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Structure Properties of Generalized 
Farey graphs based on Dynamical 
Systems for Networks
Wenchao Jiang1, Yinhu Zhai2, Paul Martin3 & Zhiming Zhao3

Farey graphs are simultaneously small-world, uniquely Hamiltonian, minimally 3-colorable, maximally 
outerplanar and perfect. Farey graphs are therefore famous in deterministic models for complex 
networks. By lacking of the most important characteristics of scale-free, Farey graphs are not a good 
model for networks associated with some empirical complex systems. We discuss here a category of 
graphs which are extension of the well-known Farey graphs. These new models are named generalized 
Farey graphs here. We focus on the analysis of the topological characteristics of the new models and 
deduce the complicated and graceful analytical results from the growth mechanism used in generalized 
Farey graphs. The conclusions show that the new models not only possess the properties of being 
small-world and highly clustered, but also possess the quality of being scale-free. We also find that 
it is precisely because of the exponential increase of nodes’ degrees in generalized Farey graphs as 
they grow that caused the new networks to have scale-free characteristics. In contrast, the linear 
incrementation of nodes’ degrees in Farey graphs can only cause an exponential degree distribution.

There are two types of common feature that exist in real-life complex networks: one is the scale-free distribution 
of degree, and the other is small-world behavior. To mimic the two main features existing in most real-life net-
works, researchers have proposed a wide variety of models. Random networks models, including the famous WS 
small-world models1 and BA scale-free networks2, stimulated an in-depth understanding of the various physical 
mechanisms in empirical complex networks from 1998 onwards. However, the uncertain creation mechanism 
and huge computation requirements for analysis are two main shortcomings of random models. Deterministic 
models can be designed that have the same important properties similar as random models, such as being 
scale-free, small-world and highly clustered, and thus can be used to imitate empirical networks appropriately. 
Hence the study of the deterministic models of complex networks has increased recently.

The first deterministic model is deduced by Comellas3; it presents the property of being small-world. Barabási 
confirms that the scale-free property can also emerge in deterministic networks, just as it emerges in random 
models4. Deterministic uniform recursive tree is a deterministic version of the random uniform recursive tree; 
Zhang studies the topological characteristics and spectral properties of the Laplacian matrix in it5. Moreover, 
inspired by the simple recursive operation, techniques of plane filling and generating processes of fractals, several 
deterministic models6–14 have been created and studied carefully.

Recently, the famous Farey sequence of irreducible fractions between 0 and 1 has been related to graph con-
structions known as Farey graphs15. The graphs have many interesting properties: they are minimally 3-colorable, 
uniquely Hamiltonian, maximally outerplanar and perfect15. Researchers show that Farey graphs are an appropri-
ate model for networks associated with some complex systems16–19.

We here propose another family of complex network based on Farey graphs, named generalized Farey graphs. 
We rigorously derive the main topological properties of generalized Farey graphs found in such graphs, including 
average degree, degree distribution, clustering coefficient, network diameter and average path length. We find 
that our generalized Farey graphs are different from Farey graphs in that they possess the new property of being 
scale-free. In other words, the new models are more suitable for depicting and revealing complexity and univer-
sality of complex network systems than standard Farey graphs.
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Definition, Order and Size of Generalized Farey Graphs
To ensure the integrity of the paper, we here duplicate the construction method and main properties of Farey 
graphs found in ref.15. Farey graphs are constructed in an iterative manner; let Ft be the Farey graph after ∈t N  
iterations.

Definition 1. Farey graph Ft, for ≥t 0, is constructed as follows:

For =t 0, F0 has two vertices and a single edge joining them together.

For ≥t 1, Ft is obtained from −Ft 1 by adding a new vertex adjacent to both the end vertices of every edge intro-
duced at step −t 1.

Remark 2. Figure 1 shows the case of a Farey graph after step =t 6. The number of vertices and edges of the graph 
Ft are +2 1t  and ++2 1t 1  respectively. The average degree is − +t4 (3/(2 1)); for large t, it is small and approxi-
mately equal to 4. The cumulative degree distribution follows an exponential distribution −~P k( ) 2cum

k
2 . The 

clustering coefficient is = 


− Φ + + 
+ +( )c F t t( ( )) 2 ln2 , 1, 1t

t
1

2 1
1
2

1
2

1
1t , where Φ denotes Lerch’s transcendent 

function; the clustering coefficient tends to ln2 for large value of t, thus the clustering coefficient of Ft is high. The 
diameter is =diam F t( )t , ≥t 1, and the average path length is µ = + − + + +

+
F t( ) (2 (5 ( 1) (6 17)2t

t t t1
9(2 1)t  

−t(6 5)4 ))t ; therefore the Farey graph is a small-world network.

