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Segmentation of the Proximal 
Femur from MR Images using Deep 
Convolutional Neural Networks
Cem M. Deniz   1,2, Siyuan Xiang3, R. Spencer Hallyburton4, Arakua Welbeck2, 
James S. Babb2, Stephen Honig5, Kyunghyun Cho3,6 & Gregory Chang1

Magnetic resonance imaging (MRI) has been proposed as a complimentary method to measure 
bone quality and assess fracture risk. However, manual segmentation of MR images of bone is time-
consuming, limiting the use of MRI measurements in the clinical practice. The purpose of this paper is 
to present an automatic proximal femur segmentation method that is based on deep convolutional 
neural networks (CNNs). This study had institutional review board approval and written informed 
consent was obtained from all subjects. A dataset of volumetric structural MR images of the proximal 
femur from 86 subjects were manually-segmented by an expert. We performed experiments by training 
two different CNN architectures with multiple number of initial feature maps, layers and dilation rates, 
and tested their segmentation performance against the gold standard of manual segmentations using 
four-fold cross-validation. Automatic segmentation of the proximal femur using CNNs achieved a high 
dice similarity score of 0.95 ± 0.02 with precision = 0.95 ± 0.02, and recall = 0.95 ± 0.03. The high 
segmentation accuracy provided by CNNs has the potential to help bring the use of structural MRI 
measurements of bone quality into clinical practice for management of osteoporosis.

Osteoporosis is a public health problem characterized by increased fracture risk secondary to low bone mass 
and microarchitectural deterioration of bone tissue. Hip fractures have the most serious consequences, requir-
ing hospitalization and major surgery in almost all cases. Early diagnosis and treatment of osteoporosis play an 
important role in preventing osteoporotic fracture. Bone mass or bone mineral content is currently assessed most 
commonly via dual-energy x-ray absorptiometry (DXA)1,2. Over the years, cross-sectional imaging methods such 
as quantitative computed tomography (qCT)3–9 and magnetic resonance imaging (MRI)10–14 have been shown to 
provide useful additional clinical information beyond DXA secondary to their ability to image bone in 3-D and 
provide metrics of bone structure and quality15.

MRI has been successfully performed in vivo for structural imaging of trabecular bone architecture within 
the proximal femur16–18. MRI provides direct detection of trabecular architecture by taking advantage of the 
MR signal difference between bone marrow and trabecular bone tissue itself. Osteoporosis related fracture risk 
assessment using MR images requires image analysis methods to extract information from trabecular bone using 
structural markers, such as topology and orientation of trabecular networks19–21, or using finite element (FE) 
modeling22–24. Bone quality metrics derived from FE analysis of MR images are shown to correlate with high 
resolution qCT imaging, and may reveal different information about bone quality than that provided by DXA18. 
These technical developments overlay the significance of image analysis tools to determine osteoporosis related 
hip fracture risk.

Initial studies of MRI assessment of bone quality in proximal femur focused on quantification of parame-
ters within specific regions of interest (ROI), such as the femoral neck, femoral head, and Ward’s triangle, for 
extracting fracture risk relevant parameters18. More recently, investigation of the whole proximal femur has been 
proposed as a way to assess the mechanical properties or strength of the whole proximal femur, rather than 
just a subregion25–27. The latter, however, requires manual segmentation of the whole proximal femur18,28 on MR 
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images by an expert. Given the large number of slices for a single subject acquired by MRI during a scan session, 
time-consuming manual segmentation of proximal femur can hinder the practical use of MRI based hip fracture 
risk assessment. In addition, manual segmentation may be subject to inter-rater variability. Automatic segmenta-
tion of the whole proximal femur would help overcome these challenges.

In previous studies, hybrid image segmentation approaches including thresholding and 3D morphological 
operations29 as well as deformable models30,31 and statistical shape models32 have been used to segment the proxi-
mal femur from MR images. These approaches developed automated segmentation frameworks based on sophis-
ticated algorithms. Deformable models achieved the mean accuracy of 1.44 ± 1.1 mm for the segmentation of 
the femur and hip bone from MR images30. Combining piecewise registration with deformable models resulted 
in sensitivities ~0.88 from clinical proximal femur MR images31. Moreover, statistical shape models achieved an 
average symmetric surface distance (ASD) of 1.21 ± 0.53 mm in the femur segmentations32. Even though these 
frameworks achieve reasonable femur segmentations from MR images, their use is limited by the time required to 
obtain proximal femur segmentations and by the robustness on a large variation of femur shapes.

The use of convolutional neural networks (CNNs) has revolutionized image recognition, speech recognition 
and natural language processing33. Deep CNNs have recently been successfully used in medical research for image 
segmentation and computer aided diagnosis34. In contrast to previous approaches of segmentation of proximal 
femur in MR images which rely on the development of hand-crafted features29–31, deep CNNs learn increasingly 
complex features from data automatically. The first applications of CNNs in medical image segmentation used 
pyramidal CNN architectures34 based on the information from local regions around a voxel as an input (patches) 
to predict whether the central voxel of the input patch belongs to a foreground or not. In a study using structural 
MRIs, Hallyburton et al. used pyramidal CNN architectures for segmenting the proximal femur to achieve mod-
erate segmentation results with dice similarity coefficient (DSC) ~0.7035. These approaches are limited by the 
size of the receptive field of the networks and by the time required for CNN training and inference, especially for 
volumetric datasets.

