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Dual mode OPV-OLED device with 
photovoltaic and light-emitting 
functionalities
Takayuki Chiba, Daichi Kumagai, Kazuo Udagawa, Yuichiro Watanabe & Junji Kido

The rapid development of organic optoelectronic devices such as organic photovoltaics (OPVs) and 
organic light-emitting devices (OLEDs) is largely attributable to their advantageous properties of 
their large area, ultrathin thickness, flexiblility, transparency, and solution processability. Herein, we 
fabricate and characterize a dual mode OPV-OLED device with three-terminal structure comprising a 
polymer-based bulk-heterojunction inverted OPV unit and a top-emission white phosphorescent OLED 
unit back-to-back connected via intermediate metal alloy electrode. Sputter-deposited indium tin oxide 
was used as a transparent cathode of the inverted OPV unit, whereas Ag-doped Al served as a common 
OPV/OLED anode, allowing the decoupling of electricity generation and light mission functions. 
Notably, the doping of Al by Ag facilitated the reduction of surface roughness, allowing the above 
electrode to be used as a common anode and dramatically reducing the leakage current. Finally, the 
top-emission OLED unit featured an ultrathin layer of Ag-doped Mg as a semitransparent cathode. Thus, 
successful integration of the OPV-OLED elements results in the decoupling of electricity generation and 
light emission functionalities, achieving a power conversion efficiency of 3.4% and an external quantum 
efficiency of 9.9%.

Organic optoelectronic devices such as organic photovoltaics (OPVs)1–3 and organic light-emitting devices 
(OLEDs)4–6 have attracted considerable attention due to exhibiting the advantages of large area, ultrathin, flexibil-
ity, transparency, and solution processability. Specifically, the active layer of bulk-heterojunction OPVs typically 
consisted of electron-donor (p-type) and electron-acceptor (n-type) semiconductors7,8, with polymer-based sin-
gle bulk-heterojunction OPVs achieving power conversion efficiencies (PCEs) of up to 12%9–14. Tandem OPVs, 
i.e., those with multi-junction structures, have been demonstrated to effectively capture solar light, converting a 
rarely utilized part of the solar spectrum with the help of complementally-absorption polymers and thus exhib-
iting reduced energy loss15–19. Therefore, semitransparent ultrathin Ag layer, metal oxides, conductive polymers 
were used as the intermediate layer of tandem OPVs. Similarly, the development of OLEDs has been fueled by 
their potential used in energy-saving flat light sources and display applications. Recently, the design of novel mate-
rials and device structures has allowed the external quantum efficiencies (EQEs) of OLEDs to exceed 30%20–24.  
In tandem OLEDs, developed to simultaneously achieve high efficiency and long operational lifetime, multiple 
light-emitting units are connected in series via a charge generation layer (CGL)25–28. Additionally, top-emission 
OLEDs, in which the conventional reflective metal electrode is replaced by a semitransparent ultrathin one, are 
widely used to improve the aperture ratio of OLED displays29–31.

Recently, the integration of OPVs and OLEDs in a series-connected directory has led to development of new 
functional devices, e.g., those used for light upconversion and infrared sensing device32–35. In such devices, the 
OPV unit acts as a CGL under light irradiation, with the photogenerated carriers being subsequently injected 
into the OLED unit. Light upconversion devices convert near-infrared radiation into visible light, thus being of 
high importance for h night vision applications33. On the other hand, the use of semitransparent metal electrodes 
for OPV–OLED integration was reported to result in high-color-purity of electroluminescence (EL)36,37, with the 
OPV unit comprising a mixture of zinc phthalocyanine (ZnPc) and fullerene (C60), whereas the OLED emissive 
layer contained tris(8-hydroxyquinoline)aluminum (Alq3) and 10-(2-benzo-thiazolyl)-1,1,7,7-tetramethyl-2,3,6,
7-tetrahydro-1H,5H,11H-[l]1benzopyrano[6,7,8-ij]-quinolizin-11-one (C545T). The peak EL wavelength of the 
Alq3:C545T–based OLED unit was obtained as 530 nm, whereas the transparency of the ZnPc:C60–based OPV 
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unit was less than 70% at 530 nm, which implies that OLED-emitted light unit was able to pass through the OPV 
unit with a small absorption loss. However, in this integrated device, light incident into the OPV was required 
to be oriented in the same direction as that emitted by the OLED. Therefore, the development of a dual mode 
OPV-OLED device is required to decouple the above directions without absorption loss.

In addition, the dual mode OPV-OLED device enables simultaneously photovoltaic and light-emitting char-
acteristics in one device. These novel features of dual mode device can be applied to the “smart window blinds”. In 
general, window blinds block out the sunlight, whereas smart window blinds by dual mode OPV-OLED device 
harness the potential sunlight as a solar power during the day. Moreover, dual mode OPV-OLED device can be 
used for the lighting application at night.