Remark 3. The two hub vertices in Ft are marked with X and Y. By then comparing the two distances from itself to 
the two hub nodes, all the nodes in Ft can be divided into three parts: F t( )x , F t( )y  and F t( )xy . Each node in F t( )x  
has shorter distance from itself to X than to Y. F t( )x  in Fig. 1 is enclosed by the red dotted line. On the contrary, 
the nodes in F t( )y  have shorter distance to Y than to X, which are enclosed by the blue dotted line in Fig. 1. The 
remaining nodes are assigned to F t( )xy , in which the two distances are equal. From this point of view, 

∪ ∪=F t F t F t F t( ) ( ) ( ) ( )x xy y . It is worth pointing out that the number of nodes in F t( )x  and F t( )y  are equal for 
every Farey graph due to the symmetry of their construction.

Although several papers show that Farey graphs are a good model for networks associated with some complex 
systems16–19, but they have not the important characteristic of being scale-free. In this paper, we generalize the 
construction method of Farey graphs, to construct generalized Farey graphs, and we focus on analytic solutions to 
derive their topological properties. The construction of generalized Farey graphs is shown below.

Definition 4. The generalized Farey graph Gm t,  (where ∈m N) is constructed in an iterative way:

For =t 0, Gm ,0 is a triangle whose three vertices connect one another;

For ≥t 1, Gm t,  is obtained from −Gm t, 1 by adding for each edge created at step −t 1 an additional m new vertices, 
and attaching the m new nodes to both end vertices of that edge.

Remark 5. Figure 2 shows the first three steps of the construction of Gm t,  in the cases of =m 1 and 2. If m = 1, Gm t,  
degenerates into the union of three Farey graphs Ft

i (i = 1, 2 and 3), created by merging a different hub node from 
each Farey graph pair Ft

i and Ft
j(i ≠ j) to create three shared hub nodes for the generalized Farey graph (see 

Fig. 2a).
Next, we study the detailed structure of Gm t, , which is shown in Fig. 3.
Firstly, as shown in Fig. 3a, Gm t,  is divided into three sub-networks, denoted as Gm t

i
,

1/3, , =i 1, 2, 3. Every 
sub-network shares with each of the other sub-networks a common hub. As described in Remark 5, Gm t,  is exactly 

Figure 1.  Farey graph F6. The vertices, which are added to F6 at time from =t 0 to 6, are marked with different 
colors: black, red, green, blue, yellow, purple and cyan, respectively.
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Figure 2.  The first three steps of generalized Farey graphs Gm t, , when =m 1, 2 and =t 0, 1, 2, respectively.  
(a) The generalized Farey graphs G1,0, G1,1 and G1,2. (b) The generalized Farey graphs G2,0, G2,1 and G2,2.

Figure 3.  The detailed construction patterns in Gm t,  and Gm t
i

,
1/3, . (a) Gm t,  is the merging of three sub-networks: Gm t

i
,

1/3, , 
where =i 1, 2, 3. (b) Gm t

i
,

1/3,  is constructed by 2 m copies of −Gm t
i j

, 1
1/3, , , where =i 1, 2, 3 and = ...j m1, 2, , 2 .
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the combination of three equivalent sub-networks, created by merging six hubs into three nodes in a triangle 
arrangement. Just as for a Farey graph, each sub-network Gm t

i
,

1/3,  has two initial nodes, Xi and Yi, and all the nodes 
in it can be divided into three parts based on the distance from each node to the two hubs: Gm t

i x
,

1/3, , , Gm t
i xy

,
1/3, ,  and 

Gm t
i y

,
1/3, , .

Secondly, based on the construction pattern used to create Gm t, , we can infer that Gm t
i

,
1/3,  is also recursively con-

structed by m2  copies of −Gm t
i j

, 1
1/3, , , in which = ...j m1, 2, , 2 . This combination method is shown in Fig. 3b.

