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Reconfigurable and tunable twisted 
light laser
Nan Zhou, Jun Liu & Jian Wang

Twisted light, having a helical spatial phase structure and carrying orbital angular momentum (OAM), 
has given rise to many developments ranging from optical manipulation to optical communications. 
The laser excitation of twisted light in a reconfigurable and tunable way is of great interest. Here, we 
propose and experimentally demonstrate an OAM reconfigurable and wavelength tunable twisted light 
laser with achievable high-order OAM modes on a hybrid free-space and fiber platform. The excited 
twisted light laser is enabled by a ring resonator incorporating spatial light modulators (SLMs) and 
bandpass filter (BPF). By appropriately switching the phase pattern loaded onto SLMs and adjusting 
the BPF, twisted light laser with reconfigurable OAM and tunable wavelength is implemented. In the 
experiment, the OAM value is varied from −10 to +10 and the wavelength is adjusted from 1530 to 
1565 nm covering the whole C band. The obtained results indicate successful implementation of a 
reconfigurable and tunable twisted light laser with favorable operation performance. Reconfigurable 
and tunable twisted light laser may open up new perspectives to more extensive OAM-enabled 
applications with improved flexibility and robustness.

In recent years, the space domain of lightwaves has gained great interest in diverse applications. Exploiting the 
spatial structure of lightwaves enables a new kind of light beam called structured light beyond the well-known 
Gaussian light beam. In general, structured light manifests distinct spatial amplitude/phase/polarization distri-
bution1–5. Among different kinds of structured light, a promising one is called twisted light, featuring a helical 
phasefront, a phase singularity, and a doughnut intensity profile. Since the early recognition in 1992 by Allen and 
co-workers that lightwaves comparising a helical phasefront exp(ilϕ) have an orbital angular momentum (OAM) 
of lħ per photon (l: topological charge, ϕ: azimuthal angle, ħ: reduced Plank’s constant)2, OAM-carrying twisted 
light has given rise to many developments in optical manipulation, tweezer, microscopy, imaging, metrology, 
astronomy and quantum information processing6–16. Very recently, twisted light has also seen its potential appli-
cations in free-space, fiber-based and underwater optical communications with increased transmission capacity 
and efficient spectral usage17–36.

