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Projections of the future 
disappearance of the Quelccaya Ice 
Cap in the Central Andes
Christian Yarleque   1, Mathias Vuille1, Douglas R. Hardy2, Oliver Elison Timm   1,  
Jorge De la Cruz3, Hugo Ramos3,4 & Antoine Rabatel5

We analyze the future state of Quelccaya Ice Cap (QIC), the world’s largest tropical ice cap with a 
summit elevation of 5680 m a.s.l., which, in terms of its elevation range (~5300–5680 m a.s.l.), is 
representative of many low-elevation glacierized sites in the tropical Andes. CMIP5 model projections 
of air temperature (Ta) at QIC indicate a warming of about 2.4 °C and 5.4 °C (respectively) for RCP4.5 
and RCP8.5 scenarios by the end of the 21st century, resulting in a pronounced increase in freezing level 
height (FLH). The impact of this warming on the QIC was quantified using equilibrium-line altitude 
(ELA) projections. The change in the ELA was quantified based on an empirical ELA–FLH relationship, 
and calibrated with observations of the highest annual snowline altitude (SLA) derived from LANDSAT 
data. Results show that from the mid-2050s onwards, the ELA will be located above the QIC summit 
in the RCP8.5 scenario. At that time, surface mass balance at QIC and most tropical glaciers at similar 
elevations will become increasingly negative, leading to their eventual complete disappearance. Our 
analysis further corroborates that elevation-dependent warming (EDW) contributes significantly to 
the enhanced warming over the QIC, and that EDW at Quelccaya depends on the rate of anthropogenic 
forcing.

A more thorough understanding of future glacier changes in the tropical Andes is critical, given their prominent 
role in dry season water supply, ecosystem services, and impacts on tourism, natural hazards and cultural values 
and belief systems of local populations1. About 99% of the world’s tropical glaciers are located in the Andes, with 
Peru alone containing about 70% of them2–4. Quelccaya ice cap (QIC) is located in the Cordillera Vilcanota of 
southern Peru (13°56’S, 70°50′W, Fig. 1). With a median area of about 50.2 km2 over the 1975–2010 period5, QIC 
is the largest tropical ice cap. The average elevation of the ice margin is ~5300 m above sea level (m a.s.l.) and the 
approximate summit elevation is 5680 m a.s.l.; therefore, QIC is representative of many tropical glaciers in the 
Andes with a relatively low summit elevation6–8. In comparison, the lowermost elevations reached by the largest 
glaciers in the tropical Andes is typically close to 4850–4900 m a.s.l., whereas their upper reaches are frequently 
above 6000 m a.s.l. (the highest elevation being reached at the peak of Mount Huascaran at 6768 m a.s.l. in the 
Peruvian Cordillera Blanca).

The extent of the QIC has been affected by the increase in Andean surface temperature9,10, but potentially 
also by variations in precipitation4,11. The El Niño - Southern Oscillation (ENSO)8, the South American Summer 
Monsoon (SASM)12, and cold air incursions from the extratropics13 also affect QIC conditions on an interannual 
time scale. However, no continuous surface mass balance and ice dynamics measurements exist on QIC; hence 
the relationship between the reduction in surface area and loss of glacier mass is not known.

Although precipitation is an important variable affecting glacier surface mass balance, observational studies 
document that no significant changes in precipitation occurred in this region during the past five decades14–16. 
Air temperature on the other hand has been increasing over the Peruvian Andes over the last six decades9,11,14, in 
agreement with the regional increase in temperature over the entire tropical and sub-tropical Andes4. The increas-
ing temperature is a combined effect of natural multi-decadal variability (i.e. the Pacific Decadal Oscillation) and 
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anthropogenic radiative forcing10. Due to this warming, QIC is retreating at an accelerated pace, with a shrinking 
of the QIC area at a rate of 0.57 ± 0.10 km2 yr−1 over the 1980–2010 period5. This retreat is consistent with the 
reduction in glacierized surface area observed throughout the tropical Andes, including in the Cordillera Blanca 
and the Cordillera Ampato3,4, located to the north and south of the Cordillera Vilcanota and QIC, respectively.

Model projections of twenty-first century climate change indicate a substantial future temperature increase 
across the central Andes, ranging between +3 and +5 °C depending on region, model and emission scenario17–19. 
It is important to note that the rate of warming tends to be further amplified with elevation in many mountain 
regions due to elevation-dependent feedbacks20,21. Given that coarse global models do not adequately resolve 
the Andean topography, this effect is likely underestimated in surface temperature estimates from global mod-
els22, but likely less so when considering the free tropospheric temperature trends17. This elevation-dependent 
warming (EDW) has been documented over the tropical Andes, both in modern observations and future model 
scenarios10,21,23.