We now infer the number of vertices and edges in generalized Farey graphs Gm t, .
We first denote δ t( )v  and δ t( )e  as the number of new vertices and edges which are added to Gm t,  at step t. The 

number of vertices and edges in Gm t,  are therefore δ= ∑ =n i( )m t i
t

v, 0  and δ= ∑ =e i( )m t i
t

e, 0  respectively.
Using the construction method above, we deduce that, when >t 0:

δ δ= ×t t( ) 1
2

( ), (1)v e

δ δ= × − .t m t( ) 2 ( 1) (2)e e

Combined with the initial conditions δ =(0) 3v  and δ =(0) 3e , we prove that, when >t 0:

δ =t m( ) 3
2

(2 ) , (3)v
t

δ = × .t m( ) 3 (2 ) (4)e
t

We can then infer that:

=
× + −

−
n m m m

m
3 (2 ) 3 3

2 1
, (5)m t

t

,

=
× −

−
.e m m

m
6 (2 ) 3

2 1 (6)m t

t

,

Thus, the average degree < > =k m t
e

n,
2 m t

m t

,

,
 can be calculated as follows:

< > = −
+

× + −
.k m

m m m
4 4 6

(2 ) 1 (7)m t t,

For large values of t, the average degree is also small and approximately equal to 4, same as regular Farey 
graphs. We can also see that the proposed new models are sparse network. The reason for this is that the largest 
proportion of nodes in two graphs Ft and Gm t,  have only a degree of 2 (being newly added).

Relevant Characteristics of Generalized Farey Graphs
In the following section we concentrate on the degree distribution, clustering coefficient, network diameter and 
average path length of generalized Farey graphs. Thanks to the deterministic nature of Gm t, , we can give exact 
values for the relevant topological properties of this graph family for different values of t.

Degree distribution.  The degree distribution is one of the most important statistical characteristics of a 
network. By the definition, the degree of a node v is the number of edges incident from v. We denote the degree of 
a node v originally added to graph Gm t,  at iteration ≤ ≤t t t(0 )i i  by k t( )v i . Referring to the creation mechanism 
for generalized Farey graphs defined earlier, we deduce that:

=
−

−
.

−
k t m

m
( ) 2( 1)

1 (8)v i

t ti

Obviously, when m is larger than 1, any node’s degree increases exponentially. When m = 1, the degree is 
= − +k t t t( ) 2( 1)v i i , which is a linear increase15.

Furthermore, the degree spectrum of the network is discrete. By simplifying k t( )v i  as k, and from equation (8), 
we obtain:

= −




−
+



.t t

m
m k1

ln
ln 1

2
1

(9)i

The degree distribution P k( ) for a network gives the probability that a randomly selected vertex has exactly k 
edges. In the analysis of the degree distribution of real life networks, it is usual to consider their cumulative degree 
distribution, = ∑ =

∞P k P i( ) ( )cum i k . The probability that the degree of a vertex is greater than or equal to k corre-
sponds to the cumulative degree distribution. The earlier that the vertices are added to the network, the higher the 
degree they will have. Hence, the cumulative degree distribution is the sum of all vertices added to the graph from 
steps =t 0 to ti, such that δ= ∑ ≤P k i( ) ( )cum n i t v

1

m t i,
. It follows that:
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Substituting equation (9) for ti in this expression gives:
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From the principle in ref.2, when considering the relation between the cumulative degree distribution and the 
degree distribution as a histogram of the probability density, the size of histogram bins (i.e., the separation 
between adjacent k values) is proportional to k itself. Therefore, for the cumulative degree distribution, 

γ− +~P k k( )cum
1 means the degree distribution follows a power-law form γ−~P k k( ) 2. For equation 12, we obtain 

that γ−~P k k( )  with the exponent γ = +1 m
m

ln2
ln

, which belongs to the interval [2, 3]. When m increases from 2 
to infinity, γ decreases from 3 to 2. It should be stressed that the exponent of degree distribution of most real 
scale-free networks also lies in the same range between 2 and 32,3.

The scale-free characteristic emerges from generalized Farey graphs when m is larger than 1, and this prop-
erty is not found in Farey graphs in which m = 1. Clearly, the scale-free property originates from the exponential 
increase of nodes’ degrees in generalized Farey graphs, instead of the linear incrementation found in regular Farey 
graphs.

Clustering coefficient.  The clustering coefficient defines a measure of the level of cohesiveness around any 
given node. Supposing any node v has kv neighbor nodes, and there are ∆v edges among these neighbors; the 
maximum possible value of ∆v is then −k k( 1)/2v v . The clustering coefficient cv of node v is therefore twice the 
ratio between them:

=
∆

−
.c

k k
2

( 1) (13)v
v

v v

The clustering coefficient of the whole graph is the average of all clustering coefficients individual nodes. 
Therefore, we next compute the clustering coefficient of every node in a generalized Farey graph and their average 
value.