Remarkably, for all of the above OAM-enabled extensive applications, the generation of OAM-carrying twisted 
light is of great importance. Various techniques for generating OAM-carrying twisted light beams have been pro-
posed and demonstrated over the past years6–8,18–20. In general, there are two kinds of techniques, i.e. external 
beam shaping and internal beam lasing. The external beam shaping technique usually transforms a Gaussian 
beam into an OAM-carrying twisted light beam, e.g. computer-generated hologram7,37, mode converte38, spiral 
phase plate39, inhomogeneous anisotropic media40, fiber41, metamaterials42–47 and photonic integrated devices48,49. 
These tehniques relying on external beam shaping, however, suffer from relatively low conversion efficiency, deg-
radation of beam quality, high power handling limitation, and added complexity with extra bulky mode con-
version devices. Alternatively, using internal beam lasing technique, OAM-carrying twisted light can be also 
generated inside a laser resonator (i.e. twisted light laser), which may overcome some drawbacks of external 
beam shaping technique. To date there have been lots of prior seminal works related to OAM-carrying twisted 
light laser and an increasing interest has been gained to control light’s helicty at the source (i.e. OAM states from 
lasers)50. For instance, (1) Laguerre-Gaussian (LG) modes were generated in Nd:YAG lasers51,52; (2) LG modes 
seletection was demonstrated in diode-pumped solid-state lasers53; (3) a doughnut laser beam was generated as an 
incoherent superposition of two petal beams54; (4) high-order mode excitation was demonstrated in end-pumped 
solid-state lasers55; (5) the controlled generation of higher-order Poincaré sphere beams was demonstrated from 
a laser56; (6) OAM microlaser was fabricated and demonstrated on the InGaAsP/InP platform57. These works 
showed impressive lasing performance. Beyond the basic realization of OAM-carrying twisted light laser, the 
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functionality and robustness are also worth taking full consideration. For a robust OAM-carrying twisted light 
laser, one would expect reconfigurable OAM and tunable wavelength. Fortunately, several approaches have been 
reported to add OAM reconfigurability or wavelength tunability to the twisted light laser. For example, (1) a 
digital laser for reconfigurable on-demand laser modes was demonstrated by using a phase-only spatial light 
modulator (SLM) as the back optical element of the cavity58; (2) a tunable midinfrared (6.0–12.5 μm) vortex 
laser was demonstrated by rotating the cascaded KTP crystals59. Wavelength-versatile optical vortex lasers were 
also reported60. In the demonstrated reconfigurable digital laser and wavelength-tunable optical vortex laser, 
free-space resonator cavities were employed. Very recently, all-fiber based resonator cavity was also employed 
for generating optical vortex beams61,62. However, the achievable OAM modes (e.g. OAM±1) were limited by 
the few-mode fiber. The generation of high-order OAM modes is full of challenge. Actually, the resonator cav-
ity can be also constructed by a hybrid configuration, i.e. the combined free-space and fiber resonator cavity. 
For instance, a low-noise stretched-pulse Yb3+-doped fiber laser was demonstrated using free-space resonator 
cavity incorporating a piece of Yb3+-doped fiber as the gain medium63. Using fiber as the gain medium to form 
free-space to fiber resonator cavities can add enhanced flexibility to the laser configuration, i.e. one can have 
more choices on either bulky gain medium or fiber-doped gain medium for the desired lasing wavelength range. 
For example, for the potential application of twisted light in optical communications, twisted light laser in the 
1.55 μm wavelength range is highly desired. In such case, a piece of erbium-doped fiber (EDF), commonly used 
in the communication band fiber laser, is preferred. Meanwhile, the all-fiber approach has great limitation in the 
achievable OAM modes. Hence, a possible approach could be to incorporate the EDF inside a free-space reso-
nator cavity. The EDF serves as the gain medium for lasing in the 1.55 μm wavelength range, and the free-space 
resonator cavity allows more achievable OAM modes (high-order OAM modes). Remarkably, although most of 
the previously demonstrated twisted light lasers on various platforms (free space, fiber, chip) with favorable per-
formance might achieve either high-order modes, or mode reconfigurability, or wavelength tunability, simultane-
ous implementation of all of these functions is still challengeable. To meet the increasing demand on a diverse of 
OAM-enabled applications with variable OAM values and wavelengths, robust twisted light laser with achievable 
high-order OAM modes, OAM reconfigurability and wavelength tunability is highly desired. In this scenario, a 
laudable goal would be to develop an OAM reconfigurable and wavelength tunable twisted light laser.

In this article, we propose and demonstrate a twisted light laser with achievable high-order OAM modes, 
OAM reconfigurability and wavelength tunability. The ring resonator of the twisted light laser is built upon a 
hybrid free-space and fiber platform. SLMs and a bandpass filter (BPF) are inserted into the laser resonator. 
Twisted light laser with reconfigurable OAM value from −10 to 10 and tunable wavelength from 1530 to 1565 nm 
(C band) is demonstrated in the experiment.

Results
Concept and principle.  In general, a Fabry-Perot (FP) cavity formed by two mirrors is employed to con-
struct a laser64–66. For a laser with cavity that is cylindrically symmetric, the lasing beam profile is also circularly 
symmetric often best solved using the Laguerre-Gaussian (LG) modal decomposition. The lasing beam functions 
can be written in cylindrical coordinates using generalized Laguerre polynomials. Taking the OAM-carrying LG 
beam laser as an example, the electrical field of a typical LG beam at a distance z from the waist in the paraxial 
approximation can be expressed as7
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where w(z) = w0[(z2 + zR
2)/zR

2]1/2 is the 1/e radius of the LG beam at distance z from the beam waist w0, ρ is the 
radial distance from the beam center, ϕ is the azimuthal angle, l is the topological charge, zR is the Rayleigh range, 
Lp

|l| is the generalized Laguerre polynomial, k = 2π/λ is the wavenumber, λ is the wavelength, and (2p + |l| + 1)
tan−1(z/zR) is the Gouy phase. Remarkably, LG0,+l with right-handed helical phase trajectory and LG0,−l with 
left-handed phase trajectory have the same spatial intensity distribution according to Eq. (1). Taking the typical 
FP cavity laser as an example, the scalar instantaneous electric field for LG0,+l and LG0,−l propagating in the for-
ward direction can be written by

ω ϕ= − ± E u r kz t( )cos( ) (2)f

where w is the angular frequency and u(r) is a complex function denoting the amplitude of the electric field. After 
the reflection by a cavity mirror, the scalar instantaneous electric field for LG0,+l and LG0,−l propagating in the 
backward direction can be expressed as