A fairly simple diagnostic that can be calculated from reanalysis and model data, and is more relevant for 
glacier mass balance than surface temperature, is the freezing level height (FLH). Increasing FLH in the Central 
Andes negatively affects the surface mass balance of glaciers, by changing the rain/snow ratio and increasingly 
exposing lower reaches of glaciers to rain as opposed to snow4. Hence a rise in the FLH does not only directly 
affect the glacier surface mass balance through higher temperatures, leading to more melt, but also impacts accu-
mulation and glacier surface albedo24. The FLH increased by approximately 160 m over the last five and a half 
decades over the Cordillera Blanca and Cordillera Real4, located to the north and south of QIC, respectively. The 
mean annual FLH in the Cordillera Vilcanota was 5010 m a.s.l. over the 1980–2015 period25, with a higher FLH 
during the warmer wet season and a lower FLH during the slightly colder dry season4, respectively. Historically 
the increase in the FLH in the tropics can be empirically described as a linear response to the increase in tropical 
sea surface temperature (SST)26,27. Moreover, the FLH over this region is dependent on the phase of ENSO and 
responds to both interannual and decadal-scale changes in tropical Pacific SST9,28.

While both anthropogenic and natural forcings may affect glacier surface mass balance variability on QIC on 
an interannual timescale7,10, the accelerated rate of retreat observed over the last decades5 is consistent with the 
gradual disappearance of lower-lying Andean glaciers as is being observed for example in Bolivia29, Colombia30 
and Venezuela31. Modeling studies suggest continued future shrinkage of tropical Andean glaciers, with some 
completely disappearing by the end of the 21st century1,25,32, thereby significantly reducing dry season runoff33–36.

Here we assess the rate of change of surface air temperature and FLH over QIC, using CMIP5 projections 
based on two different emission scenarios. In contrast to variables related to the hydrologic cycle (e.g., precipi-
tation), free-air temperature is quite accurately simulated by GCM’s, and very well represented by reanalysis37. 
Surface temperature is also well reproduced by most GCM’s, although there is a substantial warm bias over the 
Andes due to the low topography in the models. Here we rely on in-situ air temperature data recorded by an 
automated weather station (AWS) at the summit of QIC9,13 to remove the temperature bias from both reanalysis 
and GCM output, allowing for an accurate future projection of changes in FLH. We further take advantage of the 
documented close empirical relationship between FLH and the glacier equilibrium-line altitude (ELA) on trop-
ical Andean glaciers1 to project the future rise of the ELA on QIC under various emission scenarios. Although 
no spatially-comprehensive ELA measurements exist on QIC, the ELA can be constrained by determining the 
snowline during the dry season using satellite data38. Hence the aim of this study is to determine how imminent 
a future disappearance of the QIC really is, and to what extent the timing depends on the emission scenario. We 
also consider the influence of EDW on the rate of the ELA rise, by comparing CMIP5 simulations with an empir-
ical model that relates tropical SST to FLH assuming a constant lapse rate9.

Figure 1.  Location of Quelccaya ice cap in the Peruvian Andes. (a) Central Andes topography (color shading), 
and locations of QIC (red square marker) and Ccatcca station (blue dot). (b) LANDSAT 8 image (bands 4,3,2/
RGB) of QIC on 2nd August 2017. The AWS location is shown with a red dot. The color contours represent the 
5100 (green), 5300 (yellow), and the 5500 m a.s.l. (red) isolines.
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Data and Methods
Observational data.  Daily mean non-aspirated temperature and snow height data between 21-07-2004 
and 22-07-2017 from an AWS installed at QIC summit (5680 m a.s.l., 13.93°S, 70.82 W) were used to bias-cor-
rect air temperature from reanalysis and CMIP5 models, and to inform LANDSAT image selection (see below). 
As reference, the mean annual air temperature (Ta) at QIC from this dataset is −3.99 °C over the 2005–2016 
period. Additionally, daily rainfall data, available over the period 1979–2016 from Ccatcca station (3693 m a.s.l., 
13.61°S, 71.5603°W, closest station to QIC, Fig. 1a), maintained by the Peruvian National Meteorological and 
Hydrological Service (Servicio Nacional de Meteorología e Hidrología del Perú, SENAMHI), were used for the 
LANDSAT image-selection process. Finally, monthly mean SST data from the NOAA Extended Reconstructed 
Sea Surface Temperature v5 (ERSST) dataset39 were extracted over the tropical belt (28.5°S–28.5°N) from 1950 to 
2017. Anomalies were calculated using 1979–2005 as the reference period, and then spatially averaged to obtain 
a tropical SST anomaly (SSTA) time series.