Suppose that a node v is added to the graph at iteration ti. From the definition of clustering coefficient, ∆v can 
also denote the number of triangles (connected triplets of nodes) added to the graph at iteration ti by the addition 
of this node. We then get the relationship:

∆ = + + ... + =
− −
−

.−
− +

m m m m
m

1 2 2 2 1
1 (14)v

t t
t t 1

i
i

Using the abbreviating =k k t( )v v i  and substituting equation (8) into (13), we obtain:
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1

This expression indicates that the local clustering scales is −~c kv v
1.

The clustering coefficient (Ct) of the whole network at arbitrary step t can then be easily computed:

= ∑ ×
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For large values of m, we get:
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The clustering coefficient Ct tends to − +

−
1 m

m
3 2
2 12  for large value of t. Therefore, for large value of t and m, the 

clustering coefficient approaches a constant value 1. We know that only the complete graph has a clustering coef-
ficient of 1. In contrast, the value for regular Farey graphs is ln215. Node degrees increase exponentially as gener-
alized Farey graphs grow, while the growth for regular Farey graphs is linear, which leads to generalized Farey 
graphs having higher clustering coefficients than Farey graphs. The basic motif in each growth step is the creation 
of new closed triplets of nodes, which causes high clustering coefficients both in generalized Farey graphs and 
Farey graphs.

Diameter.  The longest shortest path between all pairs of nodes is called the diameter. Diameter is one of the 
most important evaluation indexes because it characterizes the maximum communication delay in the network. 
Below we give the precise analytical computation of the diameter of Gm t,  denoted by Diam G( )m t, .

From Proposition 3.7 in ref.15, the diameter of a Farey graph Ft is =Diam F t( )t  when ≥t 1. That is to say, the 
distance from any vertex to an initial vertex, which is added to graphs at time =t 0, is less than or equal to t.

By examining the structured construction of Gm t,  in Fig. 3a, if the shortest distance between any two vertices 
goes through an initial vertex, the distance between any pair of vertices is less than or equal to 2t + 1,

= + .Diam G t( ) 2 1 (18)m t,

Because the network diameter is proportional to the logarithm of the network nodes, just liking Farey graphs, 
generalized Farey graphs are small world networks, as well.

Average path length.  One of the most important properties of complex networks is average path length. 
Average path length is the average value of the distances (the shortest path length) between every two nodes in the 
network, and it is much more difficult to calculate than connectivity. Most real networks have been shown to be 
small-world or ultra-small-world networks, that is, their average path length behaves as a logarithmic or double 
logarithmic scaling with the network size. Average path length is relevant in many fields regarding real-life net-
works, including the design of routes in architectural design, signal integrity in communication networks, the 
propagation of diseases or beliefs in social networks or of technology in industrial networks. Moreover, many 
processes such as routing, searching, and spreading become more efficient when average path length is smaller. 
So far, much attention has been paid to the question of average path length. But the calculation of the character-
istic path length in random networks is based on the renormalization group method or the mean field method, 
and there are no accurate and analytical expressions of average path length. For some deterministic models, there 
are some accurate solutions using various methods. Next, we find the exact analytical expression for the average 
distance µ G( )m t,  of generalized Farey graphs Gm t, .

The definition of average path length in Gm t,  is as follows:

µ =
−

G
D

n n
( )

2
( 1)

,
(19)

m t
m t

m t m t
,

,

, ,

where Dm t,  is total distance between all couples of nodes, i.e.

∑=
∈ ∈ ≠

D d ,
(20)

m t
i G j G i j

i j,
, ,

,
m t m t, ,

where di j,  is the shortest distance between node i and j in Gm t, .
The total distance Dm t,  in Gm t,  can be derived based on recursive characteristics of the network structure. The 

network has the following structure: Gm t,  is the merge of two sub-networks Gm t,
1/3,3 and Gm t,

2/3, where Gm t,
2/3 is the 

combination of two sub-networks Gm t,
1/3,1 and Gm t,

1/3,2. The three sub-networks Gm t
i

,
1/3,  (i = 1, 2, 3) are the same, so that 

we only need compute the total distance Dm t,
1/3 for any of the three sub-networks. The sub-networks have the same 

recursively increased structure. Moreover, just as for regular Farey graphs, all the nodes in these three 
sub-networks can be divided into three parts based on their distances to two hub nodes. With the help of the 
initial conditions Dm t,

1/3, we first deduce the total distance Dm ,1
1/3 in a sub-network. Then we derived the total distance 

Dm t,  in Gm t,  from the merger of three sub-networks. The detailed derivation process is shown in the Supplementaly 
information.