ω ϕ= − − ∓ �E u r kz t( )cos( ) (3)b

The superposition of forward and backward propagating electric fields gives the standing-wave electric field 
distribution for LG0,+l and LG0,−l as follows

ω ϕ= ±± 



E u r t kz2 ( )cos( )cos( ) (4)

As a result, the instantaneous standing-wave intensity distribution is expressed as
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ω ϕ= ±± 



I u r t kz4 ( ) cos ( )cos ( ) (5)2 2 2

From Eq. (5), one can clearly see that in a traditional LG beam laser with two mirrors forming an FP cavity, 
LG0,+l and LG0,−l beams have 2|l|-lobed transverse intensity distribution and always exist simultaneously. Note 
that although the forward and backward propagating electric fields overalp at a plane inside the cavity, the actual 
output even from a FP cavity is only the traveling wave. In particular, for a unidirectional ring resonator configu-
ration, the electric field for LG0,+l and LG0,−l propagating in the ring resonator can be expressed as

ω ϕ= − ±± 



E u r ikz i t i( )exp( ) (6)

The superposition of LG0,+l and LG0,−l (zero radial order and azimuthal order l) with different intermodal 
phase shift can be written by54

ω ϕ ϕ= + = − − +− +  

 
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Eqs (7) and (8) give even and odd petal modes with 2|l|-lobed transverse intensity distributions expressed as

ϕ= I u r4 ( ) cos ( ) (9)even
2 2

ϕ= I u r4 ( ) sin ( ) (10)odd
2 2

From Eqs (6–10), one can understand the laser principle in another way. The phase only azimuthal terms are 
not real-valued functions. It is the even and odd petal modes that are the real solutions to the wave equation.

In order to realize either LG0,+l or LG0,−l lasing, one may break the degeneracy of a standard laser cavity. One 
possible way is to insert an extra carefully designed mode-selection element (MSE) into the cavity64,66. Using 
pump control to produce desired modes or developing micro-chip laser could avoid the use of MSE inside the 
cavity51,52,57. Alternatively, a unidirectional ring resonator configuration with determined OAM value assisted 
by intra-cavity SLMs could be considered to overcome the shortcoming of the traditional FP cavity based laser.

The concept and schematic structure of the proposed reconfigurable and tunable twisted light laser is illus-
trated in Fig. 1. The gain medium of erbium-doped fiber (EDF) pumped with a 980 nm laser enables the lasing 
wavelength in the C band. For a ring resonator both clockwise (CW) and counterclockwise (CCW) propaga-
tion beams are supported. To ensure the unidirectional lasing, an isolator (ISO) is inserted into the ring res-
onator. To avoid simultaneous lasing of two OAM modes with opposite topological charges, a free-space 
Gaussian-OAM-Gaussian conversion module is inserted into the ring resonator. Hence, the twisted light laser 
shown in Fig. 1 is based on the hybrid free-space and fiber platform. The fiber part using fiber pigtailed compo-
nents constructs the main ring resonator and provides the gain. The free-space part determines the desired OAM 
value of the twisted light for lasing. The Gaussian-OAM-Gaussian conversion module includes Gaussian-to-OAM 
conversion, OAM-to-Gaussian back conversion, and OAM output, as depicted in the inset of Fig. 1. Remarkably, 
the Gaussian-to-OAM conversion is enabled by an SLM loaded with a spiral phase pattern, simply expressed as

Figure 1.  Concept and principle of the reconfigurable and tunable twisted light laser. It is a ring resonator 
configuration based on hybrid free-space and fiber platform. The gain medium of erbium doped fiber (EDF) 
pumped by a 980 nm laser enables lasing wavelength in the C band. An isolator (ISO) ensures unidirectional 
lasing. A Gaussian-OAM-Gaussian conversion module, including Gaussian-to-OAM and OAM-to-Gaussian by 
spatial light modulators (SLMs) and OAM output, supports determined reconfigurable OAM-carrying twisted 
light lasing. A tunable bandpass filter (BPF) enables wavelength tunable lasing.
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φ ϕ ϕ= r i( , ) exp( ) (11)

The spiral phase pattern converts the planar phasefront of a Gaussian beam from fiber to the helical phase-
front of an OAM-carrying twisted light beam. A part of the twisted light serves as the OAM output. The 
OAM-to-Gaussian back conversion is realized by another SLM loaded with an inverse spiral phase pattern writ-
ten by

