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The swimming plus-maze test: a 
novel high-throughput model for 
assessment of anxiety-related 
behaviour in larval and juvenile 
zebrafish (Danio rerio)
Zoltán K. Varga1,2, Áron Zsigmond3, Diána Pejtsik1, Máté Varga3,4, Kornél Demeter5, 
Éva Mikics1, József Haller6 & Manó Aliczki1

Larval zebrafish (Danio rerio) has the potential to supplement rodent models due to the availability 
of resource-efficient, high-throughput screening and high-resolution imaging techniques. Although 
behavioural models are available in larvae, only a few can be employed to assess anxiety. Here we 
present the swimming plus-maze (SPM) test paradigm, a tool to assess anxiety-related avoidance of 
shallow water bodies in early developmental stages. The “+” shaped apparatus consists of arms of 
different depth, representing different levels of aversiveness similarly to the rodent elevated plus-maze. 
The paradigm was validated (i) in larval and juvenile zebrafish, (ii) after administration of compounds 
affecting anxiety and (iii) in differentially aversive experimental conditions. Furthermore, we compared 
the SPM with conventional “anxiety tests” of zebrafish to identify their shared characteristics. We 
have clarified that the preference of deeper arms is ontogenetically conserved and can be abolished by 
anxiolytic or enhanced by anxiogenic agents, respectively. The behavioural readout is insensitive to 
environmental aversiveness and is unrelated to behaviours assessed by conventional tests involving 
young zebrafish. Taken together, we have developed a sensitive high-throughput test allowing the 
assessment of anxiety-related responses of zebrafish regardless of developmental stage, granting the 
opportunity to combine larva-based state-of-the-art methods with detailed behavioral analysis.

Mental disorders, particularly those associated with anxiety represent a serious burden on both the individual and 
the society1. In order to devise therapy for such disorders, clinical and preclinical research aims to uncover the 
basis of anxiety-related psychopathologies and develop novel interventions. However, compounds tested on the 
preclinical level, despite the high resource intensity of this phase, show a low success rate in placebo controlled 
clinical trials2,3. Consequently, there is an emerging need for innovative and resource-efficient approaches that 
support the development of new therapeutic strategies.

The zebrafish (Danio rerio) is a tropical fish species4 rapidly gaining attention in biomedical research. The 
validity of this model is supported by the fact that 84% of human disease-related genes have at least one zebrafish 
orthologue5. In addition, the central nervous system of teleost fishes shares major characteristics with that of 
higher vertebrates, but possesses less complexity, making it eligible to model basic brain functions6–9. Besides 
these homologies, the rationale for disease modelling in zebrafish is also supported by the low maintenance costs 
and reduced ethical concerns associated with its use9–11.
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A particular advantage of zebrafish models is the availability of numerous techniques to monitor and manip-
ulate physiological processes in the larval stage. Due to the optical clarity of fish during this stage, optogenetic 
manipulation and imaging of central nervous system activity can be performed simultaneously, with a temporal 
and spatial resolution that surpasses other available models by far. Furthermore, larval fish show a wide behav-
ioural repertoire, as early as a few days after hatching, making them an ideal model to combine behavioural 
and physiological screening. Despite this, relatively few approaches involve anxiety-related responses of larvae, 
making it difficult to conduct integrative phenomenological analysis. Furthermore, available behavioural tests 
utilizing larvae, e.g. the open tank (OT) and the light/dark tank (LDT) test, are based on the natural aversion 
of exposed12,13 or poorly lit areas14,15, but exclude aversion of the water surface, even though it is the most fre-
quently measured, persistently expressed and reproducible defensive response to novelty in adult zebrafish16–26. 
This is possibly due to the difficulties with recording the swimming depth of fish in a high-throughput context. 
Designing a behavioural paradigm in larvae assessing this typical defensive response, particularly in combination 
with the wide range of techniques available for modifying and monitoring physiological function would allow us 
to investigate the basis of anxiety in a high-throughput and highly detailed manner.

In the current study, we present the swimming plus-maze (SPM) test, a paradigm developed by our group 
for high-throughput screening of anxiety-related behaviour in young zebrafish. The SPM platform consist of dif-
ferentially deep arms, offering a choice between differently aversive zones, making it possible to analyze surface 
avoidance behaviour in a high-throughput manner. The test is highly analogous to the rodent elevated plus-maze 
(EPM) paradigm27,28, both in respect of its concept, design and observed pattern of behavioural outcome. To val-
idate our test we (i.) analyzed the effects of anxiolytic and anxiogenic compounds on larvae (8 dpf) and juveniles 
(30 dpf), (ii.) investigated the effects of experimental conditions such as light intensity, test repetition, and the 
context of test batteries. Furthermore, (iii.) we aimed to determine the shared characteristics of the SPM with 
previous conventional tests employed in zebrafish. To the best of our knowledge, this is the first test that utilizes 
the anxiety-related avoidance of shallow water in zebrafish regardless of developmental stage, hence filling an 
important niche in larva-based high-throughput phenotypic screening.