Herein, to decoupled electricity generation and light emission function, we fabricated a dual mode OPV-OLED 
device with three terminal structure (active are = 1 cm2) featuring a polymer-based bulk-heterojunction inverted 
OPV unit and a top-emission white phosphorescent OLED unit back-to-back connected via an intermediate 
metal alloy electrode Sputter-deposited indium tin oxide (ITO) with relatively high transmittance (up to 90%) 
was used as the transparent cathode of the inverted OPV unit. The intermediate connecting electrode comprising 
Ag-doped Al and played a key role in realizing the individual operation of OPV and OLED units, with its smooth 
surface38,39 resulting in an acceptably small device leakage current. Ultrathin Ag-doped Mg was used as a semi-
transparent cathode for the top-emission OLED unit, and the fabricated dual mode device exhibited a PCE of 
3.4% and an EQE of 9.9%.

Results and Discussions
To realize the abovementioned dual mode device, we employed a three-terminal structure, namely ITO trans-
parent cathode/inverted OPV/Ag-doped Al intermediate connecting anode/top-emission OLED/Ag-doped Mg 
semitransparent cathode, as shown in Fig. 1. The active area of fabricated device equaled 1 cm2, being fairly large 
compared to the conventional laboratory-scale value of 0.04 cm2. Thus, the OPV unit was irradiated by solar light 
from the transparent ITO–coated glass side, whereas OLED–emitted light passed through the semitransparent 
ultrathin Ag-doped Mg cathode. We prepared the various deposition masks with active area of 1 cm2 such as 
sputter-deposited ITO mask, intermediate electrode mask, OLED mask, and transparent top electrode mask, as 
shown in Fig. S1.

The polymer-based bulk-heterojunction inverted OPV unit of the dual mode device utilized p-type 
poly[(4,8-bis-(2-ethylhexyloxy)-benzo(1,2-b:4,5-b′)dithiophene)-2,6-diyl-alt-(4-(2-ethylhexyl)-
3-fluorothieno[3,4-b]-thiophene-)-2-carboxylate-2–6-diyl]] (PTB7) and n-type [6,6]-phenyl-C71-butyric acid 
methyl ester (PC71BM) as an active layer materials. ZnO nanoparticles were used as an electron-collecting 
layer, and MoO3 was used as a hole-collecting layer. The inverted OPV unit had the following configuration: 
sputter-deposited ITO (130 nm)/ZnO (30 nm)/PTB7:PC71BM (100 nm)/MoO3 (8 nm)/Ag (30 nm), with the cor-
responding energy diagrams shown in Fig. S2. To prepare sputter-deposited ITO with an active area of 1 cm2 
and simultaneously achieve high transmittance and low sheet resistance, we investigated the effect of annealing 
during ITO deposition. Thus, ITO sputter-deposited without annealing showed a high sheet resistance of 56 Ω 
square−1 at a thickness of 130 nm, whereas deposition accompanied by annealing at 200 °C resulted in decreased 
resistance (28 Ω square−1 at thickness of 130 nm). The transmittance (450–620 nm) of sputter-deposited ITO film 

Figure 1.  Structures of the dual mode OPV-OLED and its chemical constituents.
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annealed at 200 °C exceeded 90%, being almost identical to the value obtained for the ITO film sputter-deposited 
without annealing (Fig. S3). However, both annealed and non-annealed ITO films showed low transmittance 
in the range of 300–400 nm. The obtained root-mean-square (Ra) and maximum (Rmax) heights of annealed 
and non-annealed ITO films revealed that the latter (Ra = 0.68 nm, Rmax = 8.28 nm) was rougher than former 
(Ra = 0.33 nm, Rmax = 6.71 nm) (Fig. S4). ZnO nanoparticles dispersed in 2-ethoxyethanol were spin-coated onto 
the sputter deposited ITO film, being subsequently overcoated by PTB7:PC71BM (2:3 w/w, solution in chloroben-
zene:1,8-diiodooctane = 97:3 v/v), which showed broadband absorption at 300–750 nm (Fig. S5).