φ ϕ ϕ= − r i( , ) exp( ) (12)

The inverse spiral phase pattern removes the helical phasefront of the OAM-carrying twisted light beam and 
back convert it to a Gaussian-like beam, which is further fed into the fiber. The key components are SLMs sup-
porting determined reconfigurable OAM-carrying twisted light lasing. The OAM conversion from Gaussian 
beam and back conversion to Gaussian-like beam ensure the seamless connection between the fiber part and 
free-space part on the hybrid free-space and fiber platform. To realize the wavelength tunable lasing, a tuna-
ble bandpass filter (BPF) is inserted into the ring resonator. As a consequence, by properly switching the phase 
patterns loaded onto SLMs to determine the desired OAM value and adjusting the BPF to change the lasing 
wavelength, an OAM reconfigurable and wavelength tunable twisted light laser can be implemented using the 
modified ring resonator configuration shown in Fig. 1 based on the hybrid free-space and fiber platform.

Experimental Configuration.  Figure 2 shows the experimental configuration of the reconfigurable and 
tunable twisted light laser. It has a ring resonator incorporating an EDF as the gain medium pumped by a 980 nm 
laser, an ISO for unidirectional lasing, a Gaussian-OAM-Gaussian conversion module for determined OAM 
reconfigurable operation and OAM output, and a tunable BPF for wavelength tunable operation. The 980 nm 
pump laser is fed into the ring resonator via a coupler. The gain medium of EDF supports lasing in the 1.55 μm 
band (C band). A polarization controlled (PC) is used to adjust the polarization to be aligned to the polarizer 
(Pol.) for optimized efficiency. An ISO ensures only CCW propagation inside the ring resonator. After a collima-
tor (Col.), the collimated fiber output Gaussian beam passes through a Pol. and a half-wave plate (HWP1) before 
shining on the SLM1. Pol. ensures a pure linear polarization. HWP1 adjusts the polarization to be aligned to the 
working direction of the SLM for efficient generation of OAM beam. SLM1 is loaded with a spiral phase pattern 
for converting incident Gaussian beam to an OAM beam (Gaussian-to-OAM conversion). After SLM1, another 
HWP2 and a polarization beam splitter (PBS) are used to properly control the output power of the twisted light 
laser. The reflection port of PBS delivers the OAM output. The transmitted twisted light laser via the through 
port of PBS is sent to another SLM2 for OAM-to-Gaussian conversion. SLM2 loaded with another phase pattern 
converts the OAM beam back to a Gaussian-like beam, which is coupled back to the fiber. The followed tunable 
BPF enables the changeable lasing wavelength. The output of BPF is connected to the coupler together with the 
980 nm pump laser for constructing the ring resonator. The intensity profile of the output OAM-carrying twisted 
light laser is observed by a camera not shown in Fig. 2. The OAM values of twisted light can be determined by its 
interferogram (interference with a reference Gaussian beam) or back conversion to a Gaussian-like beam by a 
third SLM3 loaded with the detection phase pattern. An optical spectrum analyzer (OSA) is used to observe the 
spectra. With proper update of phase patterns loaded onto SLMs and adjustment of BPF, OAM reconfigurable 
and wavelength tunable twisted light laser is achievable.

Results
In order to realize OAM reconfigurable twisted light laser (OAM value: −10 to 10) in the following experiment, 
we prepare corresponding spiral phase patterns to be switchably loaded onto the SLMs, which are shown in 
Fig. 3. We also simulate the generation of different OAM modes during the Gaussian-to-OAM conversion pro-
cess shown in the inset of Fig. 1. Figure 4 shows the simulated intensity and interferogram of different OAM 
modes. One can see the generated OAM beams appear to be hypergemetric (with many rings). This might be 
explained with the fact that directly adding a spiral phasefront to a Gaussian beam gives an OAM beam but not 

Figure 2.  Experimental configuration of reconfigurable and tunable twisted light laser. EDF:erbium-doped 
fiber; PC: polarization controller; ISO: isolator; Col: collimator; Pol.: polarizer; HWP: half-wave plate; SLM: 
spatial light modulator; PBS: polarization beam splitter; BPF: bandpass filter; OSA: optical spectrum analyzer.
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a perfect OAM-carrying LG mode (zero radial order and azimuthal order l). Nevertheless, such OAM beams 
using straightforward and easy generation method and having all typical properties of OAM, are also widely used 
in different applications6–9,17–20,22. The interferograms (number of twists and twist direction) confirm the helical 
phase structures (OAM properties) of OAM beams.