Results
Exploration pattern and correlation of variables in the SPM.  First, we aimed to analyze the explo-
ration pattern (e.g. the spatial and temporal dynamics of behaviour) of zebrafish in the plus-shape platform (for 
dimensions see Table 1). Furthermore, we aimed to investigate the nature of connections between each measured 
variable to draw a general profile for the use of the SPM test. The exploration pattern and the association of var-
iables were calculated from the data of vehicle treated, naive animals. Zebrafish prefer the deep arms over the 
shallow arms and the center zone (Fig. 1b) (see statistical data in Supplementary Table S1). The more detailed 
exploration analysis and the heatmaps revealed an emerging trend in this preference towards the outermost parts 
of the deep arms (Fig. 1c). According to the 1-minute-resolution analysis both larval (8 dpf) and juvenile (30 dpf) 
zebrafish express permanent deep arm preference throughout a 10 minute test session (Supplementary Fig. 1). 
Correlation analysis revealed a strong positive association between choice index and deep/total arm entries, while 
both of these variables negatively correlate with the relative entry frequencies to the shallow arms. Neither of 
the previous variables, except for total arm entries, are associated with velocity (Fig. 1d) (see statistical data in 
Supplementary Table S2).

Pharmacological validation of the SPM.  In Experiment 1, we sought to validate the SPM test by applying 
pharmacological agents affecting human anxiety.

In Experiment 1a we assessed the effects of the anxiolytic agent buspirone on 8 dpf larva behaviour. 
Vehicle-treated fish have robust preference towards the deep arms over the shallow arms or the central zone. 
50 mg/L buspirone decreased the time spent in the deep arms and, as the significant interaction indicates, anxio-
lytic treatment completely or partially abolished the control ratio (Fig. 2a) (see statistical data in Supplementary 
Table S1). Buspirone did not affect choice index (Fig. 2b), however, it significantly lowered deep/total arm entries 
compared to controls (Fig. 2c). None of the applied concentrations affected mean velocity (Fig. 2d) (see statistical 
data in Table 2).

In Experiment 1b we investigated the effects of the anxiolytic agent chlordiazepoxide on 8 dpf larval behaviour. 
Vehicle-treated fish showed a highly positive choice index towards the deep arms, which was significantly low-
ered by 10 mg/L chlordiazepoxide (Fig. 2e). Chlordiazepoxide only marginally decreased deep/total arm entries 
(Fig. 2f) and did not affect mean velocity (Fig. 2g) (see statistical data in Table 2).

In Experiment 1c we assessed the effects of the anxiogenic compound caffeine on 8 dpf larva behaviour. 
Control zebrafish showed strong deep arm activity, which was increased by the highest concentration of caffeine, 

Developmental stage Zone Length × Width Depth Bottom thickness

Larva (8 dpf)

deep arms 5 × 4 mm 2 mm

1 mm

center zone (ramp + intersection + ramp) (2 + 4 + 2) × (2 + 4 + 2) mm 2 mm

shallow arms 5 × 4 mm 1 mm

Juvenile (30 dpf)

deep arms 10 × 8 mm 5 mm

center zone (ramp + intersection + ramp) (3 + 8 + 3) × (3 + 8 + 3) mm 5 mm

shallow arms 10 × 8 mm 2.5 mm

Table 1.  Dimensions of the SPM apparati for larval and juvenile fish.
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as indicated by the enhanced choice index (Fig. 2h) and deep/total arm entries (Fig. 2i). Also, caffeine caused a 
marginal decrease in velocity (Fig. 2j) (see statistical data in Table 2).

Validation of the SPM in juvenile zebrafish.  In Experiment 2, we sought to validate the SPM test in juve-
nile zebrafish, hence we treated 30 dpf fish with 50 mg/L buspirone, which was shown to be effective in the case 
of larvae, applying different incubation protocols (washout vs. continuous treatment). Continuous exposure to 
buspirone significantly lowered deep arm preference (Fig. 3a) but not deep/total arm entries (Fig. 3b). However, 
both treatments decreased mean velocity (Fig. 3c) (see statistical data in Table 3).

