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Increased spatial and temporal 
autocorrelation of temperature 
under climate change
Grace J. Di Cecco1 & Tarik C. Gouhier2

Understanding spatiotemporal variation in environmental conditions is important to determine 
how climate change will impact ecological communities. The spatial and temporal autocorrelation 
of temperature can have strong impacts on community structure and persistence by increasing the 
duration and the magnitude of unfavorable conditions in sink populations and disrupting spatial 
rescue effects by synchronizing spatially segregated populations. Although increases in spatial and 
temporal autocorrelation of temperature have been documented in historical data, little is known 
about how climate change will impact these trends. We examined daily air temperature data from 
21 General Circulation Models under the business-as-usual carbon emission scenario to quantify 
patterns of spatial and temporal autocorrelation between 1871 and 2099. Although both spatial and 
temporal autocorrelation increased over time, there was significant regional variation in the temporal 
autocorrelation trends. Additionally, we found a consistent breakpoint in the relationship between 
spatial autocorrelation and time around the year 2030, indicating an acceleration in the rate of increase 
of the spatial autocorrelation over the second half of the 21st century. Overall, our results suggest 
that ecological populations might experience elevated extinction risk under climate change because 
increased spatial and temporal autocorrelation of temperature is expected to erode both spatial and 
temporal refugia.

Although classical studies have focused almost exclusively on determining the ecological impacts of shifting aver-
age environmental conditions, there is growing recognition that statistical properties beyond the mean can play 
an equally important role in shaping the structure and functioning of ecosystems under climate change1–3. For 
instance, high variance in an environmental variable can destabilize populations by inducing greater fluctuations 
in their abundance over time and thus increase the risk of stochastic extinction1,2,4. Even when environmental 
variance is too weak to promote extinction risk, it can have a more insidious effect on ecological systems due to 
nonlinear averaging. Specifically, if a population responds nonlinearly to environmental conditions, then changes 
in the temporal or spatial properties of the environment (e.g., temporal or spatial variance) can alter the mean 
ecological response even if the mean environmental conditions remain constant, and the strength of this effect 
will depend on the degree of nonlinearity in the functional response of the population1,5,6. This implies that the 
variance of an environmental variable has consequences for ecological systems that cannot be inferred from 
their average values alone1. Indeed, studies have shown that variation in environmental variables impacts natural 
populations and consideration of variance can be required for successful model predictions5. Hence, in order 
to determine how climate change will impact ecological systems, it is at least as important to study variation in 
temperature and other critical environmental variables as it is to study their mean.

In addition to variance, it is also crucial to consider the temporal structure or autocorrelation of environmen-
tal variables such as temperature, as the variation in environmental variables is predicted to change over time6. 
Studies of historical temperatures have shown an increase in their temporal autocorrelation from 1961 to 19902,3, 
and these trends are expected to increase under climate change5,7. Quantifying such changes in the temporal 
autocorrelation of environmental variables is critical in order to accurately predict the dynamics and persistence 
of ecological systems under climate change. Indeed, increased temporal autocorrelation in climate variables has 
been linked to lower persistence of model and natural populations3,8. In general, theory predicts that a reddening 
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of environmental time series (an increase in its temporal autocorrelation) can extend the duration of poor condi-
tions and thus promote extinction risk by eroding temporal refugia or rescue effects9,10.

The combination of increased temporal variance and autocorrelation in the environment could have even 
more dire consequences for ecological systems. For example, Dillon et al. showed that adding power to lower 
frequencies of temperature time series increased their temporal variance and autocorrelation, and thus the overall 
incidence and persistence of long-term heat waves and cold snaps2. Such increased intensity (temporal variance) 
and duration (temporal autocorrelation) of harsh conditions can promote extinction risk. Hence, the destabiliz-
ing effect of increased temporal environmental variability can be amplified by an increase in its autocorrelation. 
Overall, this suggests that increased temporal variance and autocorrelation of environmental conditions may 
interact synergistically to destabilize ecological systems.