Ta and FLH calculation from reanalysis products.  Several studies have shown that mid- and 
upper-tropospheric temperatures are fairly accurately reproduced by GCM’s and reanalysis products over the 
central Andes9,22,37. In the present study, we relied on monthly ERA-interim reanalysis40, covering the 1979–2017 
period, since this dataset has higher skill in reproducing observed temperature variability over the central Andes 
region compared with other reanalyses37. Monthly Ta at the elevation of QIC summit was calculated by interpo-
lating Ta and geopotential height (Zg) between 400 and 500 hPa pressure levels, which are the nearest standard 
pressure levels above QIC summit. The ERA-interim products were resampled to a 2.5° grid resolution, mimick-
ing the spatial scale of the majority of CMIP5 models. A bias correction was applied to the reanalysis Ta using as 
reference the observed data from the AWS at QIC summit. Similarly, the FLH at QIC was calculated as the eleva-
tion of the 0 °C isotherm using a linear interpolation of ERA-interim Zg and (bias-corrected) Ta between 500 and 
600 hPa. The same approach was applied to Ta and FLH from CMIP5 simulations to remove temperature biases 
from the simulations and to calculate historical and future FLH as simulated by the models.

The FLH in the tropics can be estimated using an empirical linear relationship with tropical SST9,26–28. Here, 
we followed this approach by comparing the QIC FLH derived from ERA-interim with ERSST data over the 
tropics for the period 1979–2017. This linear SST-FLH relationship was then applied to tropical SST simulated 
with CMIP5 models from both historic runs and future projections. Comparing the FLH at the elevation of QIC 
as simulated by the CMIP5 models (henceforth labeled FLHatm) with the FLH estimated from a linear empiri-
cal dependency with SST (henceforth labeled FLHSST) yields an estimate of future EDW, since the lapse rate is 
allowed to adjust to EDW feedbacks in the coupled CMIP5 simulations used to determine FLHatm

10,21,23, but held 
fixed at observed present-day values in the latter empirical approach of calculating FLHSST. A similar approach is 
often applied in paleoclimate assessments of how the tropical lapse rate has changed, in order to reconcile tropical 
snowline reconstructions with estimates of past changes in tropical SST41,42. It is noted that the linear regression 
model is fitted with observed SSTA, hence CMIP5 model biases are implicitly removed.

Snowline altitude derived from satellite data.  Since no long-term surface mass balance measurements 
exist from QIC, we applied an indirect method to determine the ELA38. This method is based on the fact that 
on glaciers in the outer tropics the highest snowline altitude (SLA) reached during the dry season is represent-
ative of the annual ELA of the same hydrological year. Here, the annual SLA was determined using data from 
LANDSAT-5, -7 and/or -8 with 30 m spatial resolution between 1992 and 2017, selecting one image (or date) per 
year (Table 1). The selection criteria for the LANDSAT data consist of choosing the date with the highest SLA, 
avoiding dates with recent snowfall and rainfall events. As indicated in Table 1 the chosen LANDSAT images date 
to the dry season and early transition season, i.e. from June to October. Images that postdate recent snowfall on 
QIC were flagged based on the daily snow height time series from the AWS at QIC, and daily rainfall data from 
Ccatcca station. Additionally, the ALOS PALSAR43 digital elevation model (DEM) with sensor FBS, path 101, 

Sensor Date Sensor Date

LT5 10 Jun 1992 LT5 17 Aug 2005

LT5 29 Jun 1993 LE7 15 Oct 2006

LT5 18 Jun 1994 LT5 23 Aug 2007

LT5 07 Sep 1995 LE7 02 Sep 2008

LT5 07 Jul 1996 LT5 15 Oct 2009

LT5 27 Aug 1997 LT5 16 Sep 2010

LT5 15 Sep 1998 LT5 18 Aug 2011

LE7 10 Sep 1999 LE7 31 Oct 2012

LT5 03 Aug 2000 LC8 22 Jul 2013

LT5 06 Aug 2001 LC8 13 Oct 2014

LE7 04 Oct 2002 LC8 14 Sep 2015

LT5 29 Sep 2003 LC8 16 Sep 2016

LE7 19 Jun 2004 LC8 05 Oct 2017

Table 1.  LANDSAT sensor and selected date for obtaining annual snowline altitude (SLA), 1992–2017.
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12.5 m2 cell size, WGS 1984 UTM zone 19 S projection, from 26 Oct. 2007 was used to determine the elevation of 
the SLA pixels in the LANDSAT data. The spatial resolution of PALSAR is superior to conventional products, and 
it includes terrain, radiometric and orthorectification corrections.

We display the LANDSAT data as RGB images using Shortwave Infrared 1 (SWIR), Near Infrared (NIR) 
and Green bands38. A threshold was set to detect snow areas in NIR and Green bands38 since lighting conditions 
vary through dates (e.g., Fig. 2a,b). For the images listed in Table 1, thresholds between 80 and 180 were used in 
the histogram from NIR and Green bands. Finally, the perimeter of the snow-covered area above the SLA was 
hand-digitized and projected on the DEM to extract the corresponding elevation values of the SLA. A mean SLA 
was calculated for each date by averaging the elevation corresponding to all SLA pixels.