Effects of environmental aversiveness on behaviour in the SPM.  In Experiment 3, we aimed to 
investigate the sensitivity of the SPM to testing conditions such as environmental aversiveness, hence we exposed 

Figure 1.  The swimming plus-maze test (SPM): apparatus, behaviour and selection of variables. (a) 3D (top-
left) and 2D drawings of apparati for larvae (bottom-left) and juveniles (bottom-right). Dashed lines indicate 
the boundary of areas (d: deep arm; s: shallow arm; c: center zone (intersection + ramps)). For exact dimensions 
of the apparati see Table 1. (b) Percentage of time spent in each zone of the SPM test; (c) representative 
heatmap of exploration (top) and fine resolution analysis of deep arm activity (bottom)(dashed lines indicate 
mean ± SEM). (d) Correlation between behavioural measures of the SPM test. Size and colour intensity of dots 
in the intersection of variable abbreviations are in linear association with the correlation coefficient between the 
two variables. Bigger dot indicate stronger association. Blue dots indicate positive, red ones indicate negative 
correlation. *Shows significant correlation between variables. DAE: deep/total arm entries, C: choice index, 
SAE: shallow/total arm entries, VELO: mean velocity, TAE: total arm entries.

Figure 2.  Pharmacological validation of the SPM. (a) Changes in spatio-temporal patterns of behaviour in 
response to buspirone treatment. *Significant difference from time percentage spent in deep arms, #significant 
interaction between treatment and area. (b–d) Changes in arm preference-associated variables and velocity in 
response to buspirone. (e–g) Effects of chlordiazepoxide. (h–j) Effects of caffeine. *Significant difference from 
vehicle treated group. Dashed lines represent polynomial trendlines.
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30 dpf juvenile fish to different light intensities during testing. Results from the low-light-exposed group were set 
as the reference level of the model. Neither moderate nor intense illumination affected the measured behavioural 
variables compared to the low light intensity group (Fig. 3d–f) (see statistical data in Supplementary Table S3).

Effects of repeated testing in the SPM.  In Experiment 4a and 4b we also aimed to assess the sensitivity 
of the SPM to environmental conditions such as repeated exposure to the test, hence we tested 30 dpf juvenile 
zebrafish repeatedly in 1 and 24 hour intervals, respectively, using additional naïve control animals in the second 
sampling. Results from the second test were set as the reference level of the model. Behaviour measured in the 
repeated test did not differ from baseline values or from the results of naïve controls (Fig. 3g–i) (see statistical data 
in Supplementary Table S3).

Shared characteristics of the SPM with conventional anxiety tests.  In Experiment 5 we sought to 
unravel shared characteristics of behavioral domains measured by the SPM and conventional zebrafish anxiety 
tests by comparing primary outcomes that describe avoidance behavior in these paradigms. We subjected 30 dpf 
juvenile zebrafish to the open tank (OT), SPM, and light/dark tank (LDT) tests in rapid succession. In order to 
assess whether behaviour in the SPM is affected by prior OT testing, we introduced an additional parallel-tested 
control group, naïve to any test exposure. Choice index, deep/total arm entries, and mean velocity were unaf-
fected by previous OT exposure compared to test naïve controls (Fig. 4c,d) (see statistical data in Supplementary 
Table S3). Surprisingly, mean velocity in the SPM and OT tests did not correlate significantly (Fig. 4b). Also, there 
was no significant correlation between the choice indices of SPM and OT (Fig. 4e) or SPM and LD (Fig. 4g). 
However, according to the correlation coefficients between these variables, SPM and LD shared 22.9% of var-
iance, in contrast to the SPM-OT comparison, in which this measure was only 0.49% (see statistical data in 
Supplementary Table S4).

Discussion
Our results show that both larval and juvenile zebrafish prefer the deep arms over the shallow arms or the cen-
tral zone. This preference was abolished by the clinical anxiolytics buspirone and chlordiazepoxide, while it 
was enhanced by the anxiogenic caffeine. The SPM was applicable regardless of the developmental stage of the 
behavioural phenotype, the aversiveness or the familiarity of the testing environment, or prior OT exposure. 

Experiment Compared groups Measure Estimate SE n t-value p-value

1a (buspirone)

vehicle vs 25 mg/L

choice index 0.31 0.36
8 vs 
10

0.88 0.358

deep/total arm entries −0.17 0.15 −1.117 0.273

mean velocity 0.69 0.89 0.77 0.448

vehicle vs 50 mg/L

choice index 0.42 0.37
8 vs 
10

1.12 0.182

deep/total arm entries −0.32 0.15 −2.055 0.049*

mean velocity 0.39 0.90 −0.43 0.670

vehicle vs 100 mg/L

choice index 0.25 0.38
8 vs 
10

0.68 0.500

deep/total arm entries −0.05 0.16 −0.293 0.772

mean velocity −1.11 0.92 −1.21 0.237

1b (chlordiazepoxide)