The link between spatial autocorrelation of the environment and population dynamics has also been well 
established, with theoretical and empirical studies showing that spatiotemporally correlated or synchronized 
fluctuations in environmental conditions can give rise to synchronized fluctuations in ecological populations (i.e., 
the Moran effect11,12). For instance, increased spatial synchrony in air temperature due to changes in basin-scale 
climate forcing (North Atlantic Oscillation) gave rise to increased synchrony in Greenland animal popula-
tions1,3,6,13,14. In general, increased spatial autocorrelation in the environment is expected to promote the scale and 
the magnitude of synchronized fluctuations in populations and thus reduce the spatial heterogeneity of ecological 
systems. In doing so, increased spatial environmental autocorrelation can thus promote extinction risk at local 
and regional scales by eliminating the potential for spatial rescue effects between interconnected but increasingly 
synchronized populations15–18.

Although the negative effects of spatial and temporal autocorrelation have been established independently in 
model and natural systems, little is known about how these two phenomena will interact under climate change. 
Overall, theory suggests that increased spatial and temporal autocorrelation of environmental factors like tem-
perature are expected to interact synergistically to destabilize ecological communities by disrupting both tem-
poral and spatial rescue effects4. To determine the potential for such synergistic interactions, we characterized 
spatial and temporal autocorrelation in temperature from climate model projections. This was accomplished by 
analyzing temperature data from 1871 to 2099 using spectral analysis to measure temporal autocorrelation by 
calculating the spectral exponent and estimating spatial autocorrelation by determining the lag distance at which 
temperature becomes spatially uncorrelated (i.e., the spatial range).

We found that temporal and spatial autocorrelation increased over time in individual climate models and the 
multimodel mean. However, there was considerable regional variation in temporal autocorrelation, with west-
ern North America, central South America, northwestern Eurasia and North Africa seeing significant increases 
in temporal autocorrelation, but West Africa and the Southern Ocean seeing significant decreases in temporal 
autocorrelation. Piecewise regression analyses showed consistent breakpoints in spatial trends in autocorrelation 
around the year 2030 globally, and spatial trends in autocorrelation were statistically significant after the break-
point across time windows of different sizes. Our results suggest that climate change is likely to increase the spatial 
and temporal homogeneity of temperature, which may negatively impact connectivity between source and sink 
populations and thus reduce the persistence of ecological communities.

Results
Global trends in temporal autocorrelation.  The spectral exponent of the global temperature obtained 
from the climate multimodel mean becomes more negative over time (“reddening”) indicating increased tem-
poral autocorrelation (Fig. 1). This temporal trend in the multimodel mean holds in terms of its statistical sig-
nificance (p-value < 0.05; Table 1) and sign (Table 2) across multiple time windows ranging from 5 to 10 years. 
Multiple individual climate models predict a similar increase in the temporal autocorrelation of temperature 
over time, yielding relatively high model agreement across time windows (Table 2). However, model robustness 
remains relatively low due to disagreements over the significance of the temporal trend (Table 2). There was no 
evidence of a breakpoint in the spectral exponent across time windows, indicating a constant rate of increase in 
temporal autocorrelation over time.

Regional trends in temporal autocorrelation.  Although the temporal autocorrelation in temperature 
increases at the global scale, there is significant geographical variation in both the sign and the strength of the 
trend (Fig. 2). Temporal autocorrelation in temperature increases most on land in northwestern North America, 
central South America, northwestern Eurasia, and North and central Africa (Fig. 2a,b). Temporal autocorrela-
tion also increases in the ocean, mostly in the central and southern Atlantic Ocean, the southern Indian Ocean, 
the Arctic Ocean and the Pacific Ocean. However, temporal autocorrelation decreases almost uniformly across 
the entire Southern Ocean and West Africa (Fig. 2a,b). Overall, these temporal trends in autocorrelation lead to 
changes of up to 0.2 units in the spectral exponent from 1870 to 2099 (Fig. S1).