Developments in image segmentation using fully convolutional network architectures have emerged resulting 
in more accurate pixel-wise segmentations36–38. These networks used encoder-decoder type architectures, where 
the role of the decoder network is to project the low resolution encoder feature maps to high resolution feature 
maps for pixel-wise classification. Encoder-decoder based CNN architectures have been recently used extensively 
in the biomedical field providing accurate image segmentation34. The use of network architectures for segment-
ing 3D musculoskeletal images have been focused on developing learning-based segmentation models in 2D 
and using post-processing to capture 3D tissue information for generating 3D segmentation mask. For example, 
2D encoder-decoder network architectures were accompanied by 3D connected component analysis39 or 3D 
simplex deformable modeling40 to provide a final 3D segmentation mask. Moreover, cascading 2D CNN with 
intermediate statistical shape modeling for generating a smaller patch-based inputs for a 3D CNN model has been 
proposed41 for segmenting the knee menisci. However, it is not clear if the need for combining 2D CNN outputs 
with image segmentation approaches arises from inherent selection of 2D CNN as a segmentation method or 
not. In addition, incorporation of modeling approaches in segmentation pipeline could impede with the benefits 
of end-to-end learning-based segmentation approaches. Given that the CNN are capable of modeling nonlinear 
interactions between the musculoskeletal MR image and the segmentation mask, 3D interactions required for 
accurate tissue segmentation and provided by the combination of 3D image processing methods in the previous 
studies39–41 might in the future be captured effectively by end-to-end 3D CNN segmentation model. This study 
lays the groundwork for such potential future investigation.

In this work, we propose to investigate CNN architectures based on the U-net38 and the 3D extension of 
the U-net42, and compare their performance for automatic segmentation of the proximal femur on MR images 
against the reference standard of expert manual segmentation. Different U-net based CNN architectures were 
implemented by changing the number of feature maps and encoding-decoding layers to analyze the effect of 
architecture design parameters on proximal femur segmentation performance. In addition, we extended the CNN 
architectures by concatenating dilated convolutions43,44 with different dilation rates in the center layer of the 
encoder-decoder architecture.

Results
Comparison of CNN Performance.  Various CNN architectures have been used for automatic segmenta-
tion of biomedical images34. In this study, two supervised deep CNN architectures based on 2D convolution (2D 
CNN) and 3D convolution (3D CNN) were used and evaluated for automatic proximal femur segmentation on 
MR images. The best performing CNN architecture for both 2D CNN and 3D CNN was improved by concatenat-
ing dilated convolutions with different dilation rates to study the effect of architecture changes in segmentation 
performance. An overview of the proposed approach for automatic segmentation of the proximal femur is pre-
sented in Fig. 1. Receiver operating characteristics (ROC) and precision-recall curve (PRC) analysis of modeled 
CNNs on the dataset are presented in Fig. 2 using the mean curves from 4-fold cross-validation. We use the area 
under the PRC (AP: average precision) as a measure of classifier’s performance for comparing different CNNs. 
The 3D CNN-dilated with 32 initial feature maps and 4 layers each in the contracting/expanding paths and con-
catenation of feature maps obtained with dilation rates r = 1, 2, 4, 8 outperformed the other CNNs with area 
under the ROC curve (AUC) = 0.999 ± 0.0 and AP = 0.990 ± 0.002. This model achieved the highest accuracy on 
the segmentation of the proximal femur without post-processing, and it exceeded the performance of 2D CNNs 
which achieved AUC = 0.998 ± 0.001 and AP = 0.978 ± 0.002. The performance of the CNN model improved as 
the number of layers and feature maps increased for both 2D and 3D CNN.

PRC analysis provides a means of evaluating the performance of automatic segmentation algorithms and 
selecting a suitable decision threshold. The output of a CNN defines the probability of a voxel belonging within 
the proximal femur. Using PRC analysis, the optimal threshold is selected for each CNN to distinguish proximal 
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femur bone voxels from background when comparing the performance of CNNs. The optimal operating point 
for each CNN was selected by choosing the point on the PRC that has the smallest Euclidean distance to the 
maximum precision and recall. There are other ways of choosing the optimal operating point such as using the 
Youden index45 or defining the smallest Euclidean distance to the maximum sensitivity and specificity via per-
forming ROC curve analysis. We chose to use the smallest Euclidean distance to the maximum precision and 
recall to prevent under-segmentation (when the recall is low) and over-segmentation (when the precision is low). 
The voxels having higher probabilities then selected threshold is predicted as belonging within the proximal 
femur and the rest as background. The optimal threshold was applied to the segmentation probability maps to 
calculate a binary segmentation mask. The binary segmentation map from each individual is used to compare 
the CNN models by analyzing performance metrics. In the 2D CNN, additional post-processing was applied 
to the segmentation mask since CNN results included misclassified bone regions. From the models without 
post-processing, the 3D CNN-dilated with 32 initial feature maps, 4 layers and dilation rates r = 1, 2, 4, 8 resulted 
in the highest DSC = 0.953 ± 0.016 with precision = 0.954 ± 0.017, and recall = 0.953 ± 0.030. This CNN achieved 
the lowest average symmetric surface distance (ASD) = 0.39 ± 0.19 mm with the maximum surface distance 
(MSD) = 7.88 ± 4.33 mm (Table 1).

Analysis of performance metrics on individual subjects is illustrated in Fig. 3 and Table 1. Applying 
post-processing on the 2D CNN segmentation results improved the overall accuracy of the segmentation masks 
as indicated by the increase in DSC on average by 7% and by the decrease in ASD on average by 86% (Table 2). As 
indicated by Fig. 3, post-processing improves the precision on 2D CNNs; however, average recall was not affected 
by the post-processing significantly. In terms of ASD and MSD, the improved precision brings the 2D CNN with 

Figure 1.  Overview of the proposed learning algorithm for an automatic segmentation of the proximal femur. 
Training CNN yields automatic proximal segmentation model that is used in model evaluation on a test dataset. 
The output of the model is the probability of the bone which is used to obtain the proximal femur segmentation 
mask using a threshold.

