0,  denote the corresponding amplitudes of the 

incident field E0 and its reflections at the various interfaces. ′
←→
G z z( , ) is the retarded Green’s function tensor mod-

ified to describe a superlattice in the presence of a general multilayer geometry (air, active medium, substrate, 
etc.). The nonlocal and nonuniform conductivity tensor σ ′ ″

←→
z z( , )

m( )
 entering Eq. 5 is extracted from the 

current-density operator calculated in the framework of a microscopic density matrix approach and is composed 
of the nonlocal paramagnetic conductivity tensor and the local isotropic diamagnetic conductivity tensor. The 
conductivity tensor can be either determined by numerically solving the Heisenberg Equation in which case 
higher order contributions (microscopic scattering, many-body interactions, etc.) can be included on equal foot-
ing or in its simplest form derived analytically (as done here):
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Here, λnk  denotes electron distribution at in-plane momentum k, ω λλ′
k  the transition frequency between sub-

bands λ and λ′, φ φ=λ λz z( ) ( )c,  is the conduction band component of the envelope wave function in the confined 
direction, and ε λm z( , )0  the energy- and space-dependent effective mass of subband λ. Once the local electric field 
is determined we obtain the absorptivity
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where ER and ET are the reflected and transmitted fields in the full multilayer geometry. Calculating the local 
displacement field using
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In Eq. 15 S denotes the specific region that is being averaged over. Averaging over the quantum well and bar-
rier layers separately ( = ..S N1, , ) allows the extraction of the anisotropic permittivities for the individual layers 
that can be used for electromagnetic modeling of SHMs in the framework of a transfer-matrix method (aniso-
tropic superlattice model). Averaging instead over the full SHM ( =S SHM) allows the extraction of effective 
anisotropic permittivities that allow to describe the homogenized SHM (anisotropic effective medium model).

Results
In order to test the proposed theory we performed a study investigating the impact of the thickness of the barrier 
separating a number of doped quantum wells in SHMs. We grew four different samples composed by alternating 
NQW pairs of 20-nm-thick highly doped In0.53Ga0.47As and LB-nm-thick undoped In0.52Al0.48As layers. Hall measure-
ments showed the average electron density on the order of . × −1 9 10 cm19 3, ellipsometry data and simulations indi-
cated an optical active carrier density of ≈ . × −1 3 10 cm19 3. The number of quantum wells NQW is chosen to keep the 
sample thickness constant. The samples were grown using molecular beam epitaxy on a 0.65-mm-thick InP sub-
strate with a 200 nm thick In0.52Al0.48As buffer layer. Growth characteristics of the four samples are given in Table 1.

We first calculated the band structure of each sample using a fully-coupled 8  ×  8 ⋅k p Hamiltonian41 that 
includes the light-hole, heavy-hole, split-off-hole and the lowest s-like conduction bands. To obtain correct band 
dispersions the impact of remote bands has been included via the Löwdin renormalization42. The screening 
potential due to carrier charges is incorporated by iteratively solving the Schrödinger Equation (using the ulti-
mate concept approach43,44) and Poisson’s equation (using a predictor-corrector approach45). The calculated band 
structure for one period of sample EB4910 is shown in Fig. 1. Note, that the band structures are identical for all 
samples since only the barrier thickness and number of quantum wells differ between the samples. In Fig. 2(a) we 
show the calculated permittivity functions for the individual layers composing SHM EB4910. The 
epsilon-near-zero (ENZ) point of the in-plane permittivity (εx

QW) occurs at ≈1290 cm−1 while that of the 
out-of-plane permittivity (εz

QW) occurs at ≈1325 cm−1. For low frequencies the permittivity of the QW well layer 
is very anisotropic. The in-plane permittivity is Drude-like whereas the out-of-plane permittivity is Lorentz-like.

In Fig. 2(b) we present the corresponding permittivity functions that were extracted via ellipsometry (ani-
sotropic superlattice model). In previous work34 we obtained the anisotropic permittivity functions of the indi-
vidual layers by fitting the ellipsometry data to anisotropic Drude functions. Guided by the theoretical results, 
we here extracted the permittivity functions by fitting the ellipsometry data assuming a Lorentz function for 
the out-of-plane permittivity of the quantum well layer and Drude functions for the in-plane permittivities. 
Furthermore, we imposed the constraint that in-plane and out-of-plane permittivities of the quantum well 
layer converge at high frequencies. As can be seen by comparing Fig. 2(a,b), the ENZ points of both in-plane 
and out-of-plane permittivities are almost identical compared to the calculated permittivities. However, the 
out-of-plane permittivities have different shapes for the very low frequency range. This is due to the fact that the 
calculated permittivity reflects the existence of multiple ISB transitions. The experimentally extracted function, 
however, was obtained through a fit to a single transition Lorentz function. For this reason, the observed differ-
ences in the low frequency range are not surprising.