There are no consistent differences in the percentage of geographical locations exhibiting increased vs. 
decreased temporal autocorrelation of temperature across longitudes. However, there are strong latitudinal pat-
terns, with autocorrelation decreasing most between 70 S and 40 S due to the influence of the Southern Ocean. 
Autocorrelation increases most in temperate regions due to the effects of both land and sea. In general, model 
agreement is relatively high across most of the globe, with the notable exceptions of parts of Antarctica and the 
north Atlantic (Fig. 2c). Model robustness is notably the highest in the Southern Ocean (Fig. 2d). However, 
robustness is below 50% at other latitudes despite high agreement, which indicates that while individual GCMs 
are consistent in the trend, there is disagreement about the significance of the trend. Although there is no mean-
ingful change in model agreement and robustness across longitudes, model agreement and robustness vary lati-
tudinally reaching lower values around the South Pole, the equator and the North Pole.
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It is important to note that these results are based on the linearly detrended data, which retain seasonal tem-
perature cycles. To determine the robustness of our results to seasonality, we conducted the same analyses on 
seasonally detrended data (Fig. S2). The results from the seasonally detrended data show an almost universal 
increase in temporal autocorrelation of temperature across the globe, particularly in the Pacific Ocean, the north-
ern Atlantic Ocean, western North America, South America, western Africa and Australia (Fig. S2). Overall, the 
predicted trends in the temporal autocorrelation of temperature are stronger and more spatially-uniform when 
seasonal temperature cycles are removed. This is because seasonal (annual) temperature fluctuations are charac-
terized by high power and occur at relatively low frequencies when using multi-year time windows. Hence, when 
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Figure 1.  Changes in the temporal and spatial autocorrelation of the multimodel mean temperature obtained 
via simple regression. (a) Temporal autocorrelation was quantified via the spectral exponent, with more 
negative values indicating greater autocorrelation. (b) Spatial autocorrelation was quantified via the spatial 
range, which measures the geographical distance at which temperatures become decorrelated. Trend lines 
reflect linear model fits obtained via Generalized Least Squares and shaded regions represent 95% confidence 
bands. Solid lines indicate statistically significant trends and separate line segments and colors are used to 
show the breakpoints in the time series. The multimodel mean was computed using 21 GCMs projections and 
averaged globally over 10-year time windows.

Years

Spectral exponent Spatial range (km)

Slope Intercept p-value Slope Intercept p-value

5 −0.00021 −2.2995 0.0467 0.11907 4211.5479 0.2848

6 0.00013 −2.963 0.2775 0.09739 4252.6893 0.3085

7 0.000093 −2.9017 0.4887 0.08477 4277.4191 0.4234

8 0.000091 −2.8798 0.4234 0.07445 4296.6776 0.4216

9 0.000196 −3.0943 0.0672 0.09600 4255.9785 0.4154

10 −0.00028 −2.1643 0.0171 0.10216 4243.8615 0.3415

Table 1.  Temporal and spatial autocorrelation trends obtained via GLS fit for multimodel mean global 
temperature autocorrelation in 21 GCMs, regressed over time windows from five to ten years. Temporal 
autocorrelation was quantified using the spectral exponent, with more negative values indicating greater 
autocorrelation. Spatial autocorrelation was quantified via the spatial range, which measures the geographical 
distance at which temperatures become decorrelated.
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regressing (log) power against (log) frequency, annual fluctuations in temperature have high statistical leverage 
on the slope estimate used to quantify the spectral exponent. Removing seasonality, which remains relatively con-
stant over time and has high leverage on the spectral exponent estimate, thus facilitates the detection of temporal 
trends in autocorrelation due to changes in temperature fluctuations occurring at non-annual frequencies. One 
can thus think of the trends obtained using the linearly detrended data as a conservative estimate of the expected 
changes in the temporal autocorrelation of temperature and those obtained using the seasonally detrended data 
as anti-conservative.

Global trends in spatial autocorrelation.  Spatial autocorrelation in the global multimodel mean temper-
ature measured via the spatial range does not increase significantly over time (Fig. 1). Although the slope relating 
the spatial range to time is consistently positive across all time windows, it is never significant (Table 1). Among 
individual climate models, the majority show an increase in the spatial range over time across all time windows, 
and the trend is robust across 30–60% of individual climate models depending on the time window (Table 2). 
Despite the lack of a significant relationship at the global scale, piecewise regression shows that across all time 
windows, there is a breakpoint in the regression of the spatial range against time around year 2030 after which 
the trend becomes universally significant and positive (Table 2). After the second breakpoint, robustness of the 
trend in spatial range also increases across all time windows (Table 2). Hence, there is evidence that the spatial 
autocorrelation of temperature at the global scale is increasing over time after year 2030.