Although the SLA delineation is often unambiguous, it is worth noting that the determination is 
threshold-selection sensitive. Measurement errors can also be produced by debris located on the lower slopes 
of the ice cap. Moreover, the western side of the QIC has a higher sensitivity (and hence a lower uncertainty) in 
SLA detection than the eastern side, since the western slope extends over flatter terrain covering a larger surface 
area per unit elevation change. In general, however, these errors introduced by complex topography, insolation or 
debris-covered ice are reduced when the SLA is measured at the end of the dry season, as the SLA reaches its high-
est position. At that time of year the terrain is more symmetric and uniformly sloped on western and eastern QIC 
sides, as observed from vertical profiles44 and surface area5 measurements. Errors in hand-digitized SLA at QIC 
are comparable with those obtained through automated techniques5, although some studies use hand-digitized 
SLA as a reference or true value, due to the scarcity of in situ data45. Studies determining QIC surface area esti-
mated the hand-digitized values to be 99.8% accurate45, while using an automated technique5 resulted in an 
estimated uncertainty in their areal measurements of 5%. For the current study, the mean SLA is obtained as the 
mean elevation of all cells corresponding to SLA pixels, along the entire ice cap perimeter (yellow perimeter in 
Fig. 2a,b), which corresponds to approximately 800 to 1200 cells, depending on the year. The resulting mean SLA 
per year (or date selected) is plotted in Fig. 2c. The SLA error is associated with a) the standard deviation of the 
estimated mean SLA per year. It ranges between 64.2 m and 102.6 m. This standard deviation value is higher than 
the values mentioned in other similar studies; this is most likely due to exposure effects around the ice cap, b) 
their corresponding slopes [range between 15.3° and 27.1°], c) the 30 m LANDSAT spatial resolution (consider-
ing a ± 1 pixel deviation range, the final dispersion value was taken as 90 m), and, d) the vertical accuracy of the 
DEM calculated as the mean of the differences between the ‘true’ elevation measured at 53 locations distributed 
along a transect from bedrock below the ice cap up to the summit of QIC in 2013, and their corresponding DEM 
values (2007). The error propagation method was used for the calculation of the SLA error46 resulting in total 
errors between 70 and 110 m. The annual SLA uncertainty is plotted as ± 1 standard error represented by the 

Figure 2.  Snowline altitude using LANDSAT images. (a) Snow region in light blue, as a RGB composite using 
LANDSAT 5 (LT5) images of bands 5, 4, and 2, having applied histogram threshold values of 155 and 174 for 
bands 4 and 2, respectively. Snow line (SL) perimeter is shown in yellow and the black shading indicates the 
spatial domain of QIC, on 15 Sept. 1998. The mean SLA is calculated as the average elevation of all DEM cells 
coinciding with the location of the snow line perimeter. (b) As in (a), but for the date selected in 2016, and 
bands 6, 5 and 3 from LANDSAT 8 (LC8), with histogram threshold values of 99 and 117 for bands 5 and 3, 
respectively. (c) Mean SLA obtained each year (i.e. mean elevation corresponding to yellow perimeter). The 
dashed line represents the linear trend with equation indicated in the legend. The non-zero trend was verified 
using an F-test (p-value < 0.001), both with and without outliers (strong El Niño years 1998, 2010, 2016) 
included. Whiskers are representing the SLA error associated with the SLA standard deviation, LANDSAT 
spatial resolution, DEM vertical accuracy and slope in the SL perimeter.
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whiskers in Fig. 2c. It is worth noting that the SLA distribution per date selected has an approximately Gaussian 
distribution, and the 95% confidence intervals calculated with t-distribution presented values similar to the ones 
calculated using bootstrap analysis. The non-zero trend presented in Fig. 2c is statistically significant (F-test, 
p-value < 0.001), regardless of whether the three outlier years associated with strong El Niño years (1998, 2010, 
2016) are included or not.

An error source which is more difficult to account for is the combined effect of an intermittent image acquisi-
tion schedule and scene obscuration by clouds. For example, LANDSAT 7 provides an image every 16 days. When 
LANDSAT 8 went into service with an offset orbit, 8-day repeat coverage became available. However, sometimes 
cloud cover obscures the glacier and hence the SLA cannot be mapped from every available image. The combined 
effect of these two issues is that our remotely-sensed, highest-annual SLA determination will always be lower than 
or equal to the actual annual SLA. Our observations in recent years, when AWS measurements and additional 
imagery are also available (e.g., ESA’s Sentinel-2) provide some assurance that this error is not large, as the SLA 
reflects seasonal snowfall as well as dry-season weather.