The intermediate electrode was utilized for charge collection from the OPV unit and charge injection into 
the OLED unit, with its smooth surface being of high importance. Ag films are commonly used as inverted OPV 
anodes due to featuring appropriate energy level alignment. However, the Ag film employed herein showed a 
high surface roughness (Ra = 1.84 nm, and Rmax = 18.3 nm) (Fig. 2a)), which resulted in increased leakage current 
when OLED unit was directly fabricated onto high roughness Ag film. To reduce surface roughness, we fabricated 
an Ag-doped Al alloy electrode by co-evaporation of Ag and Al. Figure 2b–d show atomic force microscopy 
(AFM) images of Ag-doped (Ag contents of 0, 30, and 60 wt%, respectively) Al films onto Ag film. The surface 
roughness of the Ag-doped Al film with a thickness of 70 nm decreased from 2.71 to 1.16 nm (Ra) and from 36.4 
to 10.7 nm (Rmax) as the Ag content increased from 0 to 60 wt%, reflecting the fact that co-evaporation prevented 
the aggregation of homogeneous metal clusters and hence reduced the device leakage current and optical loss 
of the device38. In addition, relatively small Ra and Rmax values (2.13 and 21.2 nm, respectively) were observed 
even when Ag-doped Al was deposited over the whole inverted OPV unit (Fig. S6). Figure 3a shows the current 
density–voltage curves for the OPV in the dual mode device and for a single inverted OPV under typical air mass 
1.5 global irradiation (AM1.5 G, 100 mW cm−2). The dual mode OPV-OLED featured PCE = 3.31%, short-circuit 
current (Jsc) = 13.2 mA cm−2, open-circuit voltage (Voc) = 0.73 V, and fill factor (FF) = 33%, with the observed 
efficiency thus being almost identical to that of the single inverted OPV (PCE = 3.36%, FF = 35%). This result 
suggested that the OPV unit of dual mode device could be effectively operated as an electricity generation source 
similarly to a conventional single OPV. Figure 3b shows the external quantum efficiency (EQE) curves the above 
OPVs, revealing their close similarity. Notably, a low EQE was observed at 300–450 nm, which was attributed to 
the low transmittance of sputter-deposited ITO film in this short-wavelength range. The characteristics of the 
utilized OPVs are summarized in Table 1.

The top-emission white OLED unit was fabricated onto the 60 wt% Ag-doped Al intermediate connecting 
anode using a blue phosphorescent emitter, bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) 
(FIrpic), and an orange phosphorescent emitter, iridium(III) bis-(2-phenylquinoly-N,C2′)dipivaloylmethane 
(PQ2Ir(dpm)). Two host materials were used in the emissive layer, namely 4,4′,4′′-tris(carbazol-9-yl)-triphe-
nylamine (TCTA) as a hole-transporting material, and 2,6-bis(3-(9-carbazol-9-yl)phenyl)pyridine (26DCzPPy) 
as a bipolar materials. The orange emissive layer, 26DCzPPy:PQ2Ir(dpm), was inserted between two blue emis-
sive layers (TCTA:FIrpic and 26DCzPPy:FIrpic) to obtain both blue and orange emission40. 1,4,5,8,9,11-hexa
azatriphenylene hexacarbonitrile (HATCN6), am organic electron-acceptor, was used for hole injection layer 
from the metal anode, and 1,1-bis-(4-bis(4-tolyl)-aminophenyl)cyclohexene (TAPC) was used as a hole-transport 

Figure 2.  AFM images of (a) Ag film, (b) Al on Ag film, (c) 30 wt% Ag-doped Al on Ag film, and (d) 60 wt% 
Ag-doped Al on Ag film.
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layer. 3,3′′,5,5′′-tetra(3-pyridyl)-1,1′;3′,1′′-terphenyl (B3PyPB) and (8-quinolinolato)lithium (Liq) were used as 
electron-transport and electron-injection layers, respectively. The triplet energy levels of TAPC (2.95 eV) and 
B3PyPB (2.69 eV) were located above those of the phosphorescent emitters FIrpic (2.62 eV) and PQ2Ir(dpm) 
(2.10 eV), which prevented the triplet exciton quenching of phosphorescent emitters at the interface between the 
emissive layer and adjacent charge transport layers. The top-emission white OLED unit configured as reflect-
ing Ag:Al anode (100 nm)/HATCN6 (5 nm)/TAPC (65 nm)/TCTA:10 wt% FIrpic (5 nm)/26DCzPPy:5 wt%P-
Q2Ir(dpm) (2 nm)/26DCzPPy:10 wt%FIrpic (5 nm)/B3PyPB (55 nm)/Liq (2 nm)/semitransparent Mg:Ag cathode 
(15 nm), with the corresponding energy diagram shown in Fig. S7. The EL spectra of the top-emission OLED 
unit of dual mode device corresponded to white emission from both phosphorescence emitters (FIrpic and 
PQ2Ir(dpm)), (Fig. S8), with the corresponding current density–luminance–voltage (J–L–V) curves shown in 
Fig. 4a. Notably, the dual mode device featured J-V curves very similar to those of the single top-emission OLED 
with an active area of 1 cm2, and no leakage current was observed due to the reduced surface roughness of the 
intermediate Ag-doped Al electrode. On the other hand, a high leakage current was observed when the interme-
diate electrode comprised non-doped Al as shown in Fig. S9, which was attributed to the high surface roughness 
of the pure Al film. The surface roughness of these anodes was dominant factor in not only dual mode devices, 
but also single OLEDs. The leakage current of single OLED was dramatically reduced by using the Ag-doped Al 

Figure 3.  (a) J-V curves and (b) EQE spectra of the OPV unit in the dual mode device and those of single 
inverted OPV.