vehicle vs 0.1 mg/L

choice index 0.17 0.19 25 
vs 
15

0.906 0.390

deep/total arm entries −0.02 0.07 −0.234 0.816

mean velocity 0.28 0.53 0.525 0.612

vehicle vs 1 mg/L

choice index 0.01 0.15 25 
vs 
15

0.098 0.922

deep/total arm entries 0.06 0.07 0.842 0.402

mean velocity 0.28 0.46 0.620 0.546

vehicle vs 10 mg/L

choice index 0.53 0.18 25 
vs 
16

2.870 0.024*

deep/total arm entries −0.14 0.07 −1.922 0.059

mean velocity 0.46 0.52 0.887 0.391

1c (caffeine)

vehicle vs 25 mg/L

choice index −0.13 0.12 26 
vs 
17

−1.016 0.313

deep/total arm entries 0.04 0.03 1.383 0.171

mean velocity −0.004 0.11 −0.039 0.969

vehicle vs 50 mg/L

choice index 0.06 0.12 26 
vs 
19

0.490 0.625

deep/total arm entries 0.01 0.03 0.459 0.648

mean velocity −0.03 0.11 −0.271 0.787

vehicle vs 100 mg/L

choice index −0.32 0.13 26 
vs 
15

−2.401 0.019*

deep/total arm entries 0.07 0.03 2.308 0.024*

mean velocity −0.22 0.12 −1.862 0.066

Table 2.  Statistical data of the pharmacological validation experiments (Experiment 1a, 1b, and 1c) shown in 
Fig. 2b–j. We set treatment “vehicle” as reference levels in each linear mixed model. P-values in red with asterix 
represent significant difference from vehicle treated group. Values in orange represent marginal significance.
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Interestingly, deep arm activity in the SPM was unrelated to behavioural responses measured by conventional 
“anxiety tests” of larval zebrafish.

The primary behavioural responses in our study aimed to describe arm preference and the drive behind it. 
Choice index and deep/total arm entries are strongly correlated variables, however, neither of these are associated 
with the locomotion of zebrafish, suggesting that these variables are associated with closely related, if not the very 
same motivational states, and thus are potentially substitutable with each other. This relationship indicates an 
important difference between the SPM and EPM, since in the latter test, the relative entries into one of the less 
aversive arms are a predictor of locomotion but not anxiety28. In contrast, in the SPM locomotion is predicted 
only by the number of total arm entries, according to its high correlation with the average velocity of larvae. 
Despite the fact that in the rodent analogue of the SPM the number of arm entries is widely accepted as a measure 
of locomotion28, we suggest the use of more than one variable due to some discrepancies in the measurement of 
locomotion reported in fish by Ingebretson and Masino29. According to their study, smaller distance moved and 
slower velocity of fish is in some cases accompanied by more active swimming episodes, a phenomenon that did 
not occur in rodent experiments. However, different measures of activity in the more aversive zone, e.g. time 
spent and entry frequencies into the open arm are both loaded on the same factor in the principal component 
analysis of EPM variables30. This finding is in line with the strong correlation between such measures in the SPM 
test, supporting the similarity of the two paradigms.

To the best of our knowledge, our group is the first that has observed and utilized preference towards areas 
where deeper water is accessible in larval zebrafish. Such marked preference for these zones can possibly be based 
on the bottom-dwelling geotactic behaviour of zebrafish shown in response to novelty, described in adults by sev-
eral groups using either the novel tank diving test or a plus maze with a ramp18,21,26. This similarity is supported by 
the fact that in our experiments both 8 dpf larvae and 30 dpf post-metamorphic juveniles, showing a completely 

Figure 3.  Validation in juveniles and the effect of environmental aversiveness and familiarity. (a–c) Behaviour 
of juvenile zebrafish after buspirone treatment. (e–g) Effects of different light intensities on juvenile behaviour. 
(h–j) Effects of test repetition on juvenile behaviour. T0: results from the first test of repeated groups, T1 and 
T24: results from the tests of naive groups and the second tests of repeated groups after 1 and 24 hour intervals.