In the experimental configuration shown in Fig. 2, the combined use of HWP2 and PBS facilitates flexible 
output power adjustment by properly changing the relative angle between HWP2 and PBS. In the experiment, we 
first adjust the HWP2 to get the lowest output power and record its position as the start angle of 0 degree between 

Figure 3.  Spiral phase patterns loaded onto SLMs.

Figure 4.  Simulated intensity and interferogram of different OAM modes. (a) OAM+1 mode. (b) OAM−1 mode. 
(c) OAM+3 mode. (d) OAM−10 mode.
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the HWP2 and the through port polarization direction of PBS. Figure 5(a) shows measured output power for 
OAM+1 and OAM−5 as a function of the relative angle between the HWP2 and the through port polarization 
direction of PBS. With the increase of the relative angle, the output power increases first and then decreases. Note 
that when HWP2 rotates by α degree, the output light rotates by 2α degree compared to the incident light. Hence, 
one can clearly see the periodical behavior in Fig. 5(a) with a period of 90 degree. In particular, it is expected to 
achieve the maximum output power under a relatively angle of 45 degree when the HWP2 outputs light polari-
zation aligned to the reflection port polarization direction of PBS. However, such maximum output power is not 
observed in Fig. 5(a), but a drop of output power is obtained instead. Such interesting phenomena can be briefly 
explained as follows. When adjusting the HWP2 and increasing the output power, the loss introduced in the ring 
resonator also increases. The maximum output power corresponds to the minimum power left in the ring reso-
nator, leading to the failure of lasing. The shadow regions in Fig. 5(a) correspond to the amplified spontaneous 
emission (ASE) noise output, which should be avoided for the twisted light laser. To verify the laser output and 
ASE noise output, we measure the typical spectra outside and within the shadow regions, as shown in Fig. 5(b,c) 
for OAM+1 and Fig. 5(d,e) for OAM−5. One can clearly see the narrow lasing spectra in Fig. 5(b,d) and broad ASE 
noise spectra (limited by the filtering shape of BPF) in Fig. 5(c,e).

We first demonstrate OAM reconfigurable twisted light laser. As shown in Fig. 6(a), the OAM value is varied 
from −10 to 10 simply by switching the order of spiral phase patten loaded onto SLMs. The lasing wavelength is 
1550 nm. The typical enlarged spectra for OAM+3 and OAM−10 are depicted in Fig. 6(b,c), respectively. To con-
firm the successful lasing output of twisted light, we observe the intensity profiles and interferograms of twisted 
light by a camera, as shown in Fig. 6(d,e). The intensity profiles of OAM beams have doughnut shape with null 
intensity at the beam center due to phase singularity. The radius of the doughnut shape also increases with the 

Figure 5.  Measured results for flexible output power adjustment and typical lasing and ASE noise spectra. (a) 
Output power of twisted light laser versus relative angle between the HWP2 and the through port polarization 
direction of PBS in Fig. 2. Shadow regions: failure of lasing (ASE noise output). (b) Lasing spectrum for OAM+1. 
(c) ASE noise spectrum for OAM+1. (d) Lasing spectrum for OAM−5. (e) ASE noise spectrum for OAM−5. (b, d) 
Outside shadow regions in (a). (c,e) Within shadow regions in (a).

Figure 6.  Measured results for OAM reconfigurable twisted light laser. (a) Measured spectra for twisted light 
laser with variable OAM values from −10 to 10. The lasing wavelength is 1550 nm. (b, c) Enlarged spectra for 
OAM+3 and OAM−10. (d,e) Measured intensity profiles and interferograms for OAM+3 and OAM−10. (b,d) 
OAM+3. (c,e) OAM−10.



www.nature.com/scientificreports/

7ScIENtIfIc Reports |  (2018) 8:11394  | DOI:10.1038/s41598-018-29868-8

order of OAM beam. One can also observe hypergeometric intensity profiles (multiple rings), which agree with 
the simulation results shown in Fig. 4. In the interferograms, the numer of twists and the twist direction indicate 
the magnitude of sign of OAM, respectively. From Fig. 6(d,e) one can confirm the successful output of OAM+3 
and OAM−10 carrying twisted light laser.