From the last equation (A19) in the Supplementaly information, we deduce that:

=
+ −

+ − + + − −

+ + − + + + − + +

+ − .

D
m m

m m m t m m m m
m m m m m m m m m m
m m

1
3( 1) (2 1)

{[(36 54 18 ) 72 81 54 63 ]
(4 ) (54 9 90 9 54 )(2 ) 18 18 36
36 18 18} (21)

m t

t t

, 2 3

5 4 2 5 4 3 2

2 5 4 3 2 5 4 3

2

By substituting it into equation (19), the averaged path length of generalized Farey graphs Gm t,  is calculated as 
follows:
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µ =
− + + − + − +

+ − + + − − +

+ − + + + − + + + − . (22)

G
m m m m m m m m m
m m m t m m m m m m

m m m m m m m m m m

( ) 2
3(2 1)( 1) [9 (2 ) (12 15 )(2 ) 3 9 6]

{[(36 54 18 ) 72 81 54 63 ](4 ) (54
9 90 9 54 )(2 ) 18 18 36 36 18 18}

m t t t

t

t

, 2 2 2 2 2

5 4 2 5 4 3 2 2 5

4 3 2 5 4 3 2

Given an infinite network size limit ( → ∞t ), this becomes:

µ ≈
+ −
+ −

≈ .G m m
m m

t n( ) 8 12 4
6 9 3

ln
(23)m t m t,

3 2

3 2 ,

Based on the above discussions, our model is a deterministic small-world network, because it is a sparse with 
exponential degree distribution, high clustering, short diameter and short average path length, which satisfy the 
four main necessary properties for small-world and scale-free networks.

Conclusion
The scale-free characteristic emerges from the generalized Farey graphs, and this property is not found in the 
Farey graphs, because generalized Farey graphs have similar but not identical evolutionary mechanisms in com-
parison with Farey graphs. The degree distribution in genialized Farey graphs follows a power-law form where the 
exponent belongs to the interval [2, 3], while degree distribution is exponential in Farey graphs. The difference of 
topological properties among them are rooted in their different growth mechanisms. In other words, scale-free 
originates from the exponential increase mechanism of nodes’ degrees in generalized Farey graphs, while expo-
nential degree distribution is caused by the linear incremental in Farey graphs.

The clustering coefficient tends to − +

−
1 m

m
3 2
2 12  for large value of t in genialized Farey graphs. Therefore, for 

large value of t and m, the clustering coefficient approaches a constant value 1. That value in Farey graph is ln2. 
Nodes’ degrees increase exponentially in generalized Farey graphs, while that growth in Farey graphs is linear, 
which leads to generalized Farey graphs having higher clustering coefficient than Farey graphs. The basic motif in 
each growth step is a triangle, which causes high clustering coefficients both in generalized Farey graphs and 
Farey graphs.

Average degrees are all small and approximately equal to 4 in generalized Farey graphs and Farey graphs. The 
proposed new models are sparse network as well. This is because the largest proportion of nodes in the two types 
of graphs only have a degree of 2.

We here also provided an appropriate example for a wide family of generalized Farey graphs, including the 
networks created by edge iterations20, or evolving networks with geographical attachment preference21, or the 
general geometric growth model for pseudo-fractal scale-free webs with parameters =q 2 and =m 122. It should 
be mentioned that the final expressions in this paper are the extension of networks in ref20–22, so the explicit cal-
culation presented here is a solution with more general usefulness.

The family of generalized Farey networks, being scale-free, with high clustering coefficients, small diameter 
and average path length, and small-world properties, successfully reproduces some remarkable characteristics in 
many natural and man-made networks and has special advantages in the research of some physical mechanisms 
such as random walks in complex networks. With the help of our results, the deterministic generalized Farey 
models will have unique virtues in contrast with more usually probabilistic approaches in understanding the 
underlying mechanisms between dynamical processes (random walks, consensus, stabilization, synchronization, 
etc.) applied to the structure of complex networks.
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