Experiment Compared groups Measure Estimate SE n t-value p-value

2 (buspirone on 
juvenile behaviour)

vehicle vs wash-out

choice index 0.29 0.25
14 
vs 
11

1.172 0.250

deep/total arm entries −0.07 0.10 −0.774 0.445

mean velocity −2.42 0.98 −2.462 0.020*

vehicle vs permanent

choice index 0.74 0.24 14 
vs 
12

3.036 0.005*

deep/total arm entries −0.04 0.09 −0.465 0.646

mean velocity −3.92 0.94 −4.147 0.0003*

Table 3.  Statistical data of the validation in juvenile fish (Experiment 2) shown in Fig. 3a–c. We set treatment 
“vehicle” as reference level in the fitted linear mixed model. P-values in red with asterix represent significant 
difference from vehicle treated group. Values in orange represent marginal significance.
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developed behavioural phenotype31,32, expressed similar behavioural patterns regarding arm preference. There 
is a growing body of evidence in adult zebrafish that this phenomenon is driven by the aversion to the water 
surface rather than preference for the bottom33 and that direct exposure to such stimuli is highly stressful for 
fish34,35. Blaser and Goldsteinholm constructed a two-sided platform for adult fish with a visual cliff apparatus, 
in which the distance from the water surface and bottom could be manipulated independently. In one condition 
they equalized water depth in the two sides using a glass insert, but the visual depth was manipulated by placing a 
gravel substrate just below, or far below the glass floor. Zebrafish preferred the side that looked deeper and not the 
one that looked closer to the gravel, indicating that escape from the surface, rather than approach to the bottom 
motivates diving behavior. Furthermore, Ingebretson and Masino found that larval zebrafish show significantly 
less active swimming in shallower bodies of water, also, a higher ratio of zebrafish stayed completely immobile in 
such conditions29. This response can possibly be interpreted as an increase in anxiety-related freezing behaviour 
of larvae. The nature of the relationship between the relative depth of water and the level of aversiveness in larval 
stage is going to be the aim of future investigations. Interestingly, while the central zone of the SPM is as equally 
deep as the deep arms, this area was less attractive to zebrafish in our study, suggesting that the intersection of the 
platform represents a different, possibly more aversive stimulus, e.g. higher environmental exposure. These results 
indicate that the exploration pattern in the SPM is driven by more than one stimulus and the associated internal 
states. Importantly, possible differences of light intensity in the deep and shallow arms stemming from the var-
ying distances to the light source are very unlikely to lead to deep arm preference, as exploration patterns were 
unaffected by different light conditions. This is also supported by the fact that larval and post-metamorphic fish 
showed very similar behaviour in the SPM, despite a switch occurring from a light preferring to a dark preferring 
phenotype between these developmental stages32. Taken together, the observed behaviour is possibly the result of 
a trade-off between highly exposed aspects of the SPM, e.g. water surface or the intersection, and the innate urge 
of animals to explore the novel environment.

In our pharmacological validation experiments, deep arm activity was decreased by anxiolytics buspirone 
and chlordiazepoxide, while it was increased by the axiogenic caffeine, without either affecting locomotion. Since 
earlier reports on the effects of buspirone and benzodiazepines are rather inconsistent36–40, it is an important 
feature of the SPM that both agents, regardless of their target of action, affected behaviour in a similar man-
ner. Furthermore, another advantage of the SPM is that, contrary to other tests13, there was no measurable 
ceiling-effect potentially masking the anxiogenic properties of caffeine. Interestingly, the employed anxiolytics 
affected different, although strongly correlated variables, pointing out the importance of detailed behavioural 
analysis. It is also important to note that, in contrast to earlier reports41, we did not detect the sedative effects of 
chlordiazepoxide. This phenomenon might be attributed to a sum of several effects, e.g. strain differences or lower 
sensitivity of the SPM for measuring motor changes. Despite this small limitation, our findings suggest that the 
basis of behaviour shown in the SPM is anxiety-related.

Our experiment in juveniles revealed that the behavioural patterns of vehicle-treated juvenile zebrafish are 
very similar to those measured in larvae. The significance of applying such an experiment to 30 dpf fish is that 
most behavioural domains, e.g. social or light/dark avoidance behaviour, have already developed to their mature 
form by this age31,32. Based on our analysis, including fish from different developmental stages, and the investi-
gation of adult behaviour by other labs18,21,26, it is very likely that surface avoidance behaviour remains conserved 
throughout the ontogenesis. Such phenomena enable the consistent use of SPM, regardless of developmental 
stage, over other current methods. However, 50 mg/L buspirone, previously shown to be effective in larvae, 
affected deep arm activity only in the case of the longer incubation protocol, but decreased locomotion in all 

Figure 4.  Shared characteristics of SPM and conventional “anxiety tests” of zebrafish. (a) Mean velocity in the 
OT and in the SPM tests of double tested (red) and naïve (white) animals. (b) Intra-individual correlation of 
velocity measured in the SPM and OT tests. (c,d) Deep arm activity related variables measured in naïve and 
battery tested (prior OT exposure) subjects. (e–g) Correlation plots and venn-diagrams of association between 
domains of avoidance behavior measured by different “anxiety tests” of zebrafish (OT: open tank, LDT: light/
dark tank, SPM: swimming plus maze). The magnitude of avoidance is represented as choice indices. Venn-
diagrams show percentage of shared variance between tests, calculated as r2 * 100, where r is the correlation 
coefficient between choice indices.
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treatment groups. This divergent behavioural pattern was probably rather due to the maturation of the CNS than 
differing ability to absorb the compound, since the treatment exerted sedative effect in every case. Revealing the 
basis of these surprising effects is going to be the aim of future investigations, however, our results suggest that 
SPM is applicable in different developmental stages, thus enabling it to be used for behavioural analysis during 
the early stages of ontogenesis.