Derivation of the ELA-FLH relationship.  The SLA determined in the previous step can be considered a 
reasonable proxy for the ELA in each year38. On the other hand, to project the future change in the ELA on QIC 
over the course of the 21st century, we take advantage of the close linear relationship between ELA and FLH on 
tropical Andean glaciers1. We first calculated FLH over QIC using bias-corrected reanalysis data over the period 
of overlap with satellite data. The FLH is calculated as the average of the hydrologic year, which runs from Sep. 
to Aug. Finally, projected future changes in the ELA were calculated by applying the present day FLH-ELA rela-
tionship to future FLH simulated by bias-corrected CMIP5 models, as outlined in the Data and Methods section.

GCM data.  16 CMIP5 models47 (CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, 
GISS-E2-R, HadGEM2-AO, HadGEM2-CC, IPSL-CM5A-MR, MRI-CGCM3, MPI-ESM-LR, MPI-ESM-MR, 
MIROC-ESM, MIROC5, NorESM1-M, NorESM1-ME) for historical (1950–2005), RCP4.5 and RCP8.5 scenar-
ios (2006–2100) were selected for our analysis. The three variables of interest include Ta, Zg, and SST. From those 
variables we calculated the FLHatm and FLHSST and their corresponding ELAatm and ELASST projections in the 
same way as previously described for the reanalysis products, using the model or reanalysis grid cell encompass-
ing QIC.

Results
Future projections of air temperature and FLH over QIC.  Figure 3 shows the annual Ta at QIC from 
2.5° ERA-interim reanalysis and CMIP5 simulations calculated as indicated in the Data and Methods section. 
The Pearson’s correlation coefficient between the annual mean Ta from ERA-interim and the AWS time series 
over the 2005–2016 period was 0.78, indicating that the reanalysis has a high skill in reproducing the annual Ta 
variability at QIC. As a reference, the mean annual ERA-interim bias corrected Ta at QIC is about −4.4 °C over 
the 1979–2005 period. The ensemble of 16 CMIP5 historical simulations and the reanalysis data are characterized 
by a common Ta warming rate of 0.14 °C/decade over the periods 1950–2005 and 1979–2016, respectively. It is 
worth noting that the CMIP5 interannual variability is substantially muted due to the cancellation of internal var-
iability once multiple models are averaged to obtain the mean (hereafter labeled as ensemble). Future ensemble 

Figure 3.  Annual air temperature projections at QIC summit. Annual mean air temperature (Ta) from 2.5° 
ERA-interim reanalysis (thick black line, 1979–2016), historical (gray, 1950–2005) and future (2006–2100) 
RCP4.5 (blue) and RCP8.5 (red) simulations. Ta at QIC summit elevation was calculated using the lapse rate 
between 400 and 500 hPa levels. Each data set was bias-corrected with AWS temperature data (2005–2016) 
from QIC summit. Thick lines represent the historical, RCP4.5 and RCP8.5 ensembles of 16 CMIP5 models and 
shading represents the 95% confidence interval. Likely ranges for QIC’s air temperature projections by the end 
of the 21st century are indicated by vertical bars.
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projections of Ta using RCP4.5 and RCP8.5 emission scenarios indicate substantial warming over the 2006–2100 
period of about 0.25 °C/decade and 0.57 °C/decade, respectively. Those future scenarios suggest that the mean Ta 
at QIC summit will increase by approximately 2.4 °C and 5.4 °C, respectively, by the end of the 21st century. This is 
consistent with results from previous studies over the tropical Andes17,18 using the older SRES scenario A2. Maybe 
more relevant in this context is the fact that under the RCP8.5 scenario Ta at QIC summit will surpass 0 °C by 
~2060, while under the RCP4.5 scenario Ta will start to stabilize around −2 °C by ~2070.

Long term evolution of the equilibrium-line altitude (ELA) at QIC.  Since the date of the satellite 
images used to calculate the SLA (Table 1) typically falls toward the end of the hydrological dry season on QIC, 
the derived ELA is defined as representing the previous hydrologic year starting in September of the previous 
year and ending in the current August. Thus, the year label indicated in the x-axis in Fig. 2c corresponds to the 
August’s years.

The annual ELA was then compared with its corresponding FLH, which was calculated for the same hydro-
logical year for the 1992–2017 period. Figure 4 presents the comparison between annual values of ELA and 
FLH obtained from ERA-interim reanalysis. There is a statistically significant linear relationship between the two 
variables, consistent with the similar linear relationship present over several other glaciers in the inner and outer 
tropical Andes1. The linear ELA – FLH relationship at QIC can be quantified as:

≈ . × + .ELA 0 56 FLH 2610 1 m, (1)

with r = 0.82 and p-value < 0.001, over the 1991–2017 period. This relationship was subsequently used to project 
future changes in the ELA, using as input the FLHatm and FLHSST at QIC generated from CMIP5 historical and 
future scenarios. Calculated historical and future ELA’s from CMIP5 models were bias-corrected through com-
parison with the observed ELA during the period of overlap, 1992–2005 and 2006–2017 respectively.