Regional trends in spatial autocorrelation.  Spatial autocorrelation in temperature is increasing signif-
icantly in temperate (p-value < 0.001) and tropical (p-value < 0.05) regions over time in the climate multimodel 
mean (Fig. 3). Across individual climate models, there is strong agreement on the direction of the trend in both 
temperate and tropical regions (Table S2). Additionally, the trend is highly robust (>90% of individual models) in 
temperate regions (Table S2). Although spatial autocorrelation is significantly higher in temperate regions than in 
the tropics, it is increasing at the same rate in both regions (Table S3). The breakpoint in the regression of spatial 
range against time in the multimodel mean for temperate regions is around 1950, while the breakpoint in tropical 
regions is around year 2025 (Fig. 3).

Years

Spectral exponent Spatial range (km)

Entire time period Entire time period Before breakpoint 1 After breakpoint 1 After breakpoint 2

Agreement Robustness Agreement Robustness Agreement Robustness Agreement Robustness Agreement Robustness

5 0.43 0.095 0.67 0.62 0.48 0.38 0.71 0.33 0.48 0.38

6 0.48 0.286 0.57 0.62 0.43 0.29 0.71 0.29 0.43 0.29

7 0.38 0.238 0.57 0.43 0.43 0.33 0.67 0.29 0.43 0.33

8 0.52 0.095 0.57 0.43 0.57 0.57 0.71 0.33 0.57 0.57

9 0.38 0.238 0.57 0.43 0.43 0.38 0.71 0.24 0.43 0.38

10 0.38 0.238 0.67 0.33 0.52 0.43 0.67 0.29 0.52 0.43

Table 2.  Agre n global temperature autocorrelation in 21 GCM regressed over time windows ranging from 
five to ten years for temporal and spatial autocorrelation analyses of the entire time period, and before and after 
breakpoints identified in Table 3 for spatial autocorrelation. Temporal autocorrelation was quantified using 
the spectral exponent, with more negative values indicating greater autocorrelation. Spatial autocorrelation 
was quantified via the spatial range, which measures the geographical distance at which temperatures become 
decorrelated. Agreement is defined as the proportion of models whose slopes have the same sign as that of the 
multimodel mean GLS fit. Robustness is defined as the proportion of models that have the same sign as the 
multimodel mean GLS fit and a significant trend (p-value < 0.05).

Spatial range (km)

Before break 1 After break 1 After break 2

Years Intercept Slope Break year Intercept Slope Break year Intercept Slope

5 5020.71 −0.3119 1905 4996.19 −0.2824 2030 2649.64 0.8773

6 4861.14 −0.2271 1906 5013.94 −0.3006 2026 2646.86 0.8776

7 4876.04 −0.2351 1905 5014.29 −0.2915 2017 2446 0.9765

8 4949.48 −0.2744 1902 4970.92 −0.2697 2030 2713.35 0.8468

9 5459.62 −0.5459 1897 4905.08 −0.2365 2014 2479 0.9608

10 4931.18 −0.2648 1900 4939.99 −0.2539 2030 3148.37 0.6349

Table 3.  Breakpoint analysis for multimodel mean global temperature autocorrelation of 21 GCMs, regressed 
over time windows from five to ten years. Bolded coefficients are statistically significant (p-value  < 0.05). 
Spatial autocorrelation was quantified via the spatial range, which measures the geographical distance at which 
temperatures become decorrelated.
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Discussion
Despite substantial variability across the 21 climate models examined, the multimodel mean showed consistent, 
statistically significant increases in spatial and temporal autocorrelation of temperature at global and regional 
scales under climate change. Breakpoint analysis of the spatial range of temperature data over time indicated 
that there was a threshold response in spatial autocorrelation around year 2030 globally and around year 1950 
in temperate regions. Furthermore, robustness of the increasing trend and agreement between individual mod-
els increased after the breakpoint for spatial autocorrelation globally. Overall, this suggests that the spatial and 
temporal autocorrelation of temperature are expected to increase under climate change, particularly during the 
second half of the 21st century.