In Fig. 3 we next show the corresponding effective permittivities describing the homogenized SHM (top row) 
and the corresponding p-polarized absorptivity spectra (bottom row) for all 4 samples at an angle of incidence of 
55 deg. Results using the anisotropic effective medium approach with permittivities extracted from spectroscopic 
ellipsometry are presented with solid lines whereas the results from the microscopic theory are shown with 
dashed lines. Interestingly enough, although the experimental and theoretical out-of-plane permittivities of the 
quantum well layer differ in the low frequency range, the effective permittivities describing the full SHM are 
almost undistinguishable. The low frequency absorptivity peak is associated with ENZ of the effective in-plane 
permittivity. With increasing barrier thickness the ENZ frequency for ε  is shifted to lower frequencies, whereas 
the occurrence of the ENZ mode for ε⊥ gradually disappears. These results highlight the great design freedom for 

Sample LW (nm) LB (nm) NQW

EB4910 20 40 36

EB4908 20 70 24

EB4907 20 100 18

EB4906 20 200 10

Table 1. Characteristics of the four samples used to study the impact of barrier thickness on the 
electromagnetic response of SHMs.
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SHMs. Already by changing the barrier thickness we can tune the dielectric response of the SHM even though the 
electromagnetic response of the individual layers is the same.

As stated previously, the electromagnetic response of a quantum well can be altered dramatically through 
bandstructure engineering and can depend strongly on confinement effects, doping, and many-body interactions, 
which of course will alter the electromagnetic response of the SHM. To demonstrate the dependence of the elec-
tromagnetic behavior on doping we present in Fig. 4(a) the calculated dependence of the ENZ points of the 
effective permittivies and peak absorptivity of the SHM on carrier density and in Fig. 4(b) the corresponding 
absorptivity spectrum for three selected doping densities. To obtain the data plotted in Fig. 4 we simulated a series 
of samples where we tuned the doping density in SHM EB4910 from . ×0 1 1019− ×2 1019 cm3. As can be seen, 
as soon as the superlattice supports an ENZ condition of the effective out-of-plane permittivity, the ENZ point of 
εz

eff  is directly connected to the absorption peak of the SHM.
Last, we investigate the applicability of the effective conductivity model for the SHMs considered in this study. 

Since InAlAs/InGaAs quantum wells exhibit considerable nonparabolicty effects we modified the ECM model by 
introducing the k-dependent plasma frequency

ω
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Figure 1. Schematic of the fabricated structure and calculated band structure for one period of sample EB4910. 
The Fermi level is taken to be 0 eV.

Figure 2. (a) Calculated permittivity functions for the layers composing SHM EB4910 using our new 
microscopic theory. (b) Permittivity functions for the individual quantum well and barrier layers composing 
SHM EB4910 extracted via ellipsometry. The presented functions were extracted by fitting the ellipsometry data 
assuming a Lorentz function for the out-of-plane permittivity of the quantum well layer and Drude functions 
for the in-plane permittivities of the quantum well layer.
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and k-dependent effective length
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2 ,

In this modified ECM model, both the plasma frequency as well as the effective thickness now carry an addi-
tional dependence on in-plane momentum (or photon energy), which was not accounted for in Eq. 4. In Fig. 5(a) 
we compare the out-of-plane permittivity of the quantum well layer of sample EB4910 to the effective permittivity 
obtained in the effective conductivity model (modified to account for nonparabolicity effects as described above). 
As can be seen, the ENZ point of the out-of-plane permittivity is almost identical and both models show strong 
deviations from a Drude function for the low frequency regime. The observed differences between the two mod-
els are due to the omission of retardation effects, restriction to transitions between consecutive levels only, and 
other approximations that were employed in the derivation of the effective conductivity model. Despite the differ-
ences in the low frequency regime the optical absorption of a single quantum well per unit area differs only very 
slightly between the models which again shows that absorption spectra alone are not sensitive enough to fully 

Figure 3. Effective permittivities describing the homogenized SHM (top row) and the corresponding 
p-polarized absorptivity spectra (bottom row) for all 4 samples at an angle of incidence of 55°. Results using 
the anisotropic effective medium approach with permittivities extracted from spectroscopic ellipsometry are 
presented with solid lines whereas the results from the microscopic theory are shown with dashed lines.