Future ELA projections at QIC.  Figure 5 presents observational, historical and future annual ELA projec-
tions for QIC. The mean ELA from observations was 5436 m a.s.l. over the 1992–2017 period, and the mean ELA 
value from ERA-interim over the baseline 1979–2005 was 5416 m a.s.l. (data not shown). The increase in the ELA 
is +16.3 m, +13.6 m, +24.5 m and +58.4 m/decade, for reanalysis (1980–2017), historical (1950–2005), RCP4.5 
and RCP8.5 (2006–2100), respectively. Based on the multi-model mean estimate, the ELA will remain below the 
QIC summit until the end of the 21st century in the RCP4.5 scenario, although some CMIP5 models are project-
ing a future ELA that is higher than the QIC summit.

For the RCP8.5 scenario the changes at QIC are going to be more profound and occur much earlier than in 
the case of the RCP4.5 scenario. By the middle of the century the ensemble mean ELA is projected to reach the 
QIC summit, turning all of QIC into an ablation zone. A very important point is that the QIC summit at 5680 m 
a.s.l. will of course be continuously lowered, once the ice cap increasingly thins from its current thickness of 
approximately 170 m44. Hence it will be exposed to higher temperatures at lower elevation (elevation feedback), 
as well as increasingly to edge effects and warm air advection from surrounding exposed bare rock areas as the 
ice cap shrinks in size (edge effects feedback). These feedbacks are not accounted for in our analysis, suggesting 
that our results likely err on the conservative side and that the ELA may in fact reach the QIC summit earlier than 
projected in our analysis. Finally, the RCP8.5 Ta projections at QIC suggest that at the end of the 21st century 

Figure 4.  Scatter plot between annual FLH and annual ELA at QIC. FLH is calculated by interpolating bias-
corrected air temperature (Ta) and geopotential height between 500 and 600 hPa from ERA-interim. The 
bias-corrected Ta was obtained by fitting reanalysis air temperature with observed Ta from an AWS at QIC 
summit. ELA data were obtained from LANDSAT images at the end of the dry season (see Table 1; median 
date 4 September). ELA and FLH were calculated for hydrologic years (September of previous calendar year to 
August). Pearson’s correlation coefficient (r) and p-value are indicated in the Figure.
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temperature will have increased by about 5.4 °C (see Fig. 3). This implies that the ensemble mean yearly average 
Ta at the QIC summit will be near +1 °C. Precipitation events at this temperature threshold will likely be divided 
in snow, rain and mixed precipitation in similar proportion48.

How long it will actually take for QIC to completely disappear is a different question and beyond the scope 
of this study, but it is evident that runoff from QIC during the dry season will eventually decrease signifi-
cantly. Until then, melt water from the receding ice cap may for a period of time enhance the glacial melt water 
contribution35,49.

On the relationship between FLH at QIC and tropical SST.  As pointed out in several studies, a linear 
relationship exists between tropical SST and tropical FLH26,27,41,42, including over the Andes8,9,24,50–53. This rela-
tionship can be exploited to calculate how the FLH over QIC will change in the future, using future projections 
of tropical SST, and assuming that the FLH-SST relationship remains stable over time (i.e. no change in lapse 
rate). Here we calculate the FLH at QIC using reanalysis products, and linearly relate it with tropical SST9, to 
assess future FLH changes under such a fixed lapse-rate scenario. These FLH estimates, henceforth referred to as 
FLHSST can then be compared with future FLH changes simulated by coupled ocean-atmosphere CMIP5 models 
(FLHatm), with the difference being a measure of future adjustment in the lapse rate and thus of EDW. Paleoclimate 
studies have documented how this tropical lapse rate, linking SST with the snowline in tropical mountain regions, 
has changed in the past41 and they have been used to constrain future amplified high-elevation-warming in trop-
ical mountain regions42. Here we apply the same methodology to the QIC.

The hydrologic year FLH at QIC was calculated from ERA-interim reanalysis products (as indicated previ-
ously in the Data and Methods section), and compared with tropical SST (spatially averaged from 28.75°N to 
28.75°S). The resulting linear relationship between annual anomalies of FLH (FLHA) at QIC and tropical SSTA 
(°C) (Fig. 6) over the 1980–2017 period (38 hydrologic years), is expressed as:

= . × + .FLHA 286 4 SSTA 1 4 m, (2)SST

with, r = 0.84 and p-value < 0.001. This statistical relationship quantifies how tropical SST relates to atmos-
pheric temperature at QIC under present conditions, explaining 71% of the total variance in FLHASST. Projecting 
this relationship into the future, however, will underestimate the actual rise of the FLH, given multiple 
elevation-dependent feedbacks that will likely lead to enhanced future warming at higher elevations. Indeed, the 
increase in atmospheric water vapor will likely result in enhanced release of latent heat during tropical convection 
and condensation, thereby warming the tropical mid- and upper troposphere. In addition, the increase in water 
vapor in the upper troposphere will exert a stronger radiative effect, given its lower initial concentration, thereby 
contributing to a stronger warming at higher altitudes20. This enhanced longwave downwelling radiation feed-
back is likely a significant driver of the FLH increase, but several other feedbacks affecting elevated regions like 
QIC, such as clouds, albedo, and aerosols may also play a role20,21.