Increasing autocorrelation in a warming world.  Our results are consistent with other research show-
ing an increase in spatial and temporal autocorrelation of temperature based on weather station data from the 
second half of the 20th century2,19, but inconsistent with one previous study showing a reduction in the temporal 
autocorrelation of global temperature from weather station data between 1910 and 19908. This discrepancy is 
likely due to differences in the nature (observations vs. models), spatial resolution and spatiotemporal extent of 
the temperature records.

For instance, GCMs are simulated at relatively coarse resolutions, are global in scale, longer term, and do not 
include all of the stochastic factors that influence temperature across temporal and spatial scales. Hence, GCM 
projections may exhibit an upward bias in the predicted temporal and spatial autocorrelation of temperature rela-
tive to observational studies due to the “spatiotemporal smoothing effect” created by their coarser resolution and 
limited sources of local stochasticity. Although these differences can make comparisons between raw predictions 
and observations difficult without some form of statistical correction, they should not affect the likelihood of 
detecting spatiotemporal trends in temperature autocorrelation within GCMs since these trends are measured by 
making internal comparisons of model predictions.
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Figure 2.  Maps of changes in the temporal autocorrelation of the multimodel mean temperature. Temporal 
autocorrelation was quantified via the spectral exponent, with more negative values indicating greater 
autocorrelation. (a) Map of the slope obtained by regressing the spectral exponent against time over 10-year 
periods between 1870 and 2090. Negative (positive) values depicted in red (blue) indicate an increase (decrease) 
in autocorrelation due to an increase (decrease) in the dominance of lower frequencies. (b) Grey contours 
indicate statistically significant slopes (p-value < 0.05). Side plots represent the percentage of geographical 
locations at each latitude or longitude characterized by an increase in the dominance of lower (red) or higher 
(blue) frequencies. (c) Map of model agreement for the slope of the spectral exponent. Agreement is defined 
as the proportion of models predicting the same sign for the slope as the multimodel mean, with areas of high 
agreement being depicted in darker shades of purple. Side plots represent the percentage of geographical 
locations where model agreement exceed 50% at each latitude or longitude. (d) Map of model robustness 
for the slope of the spectral exponent. Robustness is defined as the proportion of models that agree with the 
multimodel mean on the sign and the statistical significance of the slope. Side plots represent the percentage of 
geographical locations where model robustness exceeds 50% at each latitude or longitude.
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We suggest that discrepancies between model projections and observational data are more likely due to the 
large regional differences in the temporal autocorrelation trends seen in both observational studies and GCM 
projections (Fig. 2). For instance, the analysis of weather data from 1910 to 1990 cited earlier revealed significant 
regional differences in the temporal autocorrelation of temperature, with Asia and Australia experiencing a sig-
nificant increase over time, but South America and North America experiencing a significant decrease8. Hence, 
differences in the spatial extent and resolution of observational studies vs. GCM projections could easily lead to 
conflicting conclusions due to the high degree of regional variation in these trends. Overall, understanding how 
the nature, resolution and spatiotemporal extent of temperature records interact to influence this discrepancy will 
be critical in order to more accurately predict the impact of climate change across temporal and spatial scales. Our 
GCM results echo those of Dillon et al.2 and Wang and Dillon19, who showed an increase in temporal autocor-
relation of historical (observed) temperature data from 1961 to 1990 and an increase in spatial homogeneity in 
weather data between 1960 and 1991. This agreement between our results based on GCM projections and those 
of Dillon based on observations is consistent with the notion that differences in the spatial resolution and the spa-
tiotemporal extent rather than the nature of the temperature records may have the greatest impact on estimates 
of temporal and spatial autocorrelation.

Overall, GCM projections suggest that the temporal autocorrelation of temperature will tend to increase more 
on land than in the sea, with increases occurring in Eurasia, South America, western North America and south-
eastern Asia, and decreases occurring mostly in the Southern Ocean. This is intriguing because previous studies 
have shown that the temporal autocorrelation of temperature tends to be lower on land than in the sea10,20,21 
because heat transfer occurs over longer timescales in the ocean and thus results in greater system “memory”. 
Taken together, these results suggest that the disparities in the temporal autocorrelation of temperature between 
land and sea are predicted to decrease over time at the global scale under climate change.