Figure 2.  ROC and Precision-Recall Curve for 2D and 3D CNN segmentation models. Left panel shows the 
receiver operating characteristics (ROC) curves of different CNNs modeled in this work. The number of initial 
feature maps (F) and layers (L) in the contracting/expanding paths are presented in the legend with the area 
under the curve (AUC). Right panel shows the precision- recall curves of modeled CNNs. In the legend, cross-
validation average precision (AP) is presented for comparison of different models. * indicates the 2D CNN with 
unpadded convolutions.
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post-processing closer to the 3D CNN. The best performing 2D CNN with post-processing exceeds the precision 
and DSC of the best performing 3D CNN.

The analysis of the effect of dilation rate in segmentation accuracy is provided in Table 3 for the best perform-
ing 2D CNN and 3D CNN selected based on the cross-validation AP values presented in Fig. 2. The statistical 

Network DSC ↑ Precision ↑ Recall ↑ ASD [mm] ↓ MSD [mm] ↓

2D CNN*, F:64, L:3 0.886 ± 0.055 0.890 ± 0.080 0.889 ± 0.056 6.15 ± 3.61 65.78 ± 5.78

2D CNN*, F:64, L:4 0.864 ± 0.044 0.872 ± 0.061 0.860 ± 0.060 6.82 ± 3.00 64.89 ± 6.36

2D CNN, F:64, L:3 0.924 ± 0.032 0.920 ± 0.041 0.930 ± 0.045 3.13 ± 1.76 54.40 ± 6.72

2D CNN, F:64, L:4 0.937 ± 0.026 0.932 ± 0.037 0.943 ± 0.036 2.13 ± 1.23 42.22 ± 5.52

2D CNN-dilated †, 
F:64, L:4 0.946 ± 0.022 0.948 ± 0.024 0.944 ± 0.034 1.75 ± 1.24 40.03 ± 8.37

3D CNN, F:16, L:3 0.927 ± 0.032 0.931 ± 0.029 0.927 ± 0.063 0.66 ± 0.32 10.62 ± 6.85

3D CNN, F:16, L:4 0.935 ± 0.028 0.938 ± 0.026 0.936 ± 0.053 0.59 ± 0.39 9.75 ± 6.56

3D CNN, F:32, L:3 0.942 ± 0.026 0.944 ± 0.022 0.942 ± 0.052 0.50 ± 0.25 11.97 ± 7.57

3D CNN, F:32, L:4 0.945 ± 0.029 0.948 ± 0.023 0.944 ± 0.052 0.45 ± 0.25 13.44 ± 13.14

3D CNN-dilated†, 
F:32, L:4 0.953 ± 0.016 0.954 ± 0.017 0.953 ± 0.030 0.39 ± 0.20 7.88 ± 4.33

Table 1.  Segmentation results of different network architectures for the segmentation of proximal femur. 
Performance metrics are presented using the mean and the standard deviation that are calculated from 
individual subject segmentations. F is the number of initial feature maps, L is the number of layers. * indicates 
the 2D CNN with unpadded convolutions. † indicates the best performing CNN-dilated model that is presented 
here for concatenation of feature maps with dilation rates = 1, 2, 4, 8. The analysis of different CNN-dilated 
models can be found in Table 3.

Network
Dilation 
Rate (r) AP ↑ DSC ↑ Precision ↑ Recall ↑ ASD [mm] ↓ MSD [mm] ↓

3D CNN 
F:32, L:4

1† 0.986 (0.002) 0.945 ± 0.029 0.948 ± 0.023 0.944 ± 0.052 0.45 ± 0.25 13.44 ± 13.14

1, 2 0.988 (0.001) 0.950 ± 0.020 0.951 ± 0.017 0.949 ± 0.039 0.43 ± 0.23 8.77 ± 6.32

1, 4 0.988 (0.002) 0.949 ± 0.019 0.948 ± 0.022 0.950 ± 0.036 0.43 ± 0.21 8.10 ± 4.73

1, 8 0.988 (0.003) 0.948 ± 0.015 0.949 ± 0.023 0.948 ± 0.031 0.44 ± 0.19 8.05 ± 4.25

1, 2, 4 0.988 (0.002) 0.948 ± 0.023 0.948 ± 0.021 0.949 ± 0.039 0.43 ± 0.24 8.14 ± 5.68

1, 2, 4, 8 0.992 (0.002) 0.953 ± 0.016 0.954 ± 0.017 0.953 ± 0.030 0.39 ± 0.19 7.88 ± 4.33

2D CNN 
F:64, L:4

1† 0.979 (0.003) 0.937 ± 0.026 0.932 ± 0.036 0.943 ± 0.036 2.13 ± 1.22 42.22 ± 5.49

1, 2 0.978 (0.002) 0.939 ± 0.025 0.937 ± 0.034 0.944 ± 0.037 2.04 ± 1.33 40.10 ± 7.34

1, 4 0.984 (0.000) 0.943 ± 0.022 0.944 ± 0.026 0.944 ± 0.035 1.85 ± 1.13 39.70 ± 7.38

1, 8 0.984 (0.002) 0.941 ± 0.023 0.941 ± 0.030 0.943 ± 0.034 2.04 ± 1.31 42.41 ± 7.60

1, 2, 4 0.984 (0.005) 0.941 ± 0.025 0.941 ± 0.033 0.942 ± 0.034 2.02 ± 1.39 40.27 ± 7.76

1, 2, 4, 8 0.986 (0.002) 0.946 ± 0.022 0.948 ± 0.024 0.944 ± 0.034 1.75 ± 1.24 40.03 ± 8.37

Table 3.  Segmentation results of different CNN architectures with dilated convolution for the segmentation 
of proximal femur. The best performing 2D CNN and 3D CNN models (based on cross-validation AP on 
Fig. 3) were used as a baseline for our experiments. AP values are derived for the individual segmentations and 
performance metrics are calculated from individual subject segmentations. F is the number of initial feature 
maps, L is the number of layers. † indicates the original CNNs presented in Table 1. Statistical analysis for 
comparing models using AP is presented in Table 4. AP data is presented using the median and interquartile 
range in parentheses.