In our experiments aiming to determine the effects of environmental conditions, neither different light inten-
sities, nor repeated testing influenced the behaviour of juvenile fish. However, there is a non-significant trend in 
the test repetition experiment suggesting an enhanced excitation after the 1 hour and a mild habituation after the 
24 hours intervals. These results suggest that these aspects of aversiveness or familiarity of the testing environment 
do not act as a strong biasing factors in the SPM, in contrast to its rodent analogue27,28,42,43. Moreover, the use of 
naive controls revealed that there is no considerable fluctuation in the behavioural patterns in 1 or 24 h intervals. 
Our results suggest that the SPM paradigm can be employed in a flexible manner even in a high-throughput 
context.

To determine whether deep arm activity in the SPM is related to other forms of avoidance behaviour measured 
by conventional “anxiety tests” of zebrafish, e.g. OT and LDT, we compared these. While the behavioural end-
points of the different paradigms only show a slight correlation, avoidance behaviour of juvenile fish in the SPM 
and LDT shared 22.9% variance, reflecting much more similarity between these tests than between their rodent 
counterparts44. However, such weak associations between behavioural measures seem counterintuitive consider-
ing that each test relies on unconditioned avoidance of threatening situations and measures behaviours that are 
theoretically based on the same emotional construct. According to the rodent literature, such discrepancies are 
often attributed to differences between correlation analysis of scores of individuals versus means of treatment 
groups45. Ramos stated that despite the fact that rodent open field, light/dark box and EPM tests are all sensitive 
to anxiolytic drugs, the baseline behaviour of untreated animals might not present significant inter-test correla-
tions. He explained the latter phenomenon as correlating behaviour of individuals burdened by inter-individual 
variability, such as the transient condition, e.g. anxiety state, of the animals, that can be important to the point of 
overriding the anxiety trait of a given group of animals. Consequently, similarly to rodent studies, meta-analysis 
of anxiety tests provide more valuable data about the relatedness of different paradigms. Kysil and colleagues 
made the most comprehensive comparative analysis of the LDT and the novel tank diving tests so far20, and 
found that these test have a good cross-test validity and similar sensitivity to zebrafish anxiety-like states. In 
contrast, detailed studies based upon direct comparison of the tests23 or their major stimuli, e.g. water depth 
and wall colour18, found several differences in the background drive of the expressed behaviour, emphasizing 
the importance of using multiple tests for phenotyping zebrafish. This data supports the idea that emotionality is 
not unidimensional, but varies along several partially overlapping axes that are only accessible through a series 
of tests. Kysil also describes that the context of the novel tank diving protocol exerts higher cortisol response and 
a more survival-driven innate diving behaviour indicating a more stressful testing environment for fish20. In our 
experiments, in line with such findings, zebrafish expressed much stronger avoidance in the OT and SPM, than in 
the LDT test. Considering the data above and our own results, i.e. (i.) OT exposure did not influence subsequent 
SPM behaviour, (ii.) all three tests applied measure different phenomenological correlates of anxiety and (iii.) 
are differentially sensitive to motor changes, we recommend the use of the test battery applied here to analyze 
behavioural phenotypes in detail.

In summary, we have determined that larval and juvenile zebrafish show a yet unobserved behavioural pat-
tern, which is possibly based on bottom-dwelling behaviour, exerted by complex stimuli of the SPM test. This 
pattern can be manipulated by pharmacological agents similarly to anxiety-based responses of higher vertebrates, 
including humans. With the employment of the SPM paradigm we are able to screen genotypes, adverse experi-
ences or any type of manipulations potentially affecting anxiety in a more detailed and highly efficient manner 
due to the utilization of larvae instead of adults. In addition, with the use of SPM, we are potentially able to com-
bine state-of-the-art methods, based on the unique advantages of young zebrafish, e.g. in vivo imaging techniques, 
with detailed behavioural analysis offered by the presented test battery.