Figure 5.  ELA projections at QIC. Equilibrium-line altitude (ELA) calculated using the freezing level height 
anomaly projections at QIC (FLHatm) from 16 CMIP5 models as input in equation (1). FLHatm was obtained 
by interpolating Ta and Zg between 500 and 600 hPa pressure levels. The black curve (OBS) represents the 
observed ELA obtained from LANDSAT satellite images over the 1992–2017 period. Bias-correction was 
applied to Ta and ELA for each CMIP5 model, using the observed Ta from the AWS at QIC. The hydrological 
year Sept.-Aug. was used for calculations. The ensemble of historical (1950–2005) simulations is represented 
with the gray line, while CMIP5 RCP4.5 and RCP8.5 future projections (2006–2100) are represented by green 
and orange lines, respectively. The shading represents the corresponding 95% confidence intervals. The blue 
dashed line indicates the QIC summit altitude (~5680 m a.s.l.). The mean observed ELA over the 1992–2017 
period was 5435 m a.s.l., and the mean ERA-interim ELA over the baseline 1979–2017 was 5416 m a.s.l. Likely 
ranges for ELA projections at QIC by the end of the 21st century are indicated by vertical bars.
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Elevation-dependent warming (EDW) quantification at QIC.  To verify and quantify how much the 
EDW will affect QIC in the 21st century, we present a comparison between the ELASST and ELAatm at QIC, both 
bias-corrected and calculated based on equation (1), but using as input the FLHSST from equation (2), and FLHatm 
derived by interpolating Ta and Zg, respectively, from 16 CMIP5 models. The ERSST and ERA-interim reanalysis 
products were used as a control case.

In Fig. 7, the control case results (black dots) are consistent with the historical comparison between the ELASST 
and ELAatm ensembles from 16 CMIP5 historical simulations (gray dots). Future projections of ELAatm ensem-
bles, based on 16 CMIP5 RCP4.5 (blue dots) and RCP8.5 (red dots) simulations, however, are not following 
the expected ELA increase inferred from the ELASST model. For instance, in the RCP4.5 scenario, the increase 
in the ELASST ensemble is about 22.8 ± 0.74 m/decade; less (albeit not significantly) than the ensemble ELAatm 
increase of 24.5 ± 0.94 m/decade. In the case of the scenario RCP8.5, this difference in ELA trends is significant 
(p < 0.05), with 52.9 ± 1.04 m/decade and 58.4 ± 1.45 m/decade for ELASST and ELAatm, respectively. This implies 
that CMIP5 simulations with RCP4.5 radiative forcing at the end of the 21st century generate an insignificant 
additional rise of the ensemble mean ELA at QIC of about 1.72 m/decade when compared to the tropical SST 

Figure 6.  FLH – SST linear relationship. Tropical SST forcing of FLH at QIC during 1980–2017 (hydrologic 
years). Annual FLH anomalies (FLHA) at QIC were calculated by interpolating bias-corrected air temperature 
(Ta) and geopotential height (Zg) from ERA-interim reanalysis, between 500 and 600 hPa pressure levels at 
QIC summit location (red line). The bias-corrected Ta was obtained by fitting the ERA-interim Ta product with 
observed Ta data from an AWS at QIC summit. The annual mean tropical SST anomalies (spatially averaged 
across 28.75°N to 28.75°S) were calculated from ERSST data (blue line). Anomalies were calculated using 
the baseline 1979–2005 period. The linear relationship between FLHA and tropical SSTA can be expressed as 
FLHA = 286.4 × SSTA + 1.4m, with r = 0.84 and p-value < 0.001.