Network DSC ↑ Precision ↑ Recall ↑ ASD [mm] ↓ MSD [mm] ↓

2D CNN* PP, F:64, L:4 0.920 ± 0.040 0.991 ± 0.010 0.861 ± 0.060 0.72 ± 0.38 11.70 ± 3.74

2D CNN* PP, F:64, L:3 0.935 ± 0.034 0.990 ± 0.010 0.889 ± 0.056 0.62 ± 0.36 10.50 ± 3.23

2D CNN PP, F:64, L:4 0.960 ± 0.022 0.978 ± 0.015 0.943 ± 0.036 0.39 ± 0.44 8.18 ± 5.87

2D CNN PP, F:64, L:3 0.953 ± 0.027 0.979 ± 0.013 0.930 ± 0.046 0.47 ± 0.37 9.61 ± 4.60

2D CNN†, F:64, L:4 0.937 ± 0.026 0.932 ± 0.037 0.943 ± 0.036 2.13 ± 1.23 42.22 ± 5.52

Table 2.  The effect of post-processing (PP) in 2D CNN segmentation results. Segmentation results of different 
network architectures are presented here. F is the number of initial feature maps, L is the number of layers.  
* indicates the 2D CNN with unpadded convolutions. † indicates the best performing 2D CNN model prior to 
post-processing from Table 1.
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analysis was performed on the AP values that are derived for the individual subject segmentations using the CNN 
model in which the subject was in the validation set during model training. Incorporating at least one dilated 
convolution with dilation rate larger than 2 resulted in significantly higher AP than the original CNN implemen-
tation (p < 0.05 for 2D CNN and p < 0.001 for 3D CNN, Table 4). This resulted increased segmentation accuracy 
with respect to the original CNN implementation. Moreover, the most benefit was obtained using a concatenation 
of feature maps with different dilation rates. Additionally, 3D CNN model (F:32, L:4 with dilated convolution) 
showed significantly higher AP than any 2D CNN method (F:64, L:4, with/without dilated convolution) (p < 
0.01, Table 4).

Segmentation accuracy.  Segmentation results on one of the subjects is shown in Fig. 4. The proximal 
femur bone probability map from the 2D CNN includes misclassified regions which are not part of the prox-
imal femur (as indicated by the red arrow). Removing the small clusters of misclassified bone regions with 
post-processing clearly improved the segmentation accuracy and resulted in a well-connected 3D proximal femur 
(Fig. 4e). However, there are still misclassified locations remain, e.g. the bottom part of the proximal femur. In 
contrast to the 2D CNN, the 3D CNN automatically captures the global connectivity of the proximal femur dur-
ing CNN training. This results in better delineation of the proximal femur on the trabecular bone probability map 
(Fig. 4c) which provides a segmentation mask resembling the ground truth with higher accuracy. Because of this, 
as opposed to the 2D CNN, additional post-processing step was not performed on the 3D CNN segmentation 
results.

Examples of suboptimal proximal femur segmentation results are shown in Fig. 5. The MR image and segmen-
tation maps provided in the first row are from a subject who had a bone cyst in the proximal femur and suffered 
from a hip fracture in early ages. Some of the hypointense foci (as indicated by the white arrow in Fig. 5a) are 
related to calcium deposition from the healing process. Compared to ground truth proximal femur segmenta-
tion (Fig. 5b), both 2D (Fig. 5c) and 3D (Fig. 5d) CNN were influenced by the hypointense regions within the 

Figure 3.  Box plots for dice score, precision and recall that are obtained from the binary segmentation 
map from each individual. F is the number of initial feature maps, L is the number of layers, PP is the post-
processing. * indicates the 2D CNN with unpadded convolutions.

Dilation 
Rate (r)

2D CNN, F:32, L:4 3D CNN, F:64, L:4

1† 1, 2 1, 4 1, 8 1, 2, 4 1, 2, 4, 8 1† 1, 2 1, 4 1, 8 1, 2, 4 1, 2, 4, 8

2D CNN F: 32, L:4

1† ns *** ** * *** *** *** *** *** *** ***

1, 2 ns ns ns ** ** *** *** *** *** ***

1, 4 ns ns ns ns *** *** *** *** ***

1, 8 ns * ns *** *** *** *** ***

1, 2, 4 ns ns *** *** *** *** ***

1, 2, 4, 8 ns ** *** ** ** ***

3D CNN F:32, L:4

1† *** *** * ** **

1, 2 ns ns ns ns

1, 4 ns ns ns

1, 8 ns **

1, 2, 4 *

1, 2, 4, 8

Table 4.  Statistical analysis results of comparing the AP difference between CNN models with different dilation 
rates. The segmentation results of these models are presented in Table 3. To assess the significant differences 
between CNN models, we used the paired-sample Wilcoxon signed-rank test with Holm correction for multiple 
comparisons. p-values are indicated in the table using the following convention: ns = p-value ≥ 0.05,  
*p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001.
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proximal femur resulting inaccurate segmentation. The suboptimal segmentation results could be attributed to 
the low frequency of such subjects in our current dataset (1 in 86 subjects). In the second row of the Fig. 5, MR 
image acquisition is compromised by the fold-over artifacts (as indicated by the white arrow in Fig. 5e). Our data-
set contains only 3 MR images with fold-over artifacts. These artifacts do not affect the hand segmentation and 
analysis of the proximal femur microarchitecture per se; however, learning-based automatic segmentation models 
are affected negatively, resulting in a subcomplete segmentation mask covering only the parts of the proximal 
femur. These segmentation mask errors are more pronounced on the 2D CNN results. Since CNN approaches 
learn and generalize from data, incorporating a range of subjects with different problems on the proximal femur 
and possible fold-over artifacts will enable more general CNN-based proximal femur segmentation models. In 
addition, combining the current loss function (Eq. 1) with a surface-based weighting, a variant of weight-map for 
the borders in ref.38, could improve the accuracy of segmentation as the surface of the proximal femur for both 
acquisitions resembles the general population experimented in this paper.