Materials and Methods
Animals.  Wild type (AB) fish lines were maintained in the animal facility of ELTE Eötvös Loránd University 
according to standard protocols (Westerfield, 2000). Experimental subjects were unsexed animals aged 8 or 30 
dpf (days post fertilization). Fish were group-housed and maintained in a standard 14 h/10 h light/dark cycle. 
Animals were terminated on ice immediately after each experiment. Feeding of larvae started at 5 dpf with com-
mercially available dry food (a 1:1 combination of <100 μm and 100–200 μm Zebrafeed, Sparos) combined with 
paramecium. This regimen lasted until 15dpf, after that juvenile fish were fed using dry food with gradually 
increasing particle size (200–400 μm Zebrafeed) combined with fresh brineshrimp hatched in the facility. From 
30 dpf adult fish were fed with dry food (Small Granular, Special Diets Services, product code: 824876) combined 
with brine shrimp. Water quality was controlled constantly by a Stand-Alone (Tecniplast) system, with param-
eters set at pH = 8.0, conductivity = 500 µS, temperature = 28 °C. Animal density never exceeded. All protocols 
employed in our study were approved by the Hungarian National Food Chain Safety Office (Permits Number: 
PEI/001/1458-10/2015 and PE/EA/2483-6/2016).

Drugs.  All compounds were dissolved in E3 medium and administered as a water bath followed by a brief 
washout (except when testing was conducted in the treatment solution) in compartments of a 24-well plate. Each 
compartment (diameter = 15.6 mm) contained 1.5 ml of treatment solution. We applied buspirone (PubChem 
CID: 24278079) and caffeine (PubChem CID: 2519) at the concentrations of 0 (vehicle), 25, 50, and 100 mg/l, 
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and chlordiazepoxide (PubChem CID: 24892497) at the concentrations of 0 (vehicle), 0.1, 1, and 10 mg/l. 
Concentrations were selected based on earlier studies19,41. Compounds were obtained from Sigma-Aldrich.

Behavioural tests and analysis.  The SPM test.  The swimming plus-maze (SPM) apparatus is a “+” 
shaped platform consisting of 2 + 2 opposite arms, different in depth, connected by a center zone. The plat-
forms were 3D printed by a Stratasys Objet30 printer using white opaque PolyJet resin. To test both larvae and 
juveniles we designed two types of apparatuses matching the sizes of the subjects (for specifications see Table 1). 
It is important to note that the center zone and deep arms had the same depth, however, exploration patterns 
(Video S1) shown by the detailed exploration analysis (Fig. 1c) and the heatmap of exploration (Fig. 1d) suggest 
that individuals actively discriminate these areas. Shallow arms did not act as physical barriers of fish movement 
in either type of platforms (Videos S2 and S3).

Experiments were conducted during the second part of the light phase, as zebrafish have been reported to 
show continuous activity in this period46. During a single trial, 8–16 subjects were tested simultaneously. The 
orientation of the platforms were randomized. Experiments in which pharmacological treatments were employed 
began with a 10 minute treatment bath in a 24-well plate compartment after which animals were gently pipetted 
into another compartment containing E3 medium for a brief washout (except when testing was conducted in the 
treatment solution) then to the SPM for 5 or 10 minutes and recorded by a video camera. The order of treatments 
was sorted by using a sequence of random numbers generated by the RAND function of MS Excel. The experi-
menter who pipetted the animals was blind to treatment groups. Experiments were carried out in an examination 
chamber and illuminated from beneath with white LED panels covered by matte Plexiglass. To reduce interfering 
stimuli from the environment the unit was covered with a black plastic box with a hole on top allowing the attach-
ment of a video camera. Video recordings were analyzed with EthoVision XT 12 automated tracker software47. 
The experimenter who conducted the analysis was blind to treatment groups until the sortation process of ana-
lyzed data.

Time spent in each zone and the mean of overall velocity was measured. To characterize arm preference, a 
choice index was defined as the relative time spent in the deep compared to in shallow arms. Consequently, a 
choice index of 1 indicates 100% time in deep arms, whereas a choice index of −1 represents 100% time in the 
presumably more aversive shallow arms.

+
−

+
= − ≤ ≤ +

time spent in deep arms
time spent in deep shallow arms

time spent in shallow arms
time spent in deep shallow arms

1 choice index 1

Deep/total arm entries in SPM describes the relative frequency of the cases when an animal enters one of the 
deep arms. To conduct detailed exploration analysis of the deep arms and the center zone we measured the time 
spent in 3 equal complementary sections in each zones and calculated the average slope of these.

The OT test.  For open tank (OT) testing, standard, completely transparent 24-well plates (d = 15.6 mm) were 
used.

10-minute-long behavioural tests were conducted using the same protocol as in the case of SPM.
To describe thigmotaxis (edge preference) a choice index was defined as the relative time spent in the outer 

20% of the compartment compared to time spent in the center zone.