Differences in the spatial autocorrelation of temperature in tropical vs. temperate regions are consistent with 
expectations from the physical characteristics of the regions. The significant difference between temperate and trop-
ical regions in the mean scale of spatial autocorrelation (i.e., spatial range) is expected because the tropics are much 
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Figure 3.  Spatial autocorrelation of the multimodel mean temperature from 21 GCMs, averaged regionally 
over 10-year time windws. Spatial autocorrelation was quantified via the spatial range, which measures the 
geographical distance at which temperatures become decorrelated. (a) Changes in the spatial range for tropical 
geographical locations (23.5°S to 23.5°N). (b) Changes in the spatial range for temperate geographical locations 
(23.5°N to 66°N and 66°S to 23.5°S). Trend lines reflect linear model fits obtained via Generalized Least Squares 
and shaded regions represent 95% confidence bands. Solid lines indicate statistically significant trends, and 
separate line segments and colors are used to show the breakpoints in the time series.
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smaller in area than the temperate regions. There is clear evidence of nonlinearity in the spatial data analyzed, par-
ticularly in the spatial range of global temperature. Our exploration of the nonlinearities in the global trends via 
piecewise regression revealed the presence of a quasi-universal breakpoint around the year 2030 across climate mod-
els, after which the spatial autocorrelation of temperature increased significantly over time. This lends support for 
the existence of a “tipping point” in the effect of carbon emissions on the spatial structure of temperature, with time 
acting as a proxy22–27. Although the tipping point in the spatial range occurred around year 2030 in tropical regions, 
our analyses suggest that in temperate regions the threshold occurred during the 20th century, around the time that 
the historical effects of anthropogenic climate change became apparent28. Overall, this suggests that climate change 
may thus increase the spatial autocorrelation of temperature at an accelerating rate over the course of the 21st century.

Ecological impacts of environmental homogenization.  Under climate change, our results show that 
the spatial and temporal autocorrelation of temperature are expected to increase at a potentially accelerating pace 
over time. This will promote the homogenization of the world, with equator-like conditions spreading geograph-
ically to higher latitudes and leading to concomitant changes in the composition of ecological communities29–31. 
This is expected to lead to greater spatial and temporal homogeneity (i.e., due to increased spatial and temporal 
autocorrelation in temperature).

The ecological consequences of increased homogeneity in the environment have been documented in a 
number of studies. Increased spatial and temporal homogeneity in environmental variables has been linked to 
increased extinction risk in populations15,17,32. Increased temporal autocorrelation has been shown to promote 
extinction risk in red-shifted, slow growing species that do not exhibit overcompensatory density-dependence 
or high sensitivity to environmental stochasticity8,9. Indeed, under prolonged exposure to poor environmental 
conditions, these slow-growing and red-shifted species will see their numbers dwindle and will thus be unable to 
recover fast enough when conditions improve. Hence, increasing the extent of poor environmental conditions by 
increasing temporal autocorrelation will erode temporal refugia and prevent temporal rescue effects. Since most 
animal populations appear to be red-shifted33,34, extinction risk is likely to rise due to the increased temporal 
autocorrelation of temperature under climate change.

Additionally, greater spatial homogeneity in environmental variables such as temperature may disrupt spatial 
rescue effects by destroying the spatial heterogeneity needed in order for source-sink dynamics to occur16,35. Overall, 
the simultaneous erosion of temporal and spatial refugia under climate change has the potential to promote extinc-
tion risk. Mitigating the impacts of these trends in the spatiotemporal properties of temperature is thus critical in 
order ensure the persistence of complex and interconnected ecosystems in an increasingly homogeneous world.

Methods
Data acquisition and availability.  Daily surface (air) temperature (variable ‘tas’) between 1871 and 2099 
was extracted from 21 General Circulation Model (GCM) under the ‘business-as-usual’ representative concen-
tration pathway (RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP536; for list of General 
Circulation Models see Appendix). These 21 GCMs were selected because they included predictions of surface 
(air) temperature variable at daily temporal scales. All models were standardized to a common 1° × 1° spatial grid 
and a standard calendar that accounted for leap years. Temperature values above 60 °C were removed as outliers 
from individual models prior to conducting our analyses.