Computational efficiency.  Training each epoch takes approximately 5 minutes, 7 minutes and 7 minutes 
for the 2D CNN with unpadded convolution, 2D CNN and 3D CNN (for networks with 32 feature maps and 
4 layers), respectively. The total time required for inference for the segmentation of data from one subject with 
central 48 coronal slices (covering the proximal femur) was approximately 18 seconds, 4 seconds and 5 seconds for 
2D CNN with unpadded convolution, 2D CNN and 3D CNN (for networks with 32 feature maps and 4 layers), 
respectively. Dilated CNN models had a negligible increase in training and inference time compared to the orig-
inal CNN. The increase in the inference time on the 2D CNN with unpadded convolution was due to the use of 
multiple patches (9 patches per 2D slice) for calculating the segmentation mask on the full field of view.

Discussion
We present a deep CNN for automatic proximal femur segmentation from structural MR images. The automatic 
segmentation results indicate that the requirement of expert knowledge on location specifications and training/
time for segmentation of the proximal femur may be avoided using CNNs. A Deep CNN for automatic segmenta-
tion can help bringing the use of proximal femur MRI measurements closer to clinical practice, given that manual 
segmentation of hip MR images can require approximately 1.5–2 hours of effort for high resolution volumetric 
datasets.

CNN-based automatic segmentation of MR images has been performed in the brain46, including for brain 
tumors47, microbleeds48, and skull stripping for brain extraction49. CNN-based automatic segmentation has also 
been used for the pancreas50 and for knee40,51. In recent years, automated segmentation of the proximal femur 
from MR images using a CNN begin to emerge in workshops52 and conferences35. Our results confirm previ-
ous results and further contribute to the field in two ways: (i) by examining data from an increased number of 

Figure 4.  An example of the results using 2D CNN and 3D CNN. 3T MRI of the proximal femur (a) is shown 
with the ground truth/hand segmentation mask (e). The white dashed line represents the location where the 
sagittal view is displayed from the coronal view. The probability map produced by 2D CNN is presented in (b) 
and corresponding segmentation mask after post-processing is presented in (f). Red arrow in (b) indicates a 
location which was misclassified by the 2D CNN. Using padded convolution provided superior segmentation 
(b vs c). Some of the misclassified regions in (b) are removed by using the padded convolution; however, there 
are still regions that are misclassified as indicated by the red arrow in (c). Misclassified regions were removed 
by post-processing using proximal femur connectivity and size prior information (f and g). Probability map 
produced by 3D CNN is presented in (d) and corresponding segmentation mask obtained by thresholding 
without post-processing is presented in (h).



www.nature.com/scientificreports/

7SCIeNtIfIC REPOrtS |         (2018) 8:16485  | DOI:10.1038/s41598-018-34817-6

subjects, and (ii) by analyzing architectures that use 2D or 3D convolution in the concept of automated segmen-
tation of the proximal femur from MR images. In the future, we expect the number of imaging applications of 
CNNs to rapidly increase, especially given the publicly available software libraries such as Tensorflow53 to create 
CNNs and the ability to execute the algorithm on commercially available desktop computers.

In our implementation of the segmentation algorithms, the use of 2D convolutional kernels could be one 
of the reasons for misclassified bone regions in 2D CNN and in its variant 2D CNN with unpadded convo-
lution. Even though information from consecutive slices are incorporated in 2D CNN model training, global 
connectivity of the proximal femur may not be modeled properly using 2D convolution alone. Although we 
used post-processing to prevent misclassified small regions in 2D CNNs, the approach using 3D convolutional 
kernels (3D CNN) resulted in a better segmentation masks by directly modeling the 3D connectivity of the prox-
imal femur during training. Avoiding the post-processing step in an automatic segmentation algorithm is crucial 
especially for segmentation tasks that aim to identify multiple regions. CNNs with 3D convolutional networks are 
computationally more demanding and can result in higher overfitting due to the increased number of weights to 
train. In all of our experiments, we used the validation error as an early stopping criterion to successfully over-
come potential overfitting.

In addition to comparing the performance of segmentation models using 2D/3D convolution and different 
number of feature maps and layers, we performed experiments using dilated convolutions to increase the recep-
tive field of the encoding path of the CNN. Our design choice of using dilated convolutions in the last layer of the 
encoding network was to increase the receptive field of the CNN to cover the whole image in a way that a possible 
missing global segmentation information can be captured effectively. It is expected that the global connectivity 
information in addition to the local information like texture is important for bone segmentation. We proposed 
to achieve this with minor changes to the original architecture so that the effect of dilated convolutions can be 
analyzed systematically. Incorporating dilated convolutions in the center of the CNN resulted in improved seg-
mentations by gathering multi-scale global proximal connectivity information effectively. Dilated convolutions 
can also be used in multiple layers within the architecture in order to increase the receptive field and reduce the 
number of parameters.