Figure 4. (a) Dependence of absorptivity peak of the SHM and ENZ points of effective in-plane and out-of-
plane permittivities on doping density. (b) Absorptivity spectrum of SHM for three selected doping densities. 
As soon as the superlattice supports ENZ of εz

eff , the absorptivity peak of the SHM is directly connected to the 
effective out-of-plane permittivity.
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capture the detailed electromagnetic response of SHMs such as the impact of retardation effects. Note, that the 
absorption shown here is only the absorption of a single quantum well per unit area and not the absorption per 
period as the barrier thickness is not accounted for in Eq. 2. The observed agreement between the calculated 
permittivities might suggest that the ECM model can be used reliably to determine effective permittivities of 
SHM. However, whereas the permittivity shown in Fig. 5 (a, solid lines) is the permittivity of a well layer with 
thickness 20 nm, the permittivity shown in Fig. 5 (a, dashed lines) is actually only the approximated permittivity 
of a layer of quantum well material with thickness Leff. This effective thickness can differ from the physical thick-
ness of the quantum well and as mentioned above now depends not only on the optical transition but also the 
photon energy. To illustrate this dependence we show in Fig. 5(c) the dependence of Leff n,  on photon energy and 
transition number. The physical thickness of the quantum well is 20 nm (green line), however, Leff  varies quite 
strongly between the different ISB transitions. Since the sample is highly doped, Pauli blocking effects yield only 
a small energy range for each transition where the plasma frequency is unequal 0 (shown in red). Outside of these 
energy ranges, optical transitions are forbidden due to Pauli blocking effects. As can be seen in Fig. 5(c), for the 
optically active energy range of transitions 4 and 5, the corresponding effective thicknesses Leff ,4 and Leff ,5 overlap 
with the actual physical thickness of the well. Other transitions, however, have quite different effective thick-
nesses. This dependence of Leff  on transition number and photon energy introduces an ambiguity on how to best 
extract effective permittivities for the SHM. In the case presented here, the results from our microscopic theory 
show that =L Leff QW is a good approximation. However, it has to be kept in mind that this approximation might 
only be valid for the SHM considered in this work. Furthermore, it has to be stressed that the ECM will ultimately 
fail to correctly capture the quantum well permittivity if the SHM contains more complicated quantum well struc-
tures where the permittivity is not dominated by transitions between consecutive energy levels.

Conclusion
We have studied semiconductor hyperbolic metamaterials (SHMs) at the quantum limit experimentally using 
spectroscopic ellipsometry as well as theoretically using a new microscopic theory. Comparison between theory 
and experiments has shown that our theory correctly captures light-matter interactions in SHMs at the quantum 
limit. The presented theory predicts absorptivity of the full multilayer system and for the first time allows the 
prediction of in-plane and out-of-plane dielectric functions for every individual layer constructing the SHM as 
well as effective dielectric functions that can be used to describe the homogenized SHM. Our results show that the 
absorptivity peak of the SHM can be extrapolated from the effective out-of-plane permittivity of the SHM as soon 
as the ENZ condition of εz

eff  is fulfilled. The theory allows to either determine the microscopic conductivity tensor 
describing the material response approximately in a simple analytical form or numerically in which case higher 
order contributions (microscopic scattering, many-body interactions, etc.) can be included on equal footing. 
Studies investigating the impact of many-body interactions on SHMs are under way and will be published in a 
future paper. Besides validating the presented theory, we also investigated the applicability of the widely-used 
effective conductivity model to the description of SHMs and found that the model captures the important physics 
well in the SHMs considered in this work. However, caution should be used when extending the ECM to more 
complicated SHMs. For more complicated SHMs, where the ECM will ultimately fail, the presented microscopic 
theory has to be used to ensure that the underlying physics are captured correctly.

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable re-
quest.

Figure 5. (a) Permittivity functions for the quantum well layer calculated using the effective conductivity 
model (ε⊥

ECM, dashed lines) and the full theory (ε⊥
QW, solid lines). (b) Optical absorption of a single quantum 

well per unit area calculated using either our new microscopic theory (solid line) or the effective conductivity 
model (calculated using Eq. 2, dashed line). (c) Dependence of Leff n,  on photon energy. Only the energy ranges 
indicated in red are optically active. Outside of these energy ranges, optical transitions are forbidden due to 
Pauli blocking effects.
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