− = − ≤ ≤ +
time spent in periphery

total time
time spent in centrum

total time
1 choice index 1

Mean of overall velocity was also measured.

The LDT test.  For light/dark tank (LDT) testing, half of the compartments of a standard 24-well plate were 
masked with opaque matte black paint.

10-minute-long behavioural tests were conducted using the same protocol as in the case of OT and SPM.
To describe scotophobia (dark avoidance) a choice index was defined as the relative time spent in the dark 

zone of the compartment compared to time spent in the light zone.

− = − ≤ ≤ +
time spent in dark zone

total time
time spent in light zone

total time
1 choice index 1

Experimental design.  Pharmacological validation of the SPM.  In Experiment 1a, 1b, and 1c, we validated 
the SPM paradigm by the administration of pharmacological agents shown to affect anxiety in preclinical rodent 
models and human clinical trials as well. Different sets of 8 dpf larvae were acutely treated with either the anxio-
lytics buspirone (0, 25, 50 and 100 mg/L) (Experiment 1a), chlordiazepoxide (0, 0.1, 1, and 10 mg/L) (Experiment 
1b) or the anxiogenic caffeine (0, 25, 50 and 100 mg/L) (Experiment 1c) and their behaviour was recorded for 
5 minutes. Sample sizes were 8–10 per group in Experiment 1a, 15–25 per group in Experiment 1b, and 15–26 per 
group in Experiment 1c.

Validation of the SPM in juvenile zebrafish.  As juvenile, post-metamorphic fish avoid different stimuli than lar-
vae, e.g. prefer dark over brightly lit environments32, in Experiment 2a and 2b, we determined the validity of the 
SPM paradigm for juvenile zebrafish. 30 dpf fish were acutely treated with 50 mg/L of buspirone, the dose shown 
to be effective in larvae, and their behaviour was recorded for 5 minutes in the apparatus designed for juveniles. 



www.nature.com/scientificreports/

9SCIENTIfIC REPOrTs |         (2018) 8:16590  | DOI:10.1038/s41598-018-34989-1

Since juvenile fish, due to their less permeable skin, absorb compounds differently than larvae48,49, we introduced 
an additional group which we placed into the testing apparatus in their treatment solution, providing longer 
incubation times (15 minutes). Sample sizes were 11–14 per group.

Effects of environmental aversiveness on behaviour in the SPM.  In Experiment 3 we assessed the effects of envi-
ronmental aversiveness on behaviour in the SPM. 30 dpf juveniles were tested under different light intensities 
representing different levels of environmental aversiveness28, and their behaviour was monitored for 10 minutes. 
As light conditions were set by the examination chamber lighting for all platforms in a particular trial, subjects 
from similar treatment groups were tested in one trial. The order of the trials was randomized. Sample sizes were 
16 animals in each group.

Effects of repeated testing in the SPM.  In Experiment 4, we aimed to investigate the reproducibility of the SPM 
test. 30 dpf juvenile zebrafish were tested two times in 1 or 24 hour intervals and their behaviour was recorded 
for 10 minutes. In both cases, we tested a naïve control group as well in the second sampling period. Sample sizes 
were 10 in each group.

Shared characteristic of the SPM with conventional anxiety tests.  In Experiment 5, we aimed to determine the 
shared characteristics of the SPM with other tests measuring anxiety-like behaviour in larval zebrafish and its 
suitability for use in test batteries. 30 dpf juvenile zebrafish were tested for 10 minutes in the OT, SPM and then 
the LDT test. In the case of SPM, we introduced an additional control group, without preliminary OT testing, to 
determine the effects of prior novelty exposure on SPM behaviour too.

Data analysis.  Data is represented as mean ± SEM. We performed statistical analysis using R Statistical 
Environment50. To analyze the effects of pharmacological agents or experimental conditions on behavioural var-
iables we used linear mixed models51 from the lme4 package52. To separate variance stemming from time or 
sequence of experimental trials or location of test platforms, these factors were added as random effects to our 
models. To analyze within-group differences between percentage of time spent in each zone, we fitted linear 
mixed models with zone*treatment interaction as fixed, and subject identifiers as random effects. We set treat-
ment “vehicle” and zone “deep arms” as reference levels. To determine correlation between SPM variables and also 
between measures of different anxiety tests, we computed Pearson correlation coefficients (r) using the GGally 
package53. To create venn-diagrams of these correlations, we calculated percentage of shared variance applying 
the r2 × 100 formula, where r is the correlation coefficient. We calculated p-values from t-values of lme4 using 
lmerTest package54 and rejected H0 if p-values were lower than 0.05.

Data Availability Statement
The datasets generated during the current study are available in the figshare repository (https://figshare.
com/s/0ec47f2ffbe73f35500d).
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