In the 2D CNN with unpadded convolution, similar to the original U-net paper38, mirrored images were used 
during inference for calculating the probability of each voxel being part of the proximal femur. This resulted in 
inferencing on multiple patches covering the image and averaging the probability to calculate the output seg-
mentation mask. We used multiple patches covering the image during inference only. Multiple patches from the 
mirrored images could also be used during training. This change in the training will result in increased training 
time as the number of training samples from each image per epoch will increase. Similarly, mirrored images can 
also be used during training, which removes the necessity of multiple calculations for averaging during inference. 
However, the increase in the input size of the network can result in an increased training time and a higher GPU 
memory requirement. On the other hand, using mirrored images for modeling will reduce the time required by 
inference and post-processing for 2D CNNs with unpadded convolution. We also implemented 2D CNNs with 

Figure 5.  Examples of the suboptimal segmentation results. First row images are from a subject who has a 
bone cysts in the proximal femur. 3T MRI of the proximal femur in (a) is shown with the ground truth/hand 
segmentation mask overlaid in (b). Both 2D (c) and 3D (d) CNN were not capable of segmenting the proximal 
femur of this subject with high accuracy. Second row images are from an acquisition where there is a foldover 
artifact (indicated by the white arrow) that is not affecting the hand segmentation (f). However, foldover artifacts 
are affecting the accuracy of automatic proximal femur segmentations of both 2D and 3D CNN (g,h). These 
segmentation results remained suboptimal with minor improvements when dilated convolutions are used.
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padded convolutions instead of unpadded ones, as done in 3D CNN. This modification was used to obtain seg-
mentation outputs that have the same size as the input images. This removed the necessity of extracting multiple 
patches for calculating multiple segmentation probability maps and averaging them during inference.

This feasibility study lays the ground work for future studies which may involve patients who have diseases 
such as hip dysplasia, osteoarthritis, or femoroacetabular impingement, which all result in abnormal proximal 
femur morphology and whose clinical management can be influenced by quantitative measurements (e.g. center 
edge angle in hip dysplasia or alpha angle in femoroacetabular impingement). Automatic segmentation methods 
for the proximal femur in the future could be used to automate such measurements or help develop novel quanti-
tative metrics of bone health. We are currently pursuing such projects at our medical center.

We note the existence of many other deep-learning based methods for automatic segmentation of MR 
images34. Recent work in the brain and spine have shown that automatic segmentation of brain subregions and 
lesions54,55 and intervertebral discs56 is possible. Specifically, Kamnitsas et al.54 applied a 3D CNN combined 
with a full connected conditional random field (CRF) (as post-processing to remove false positives) to success-
fully automatically segment MR images of brain lesions in subjects with traumatic brain injury, brain tumors, 
and ischemic stroke. Chen et al.55 used a novel voxelwise residual network built with 25 layers to automatically 
segment the hippocampus on brain MR images. Finally, Li et al.56 applied a fully convolutional network (FCN) 
with random modality dropout learning to automatically segment intervertebral discs on MR images. While 
comparison of our method with these other methods is beyond the scope of this work, as it would also require the 
proper implementation of the methods, the existence of multiple deep learning methods and also other automatic 
segmentation methods (atlas-based registration, machine learning-based methods for specific features) suggests 
that methodology comparison will be an important area of study in the future. Standards for study design and 
public datasets will have to be defined so that comparisons are fair and objective. The best automatic segmenta-
tion methodology may actually differ depending on the target tissue of interest as well as the imaging modality.

This study has limitations. First, even though we implemented multiple CNNs with different number of feature 
maps and layers, the automatic advanced hyperparameter optimization57 for the CNN training parameters was 
not implemented in the current study. In the future, the optimization of learning rate and the number of initial 
feature maps will be performed. We expect the misclassified proximal femur bone regions in 2D CNN will be mit-
igated; and in every network architectures this optimization will provide superior segmentation results. Second, 
image segmentation is a fast growing field with new architectures and approaches presented each year. We limited 
CNN architectures demonstrated in this work to cover current fundamental architectures38,42, in which their 
variants have been used extensively for biomedical image segmentation. Comparing our results with the recent 
architectural developments46,58–60 and using different loss functions58,61,62 instead of weighted cross-entropy is 
beyond the scope of this work. In the future, it will be important, not just for this work, but for the field of 
machine learning in general to compare CNN methods to the state-of-the-art non-CNN methods for automatic 
segmentation and image analysis. To the best of our knowledge, there is currently no publicly available non-CNN 
method for automatic segmentation of MR images of the proximal femur. It may be that a combination of CNN 
and non-CNN methods could provide the best performance for automatic image segmentation or analysis.

In conclusion, we compared two major CNN architectures that are being increasingly used for biomedical 
image segmentation for automatic segmentation of the proximal femur. For both architectures, we experimented 
the use of dilated convolutions in the center layer. Our experiments demonstrated the improved performance 
obtained using 3D and dilated convolutions, and post-processing in 2D CNN for automatic segmentation of the 
proximal femur. The automatic segmentation using CNNs has the potential to bring the use of structural MRI 
measurements into the clinical practice.