We then demonstrate wavelength tunable twisted light laser. As shown in Fig. 7(a), the lasing wavelength is 
changed from 1530 to 1565 nm simply by adjusting the tunable BPF in the ring resonator. The twisted light laser 
is OAM+1. The typical enlarged spectra for 1550 nm and 1565 nm are depicted in Fig. 7(b,c), respectively. The 
recorded intensity profiles and interferograms of twisted light OAM+1 at 1550 nm and 1565 nm are shown in 
Fig. 7(d,e), respectively.

We further study the threshold of the twisted light laser. Figure 8 plots measured output power of twisted light 
laser as a function of the pump power for OAM+1 and OAM−5. It is shown that the twisted light laser has a lasing 
threshold of ~180 mW.

The obtained results shown in Figs 4–8 indiciate the successful implementation of OAM reconfigurable and 
wavelength tunable twisted light laser with favorable operation performance.

Discussion
In summary, we design and demonstrate a reconfigurable and tunable OAM-carrying twisted light laser on a 
hybrid free-space and fiber platform. Instead of using traditional FP cavity, a ring resonator structure is employed. 
It consists of an EDF serving as the gain medium, a 980 nm pump laser, an ISO ensuring unidirectional lasing, a 
Gaussian-OAM-Gaussian conversion module supporting determined OAM reconfigurable operation and OAM 
output, and a tunable BPF enabling wavelength tunable operation. We study in detail the flexible output power 
adjustment, OAM reconfigurable twisted light laser, wavelength tunable twisted light laser, and the lasing thresh-
old. In the experiment, twisted light laser with reconfigurable OAM from −10 to 10 and tunable wavelength from 
1530 to 1565 nm covering the C band is demonstrated. The lasing threshold is measured to be ~180 mW (980 nm 
pump power).

Figure 7.  Measured results for wavelength tunable twisted light laser. (a) Measured spectra for twisted light 
laser with tunable wavelength from 1530 to 1565 nm. The twisted light laser is OAM+1. (b,c) Enlarged spectra 
for 1550 and 1565 nm. (d,e) Measured intensity profiles and interferograms for 1550 and 1565 nm. (b,d) 
1550 nm. (c,e) 1565 nm.

Figure 8.  Measured output power of twisted light laser versus pump power for OAM+1 and OAM−5.
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The demonstrated reconfigurable and tunable twisted light laser features two distinct features as follows.

	(1)	 The hybrid free-space and fiber platform provides added flexibility to construct the laser configuration, 
offering more choices on either bulky or fiber-doped gain medium for the desired lasing wavelength range.

	(2)	 Simultaneous high-order OAM modes, OAM reconfigurability and wavelength tunability are realized by 
incorporating SLMs and BPF inside the ring cavity, which are challengeable in previous demonstrations.

Because of the above two advantages, the presented twisted light laser shows successful lasing of high-order 
OAM modes, reconfigurable OAM (−10 to 10) and tunable wavelength (1530 to 1565 nm) in the optical commu-
nication band (C band), which has not yet been demonstrated before.

Remarkably, the demonstrated twisted light laser also has several aspects worth improving.

	(1)	 The generated OAM beams appear to be hypergeometric with multiple rings as shown in both simula-
tions and experiments. Although the OAM properties are still preserved and already widely used in many 
applications, one would expect to obtain perfect OAM modes such as LG modes. Fortunately, LG mode 
generation using SLMs has already been demonstrated67–69, which might be used for future performance 
improvement of the mode quality.

	(2)	 The constructed ring cavity resonator could lead to longitudinal modes instability for many cases (e.g. me-
chanical vibrations, thermal influences), which might become a potential cause for performance degrada-
tion of the twisted light laser. To overcome the longitudinal modes instability, several approaches have been 
proposed in the past decade. Recently, the combination of self-injection locking and stimulated thermal 
Rayleigh scattering was reported to enable longitudinal modes stability70,71, which might be used for future 
performance improvement of the mode stability.

In addition to the demonstrated continuous wave twisted light laser, other types of lasers such as 
single-longitudinal-mode twisted light laser and mode-locked fs pulsed twisted light laser could be considered 
with future improvement.

The demonstrations, indicating successful realization of reconfigurable and tunable twisted light laser, may 
further find a diverse of applications relying on flexible and robust generation of OAM-carrying twisted light 
beams. The hybrid free-space and fiber platform forming a laser resonator cavity with enhanced flexibility might 
be further developed to enable more general structured light laser.
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