Figure 7.  ELAatm vs ELASST comparison. Annual mean ELA derived from FLH at QIC calculated by linear 
regression (equation 1) with annual mean tropical SST from ERSST dataset as predictor (FLHSST using 
equation 2), compared with ELA derived by interpolating air temperature (Ta) and geopotential height (Zg) 
from ERA-interim reanalysis between 500 and 600 hPa levels (FLHatm) (black dots). The same approach is 
applied to the ensemble mean of annual FLHSST and FLHatm obtained from 16 CMIP5 models for Historical 
(gray dots), RCP4.5 (blue dots) and RCP8.5 (red dots) scenarios. Historical and future simulations were 
analyzed over the periods 1951–2005 and 2006–2100, respectively. Dashed line represents the 1:1 line. A bias-
correction was applied to Ta and ELA, using data from the AWS at QIC summit elevation (5680 m a.s.l.) and 
estimated highest annual snowline altitude from Landsat images, respectively.
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forcing, while the RCP8.5 radiative forcing generates an additional, statistically significant ELA rise of about 
5.5 m/decade. This additional ELA rise can be understood as an EDW response, resulting from feedbacks that 
effectively lead to a flattening of the tropical lapse rate. Thus, for a more intense anthropogenic radiative forcing 
scenario, the EDW effect will increase. This analysis verifies and quantifies the projected EDW effect over the QIC 
environment in response to future changes in radiative forcing.

The difference between the ensemble mean ELAatm and ELASST of about 5.5 m/decade for the RCP8.5 scenario 
implies that by 2055, the ensemble ELAatm will reach the QIC summit level, while the ELASST ensemble will still 
be ~30 m below the QIC summit. In other words, the ELAatm will reach the QIC summit about 12 years earlier 
than the ELASST. Note that these calculations were done for the ensemble of 16 CMIP models, and that results for 
individual CMIP5 models vary considerably.

Discussion and Conclusions
CMIP5 model simulations of future temperature changes were applied to study the impacts of climate change 
over the Quelccaya Ice Cap region, assessing the relationship between ELA and FLH and how these variables 
relate to tropical SST forcing in the past and the future. We did not consider the influence of potential future 
changes in ENSO behavior on QIC climate, which would be relevant for understanding future changes in inter-
annual variability and will be included in future work, but present-day ENSO variability over the period for which 
the model was built is implicitly included.

Here we relied on air temperature (and FLH) from global products (reanalysis and CMIP5) since a compar-
ison with in-situ data from our AWS showed that these products very faithfully reproduce temperature condi-
tions on QIC once a bias–correction is applied, consistent with earlier studies37,54. Hence while the application 
of free-tropospheric air temperature in our model did not require a more sophisticated statistical downscaling 
method53,54, a comparative study between our results and other downscaling products (e.g., CORDEX) would be 
a worthwhile follow-up study.

One important outcome of this study is that the ELA will strongly be affected by feedback mechanisms that 
accelerate the warming at high elevations, most noticeable in the RCP8.5 scenario. QIC is likely to completely 
loose its accumulation zone before the end of the 21st century. The critical time when the ensemble RCP8.5 simu-
lated ELA will reach the QIC summit is around 2055, concomitant with RCP8.5 annual average Ta at QIC summit 
rising to approximately −1.8 °C. From that point forward, the ELA will remain above the ice cap’s highest eleva-
tion, leaving the entire ice cap exposed to a continuously negative surface mass balance. However, other factors, 
not considered here, can change this timing, such as changes in the amount or seasonality of precipitation. Since 
changes in precipitation are a more complex issue to assess, it will be dealt with in a separate analysis. As far as 
precipitation phase is concerned, Ta = −1 °C is the critical threshold where precipitation starts to change phase in 
the tropical Andes48, leading to a decrease in snowfall and increase in mixed precipitation. Based on our results, 
this threshold will be reached around 2070 for a few models in the RCP4.5 scenario and the ensemble mean Ta 
for the RCP8.5 scenario.

Here we have focused on the influence of tropical SST on FLH over QIC, since tropical SST provide the dom-
inant first-order control on FLH and snowline altitude throughout tropical mountain regions9,25–28,41,42. Indeed 
tropical SSTA explain more than 70% of the total variance in the FLH over QIC on interannual timescales. While 
other factors such as land surface feedbacks, tropical convection over the Amazon basin and interactions with 
extratropical air masses can also influence the FLH over Quelccaya on interannual timescales13,22, their influence 
is rather limited and they are by no means independent from tropical SST.

Although the ELA is closely correlated with the FLHatm and previous studies have documented that this rela-
tionship holds throughout the tropical Andes1,25, this prediction of the ELA could potentially be further improved 
by applying a multivariate model including other atmospheric variables, such as precipitation and wind field. We 
have, however, opted not to consider such variables, given the large uncertainties in future projections of precip-
itation over the Andes. In our view the added values from inclusion of these variables is offset by much larger 
uncertainties in the future projections. That said, the presented uncertainty ranges in the timing of ELA reaching 
the summit should themselves be considered conservative estimates.

More research is needed to further clarify the nature of the feedbacks that lead to the anticipated 
elevation-dependent warming on QIC. In addition, it is critical to better quantify elevation feedbacks, edge 
effects, and the impacts of changing precipitation phase with higher FLH on QIC’s surface mass balance. As these 
aspects will promote an even faster demise of the ice cap, our projections are likely conservative estimates.
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