Methods
Convolutional neural networks.  The first approach (2D CNN) uses a so-called U-net architecture38 which 
was built upon a fully convolutional network (FCN)63. In the U-net architecture, the network uses a set of larger 
images as input and starts with a contracting path (encoder) similar to the conventional pyramidal CNN architec-
tures64. Each pooling operation is followed by two convolutional layers with twice as many feature maps. After the 
contracting path, the network starts to expand in a way more or less symmetric to the contracting path (decoder), 
with some cropping and copying from the contracting path. The output of the 2D CNN is a trabecular bone prob-
ability map of the center area of the input image. The size of the center area depends on the number of layers in 
the contracting/expanding paths. In addition, we experimented the use of padded convolutions as opposed to the 
unpadded ones in 2D CNN. The use of padded convolutions provide the trabecular bone probability map of the 
whole 2D image as an output. The second approach (3D CNN), illustrated in Fig. 6, is the extension of 2D CNN 
into three dimensions for volumetric segmentation using three-dimensional convolution, up-convolution and 
max-pooling layers42. In the 3D CNN, we use padded convolutions as opposed to unpadded ones proposed in42 in 
order to provide a trabecular bone probability map of the whole image as an output. The third approach (2D/3D 
CNN-dilated) extends the 2D/3D CNN with the addition of dilated43 (also known as atrous)44 convolutions at 
the center layer of the architecture where the encoder and decoder network meets. Dilated convolutions are used 
to enlarge the receptive field of the convolutions to provide superior global connectivity and multi-scale context 
information of the input image during architecture design65,66. Incorporating dilated convolutions on the center 
layer where the representation of the input is highly dense due to encoding is expected to provide multi-scale 
global proximal femur segmentation information by expanding the receptive field effectively.

In all the CNNs, we use horizontal flipping for data augmentation67 since our dataset contained images from 
subjects who had been scanned either at the right hip or left hip. The initialization of the convolution kernel 
weights is known to be important to achieve convergence. In all experiments, we use the so-called Xavier68 weight 
initialization method. The Xavier initializer is designed to keep the scale of the gradients roughly the same in all 
layers. This prevents the vanishing gradient69, enabling effective learning. As proposed in the original U-net 
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article38, in the 2D CNN, we use unpadded 3 × 3 convolutions and 2 × 2 max-pooling operations with stride 2 to 
gradually decrease the size of the feature maps. In the expanding path, upsampling the feature map size is fol-
lowed by an unpadded 2 × 2 up-convolution that halves the number of feature maps. For the 3D CNN, padded 
3 × 3 × 3 convolutions and up-convolutions, 2 × 2 × 2 max-pooling with stride 2 are used in contrast to unpadded 
operations as proposed in42 and38. Padded operations enable the size of the output trabecular bone mask to be 
equal to the input image size. This removes the requirement of using mirrored images during inference. For the 
3D CNN-dilated, a variant of spatial pyramid pooling70 was used to replace the center layer of the 3D CNN archi-
tecture (Fig. 6). Multiple padded 3 × 3 × 3 convolutions with the number of feature maps equal to the original 3D 
CNN implementation were concatenated using dilation rates, r = 1, 2, 4, 8. Experiments were performed to ana-
lyze the effect of combining different dilation rates and the number of layers in the encoder-decoder architecture. 
For non-linearly transforming data within each layer of the CNN, rectifier linear unit (ReLU)71 is used as an 
activation function. ReLU is defined as =f x x( ) max (0, ). In the last layer of the CNN, we use softmax to com-
pute the conditional distribution over the voxel label.

The output of the softmax layer from the CNN is used to define a loss function which aims to minimize the 
error between the ground truth and the automatic segmentation via training. In our implementation, a loss func-
tion is defined as a negative log-probability of a target label (ground-truth) from an expert manually-segmented 
MR image. In medical images, the anatomical structure of interest usually occupies a small portion of the image. 
This potentially biases the CNN prediction towards background which constitutes the large portion of the images. 
To overcome this imbalanced class problem, we re-weighted the loss function during training. We achieve this 
by incorporating the number of proximal femur, Np, and background, Nb, voxels into the loss value such that the 
error in voxels belonging to the trabecular bone are given more importance:

∑= −



 + − −




=

CE
N

N
N

y p
N
N

y p1 log (1 ) log(1 )
(1)i

N
b

i i
p

i i
1

where N is the number of voxels, yi is a binary variable indicating if the trabecular bone is a correct prediction, pi 
is the probability of model prediction to be trabecular bone.

We use the Tensorflow53 software library to implement CNNs. In the minimization of the loss function, we use 
adaptive moment estimation72 (Adam). Parameters used in training the CNNs are outlined in Table 5. Figure 7 
provides an example of training and validation loss plots for two different CNN models. We perform experiments 
on a server using an NVIDIA 16GB Tesla P100 GPU card. For the 2D CNN, we used three consecutive slices 
and the segmentation mask from the center slice in order to capture some 3D connectivity information from 2D 
network architecture.

Inference and Post-processing.  To predict the segmentation of the voxels in the border region of the 
images, we extrapolate the missing content by mirroring the input image during inference in experiments with 
the 2D CNN with unpadded convolutions. The probability of any voxel being trabecular bone can be calculated 
using multiple batches which covers that voxel at the center area of the patch. Because of this reason, during 
inference we use multiple patches for each voxel and average the probability of that voxel to calculate the proba-
bility of that voxel being trabecular bone. In total, we divide the mirrored image into 9 patches that cover the full 

Figure 6.  CNN architecture of one of the 3D CNNs used in the paper. Blue rectangles represent feature maps 
with the size and the number of feature maps indicated. Different operations in the network are depicted by 
color-coded arrows. The architecture represented here contains 32 feature maps in the first and last layer of 
the network and 4 layers in the contracting/expanding paths. In 3D CNN-dilated, dilated convolutions with 
multiple dilation rates are performed and concatenated (as indicated by green dashed boxes) at the center layer 
of the original 3D CNN.
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mirrored image with an ordered overlap. For the padded 2D CNNs and 3D CNNs, mirroring of the images was 
not required due to the selection of padded convolutions in the network architecture.

We perform basic post-processing on the segmentation results from the 2D CNNs to remove small clus-
ters of misclassified bone regions as indicated by Fig. 4b,c. Since trabecular bone forms a 3D connected volume 
and covers the most number of voxels at the output of CNN, volumetric constraints are imposed by removing 
clusters with volumes smaller than the maximum volume of connected labels. The label corresponding to the 
maximum connected volume within 3D segmentation mask represents the proximal femur. This approach suc-
cessfully removes those small clusters which were misclassified as proximal femur during the inference. Since 
using 3D convolution is capable of capturing 3D connectivity information of the trabecular bone accurately, this 
post-processing step was not required for the experiments based on the 3D CNNs.