Quantifying temporal autocorrelation.  The temporal autocorrelation of daily temperature from each 
model was determined by calculating the spectral exponent. Daily temperature over the entire time period of the 
model was linearly interpolated at each geographical location to fill in the gaps for models with missing values 
due to leap years. The interpolated temperature values were then linearly detrended prior to analysis by extracting 
the residuals from a simple regression relating daily temperature to time at each geographical location over the 
entire time series. Spectral analysis was then conducted using periodograms computed via fast Fourier transforms 
in order to determine the variability (power) associated with each frequency in the interpolated and linearly 
detrended temperature time series37. The slope of the linear regression relating the log-transformed power to the 
log-transformed frequency was used to calculate the spectral exponent8,9,33. More negative values of the slope 
indicate greater temporal autocorrelation (i.e., greater “memory”), with most of the variation in the time series 
being driven by low frequencies.

To determine the robustness of our results to seasonal variability, we also performed spectral analysis on 
the seasonally detrended data. To do so, we computed the within-year temperature profile at each geographical 
location by averaging daily temperatures across the entire time series. We then subtracted the average within-year 
temperature profile from the daily temperatures at each corresponding geographical location to obtain the sea-
sonally detrended data10. Although there were some predictable quantitative differences between the spectral 
analysis results obtained from the seasonally detrended vs. linearly detrended data, which we discussed at length 
in the results section, the overall qualitative trends remained largely the same.

Quantifying spatial autocorrelation.  The spatial autocorrelation of temperature over each time period 
was determined using (semi)variograms to estimate the spatial range, which corresponds to the lag distance 
(measured in kilometers) at which the semivariance of temperature begins to plateau. By quantifying the geo-
graphical distance at which temperatures become uncorrelated, the spatial range can thus be used to represent 
the spatial scale of autocorrelation. The spatial range was estimated by fitting a Gaussian model to the empirical 
variogram38,39. We also computed the spatial range of temperature in the tropics (23.5°S to 23.5°N) vs. temperate 
regions (66°S to 23.5°S and 23.5°N to 66°N) and regressed them against time in order to determine whether there 
were any regional differences in the temporal trends of spatial autocorrelation.
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Quantifying spatial and temporal trends.  A Generalized Least Squares (GLS) analysis was used to 
regress the spectral exponent (temporal autocorrelation) and spatial range (spatial autocorrelation) against time 
for each of the 21 GCM models as well as the multimodel mean. GLS was used in order to account for heterosce-
dasticity and autocorrelation of residuals in the spatial and temporal temperature data. To assess model agree-
ment and robustness of trends, we calculated respectively the proportion of models that agreed on the direction of 
the trend and the proportion of models that both agreed on the direction of trend and were statistically significant 
(p-value < 0.05) as determined by the GLS fits2,40. We conducted the spatial and temporal analyses on daily tem-
perature in 10-year time windows between 1871 and 2099 for the global dataset. Each metric of autocorrelation, 
the spectral exponent or spatial range, was calculated for each time window, and GLS was used to regress the 
autocorrelation values for each time window against time. We also conducted an extensive sensitivity analysis 
to determine the robustness of all of our results to different time windows ranging in size from 5 to 10 years (see 
Tables 1–3).

Quantifying tipping points in spatial and temporal trends.  Breakpoint analysis was used to detect 
any tipping points or significant changes in the linear trends over time in both the temporal and spatial patterns 
of autocorrelation via piecewise regression41–44. This was done using the R package ‘strucchange’, which uses a 
non-parametric method to estimate the response function and its derivatives, and how that response function 
changes across the range of the explanatory variable (i.e., time in this case; 44). Function ‘breakpoints’ was used to 
determine breakpoints in spatial and temporal trends, which identifies the change point by fitting degree 1 splines 
(piecewise linear functions) with zero through five knot points (change or breakpoint linking the two piecewise 
functions) of unknown locations44. Results were robust to other non-parametric breakpoint analysis methods 
implemented in R packages ‘SiZer’ and ‘changepoint’45,46. Model selection using the small sample size corrected 
Akaike Information Criterion (AICC) was used to find the optimal number of breakpoints (ref.47; see Table S4).
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