Dataset.  This study had institutional review board approval from New York University School of Medicine, 
and written informed consent was obtained from all subjects. The study was performed in accordance with all 
regulatory and ethical guidelines for the protection of human subjects by the National Institutes of Health. Images 
were obtained using commercial 3T MR scanner (Skyra, Siemens, Erlangen) with a 26-element radiofrequency 
coil setup (18-element Siemens commercial flexible array and 8-elements from the Siemens commercial spine 
array). High resolution proximal femur microarchitecture T1-weighted 3D fast low angle shot (3D FLASH) 
images were acquired with the following parameters: TR/TE = 31/4.92 ms; flip angle, 25°; in-plane voxel size, 
0.234 mm × 0.234 mm; section thickness, 1.5 mm; matrix size, 512 × 512; number of coronal sections, 60; acquisi-
tion time, 25 minutes 30 seconds; bandwidth, 200 Hz/pixel. High resolution acquisitions are required for resolving 
bone microarchitecture that is fundamental for accurate osteoporosis characterization. Using this imaging pro-
tocol, 86 post-menopausal women were scanned. This dataset contains 36 postmenopausal women with clinical 
osteoporosis. Osteoporosis is defined as the presence of a fragility fracture that was radiographically confirmed 
(low-energy fracture due to a fall from a standing height). The sites of the fractures were the spine (n = 4), upper 
extremity (n = 15), lower extremity (n = 12), pelvis/sacrum (n = 1), and ribs (n = 4). The dataset contains either 
the left or right hip image from each subject. In cases where the subject has fragility fractures on one hip, MR data 
was acquired on the other hip, where no fragility fractures occurred.

Segmentation of the proximal femur was achieved by manual selection of the trabecular border of bone on 
MR images by an expert under the guidance of a musculoskeletal radiologist15. This resulted in two regions 

Phase Parameter Value

Initialization
Weights Xavier

Bias 0.10

Training

Input Image Size - 2D CNN 512 × 512 × 3

Input Image Size - 3D CNN 512 × 512 × 48

Optimizer Adam

Batch Size 1

Learning Rate 5e-5

Table 5.  Hyperparameters used for CNN training.

Figure 7.  Examples of train and validation loss plots for two different CNNs. Weighted cross-entropy loss 
was minimized using the Adam algorithm. As indicated by the x-axis, the number of epochs used for training 
different CNNs differs due to early stopping criteria used during cross-validation. In both cases, as expected, the 
loss in train dataset is lower that the validation set when the training is stopped.
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defined as trabecular bone of the proximal femur and the background. The central 48 coronal slices (covering 
7.2 cm) were used for segmentation tasks covering the proximal femur and reducing the size of the input image 
especially for the 3D CNN. Due to memory limitations of the GPU card, we resampled each slice of the MR 
images into 256 × 256 using bicubic spline interpolation, and used 16 and 32 initial feature maps for the 3D CNN. 
Analysis of the segmentation results were performed against the original (512 × 512) hand-segmented proximal 
femur masks.

Model selection.  Four-fold cross-validation is performed to assess the performance of different CNN archi-
tectures. Stratified random sampling is used to partition the sample into four disjoint groups. The first two groups 
have 21 subjects each, and the other two groups have 22 patients each. Each of the four groups serves as a valida-
tion set to assess the accuracy of a prediction model obtained from the other three groups combined as a training 
set. In this way, four separate segmentation models are derived, with each model is applied to segment the proxi-
mal femur in a validation set - data independent of the ones that is used to derive the model.

While training the CNNs, we use early stopping in order to prevent over-fitting and to enable fair compari-
son between different CNN architectures. Training is stopped when the accuracy on the validation set does not 
improve by 10−4 within the last 10 epochs. First 30 epochs are trained without early stopping.

Evaluation.  Manual segmentations of the proximal femur were used as the ground truth to evaluate different 
CNN structures. We define voxels within the proximal femur and background voxels as positive and negative 
outcomes, respectively. The performance of CNNs are evaluated using ROC and PRC analysis, DSC, sensitivity/
recall, precision and surface-based distance measurements, such as ASD and MSD. The DSC metric73, also known 
as F1-score, measures the similarity/overlap between manual and automatic segmentations. DSC metric is the 
most widely used metric when validating medical volume segmentations74, and it is defined as:

= + +DSC TP FP TP FN2 /( 2 ) (2)

where TP, FP, and FN are detected number of true positives, false positives and false negatives, respectively. 
Sensitivity/recall measures the portion of proximal femur bone voxels in the ground truth that are also identified 
as a proximal femur bone voxel by the automatic segmentation. Sensitivity/recall is defined as:

= +sensitivity recall TP TP FN/ /( ) (3)

Similarly, specificity measures the portion of background voxels in the ground truth that are also identified as 
a background voxel by the automatic segmentation. Specificity is defined as:

= +specificity TN TN FP/( ) (4)

Lastly, precision, also known as positive predictive value (PPV), measures the proportion of trabecular bone 
voxels in the ground truth and voxels identified as trabecular bone by the automatic segmentation. It is defined as:

= +precision PPV TP TP FP( ) /( ) (5)

ASD provides a measure to identify how much the segmentation surface, S, varies from the ground truth sur-
face, G, on average. By defining the shortest Euclidean distance of an arbitrary voxel v to a surface S by 
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where NS and NG are the number of segmentation and ground truth surface voxels, respectively. Similarly, MSD 
also known as the symmetric Hausdorff distance is defined by taking the maximum distance instead of average:
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Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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