Device Jsc (mA cm−2) Voc (V) FF PCE (%)

Dual mode OPV-OLED 13.17 0.73 0.33 3.13

Single OPV 13.22 0.73 0.35 3.36

Table 1.  OPV characteristics of composite and single devices.

Figure 4.  (a) J–L-V and (b) EQE–J curves of dual mode OPV-OLED and a single OLED.
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electrode compared to the non-doped Al electrode one, as shown in Fig. S10. Therefore, the smooth Ag-doped 
Al electrode could be used to effectively operate the top-emission OLED unit in dual mode device. At luminance 
of 1, 100, and 1000 cd m2, the driving voltages of the above device equaled 3.10, 3.67, and 4.52 V at, respectively, 
which indicated that the holes and electrons were effectively injected into the top-emission OLED unit from both 
the Ag-doped Al anode and the Ag-doped Mg cathode. Moreover, the above unit exhibited a power efficiency 
(PE) of 13.8 lm W−1 and an EQE of 9.9% at 1000 cd m−2, respectively, thus featuring a performances similar to that 
of the single top-emission OLED (Fig. 4b). The characteristics of the utilized OLEDs are summarized in Table 2. 
Thus, based on the obtained results, the dual mode OPV-OLED device could be effectively operated as both a 
top-emission white OLED and a single-OLED.

Conclusion
In summary, we have successfully fabricated and characterized a dual mode three-terminal OPV-OLED device 
comprising a polymer-based bulk-heterojunction inverted-OPV unit and a top-emission white phosphorescent 
OLED unit back-to-back connected by an intermediate metal alloy electrode. Sputter-deposited transparent ITO 
was used as the cathode of the inverted OPV unit, whereas the abovementioned metal alloy (Ag-doped Al) elec-
trode was used to enable the decoupling of electricity generation and light emitting functions. The doping of Al 
by Ag played a significant role in the reduction of surface roughness, resulting in the almost complete absence of 
leakage current. Ultrathin Ag-doped Mg was used as a semitransparent cathode for the top-emission white OLED 
unit of dual mode device, which exhibited a PCE of 3.4% and an EQE of 9.9%.

Methods
Materials.  PTB7 and PC71BM were purchased from Solarmer Energy. HATCN6, TAPC, TCTA, and Liq were 
purchased from eRay. 26DCzPPy and FIrpic were purchased from Chemipro Kasei, and PQ2Ir(dpm) was pur-
chased from Lumtec. ZnO and B3PyPB were synthesized according to the kown literature procedure.

ITO film fabrication.  Glass substrates were cleaned with ultra-purified water and neutral detergent, being 
subsequently, dry-cleaned by 10-min exposure to an UV-ozone ambient. The cleaned substrates were coated with 
ITO films at room temperature by the radio frequency (RF) sputtering (NRF-technologies NR05NP-03) using an 
ITO target (90% In2O3–10%SnO2, 99.99%) supplied by Kojundo Chemical. The target–substrate distance equaled 
200 mm, and the sputtering chamber was evacuated to less than 5 × 10−5 Pa prior to deposition. High-purity Ar 
(99.999%) and O2 (99.999%) were introduced at rates of 40 and 0.4 sccm, respectively. Before deposition, the 
target was decontaminated by 5-min pre-sputtering in Ar-O2. The working pressure equaled 0.3 Pa, and the RF 
power was set to 160 W, resulting in the deposition of a 130-nm-thick ITO film with an active area of 1 cm2.

Device fabrication.  To fabricate an inverted OPV with a polymer-based bulk-heterojunction, a disper-
sion of ZnO nanoparticles (10 mg mL−1) in 2-ethoxyethanol was spin-coated onto a cleaned ITO substrate and 
annealed at 100 °C for 10 min to produce a 30-nm-thick layer. A blend of PTB7:PC71BM (2:3 w/w) in chloroben-
zene:1,8-diiodooctane (97:3 v/v) with a concentration of 25 mg mL−1 was spin coated onto ZnO to afford a 
100-nm-thick layer. All spin coating and annealing procedures were performed in a nitrogen-filled glove box 
(<0.1ppm O2 and H2O). Other layers (MoO3, Ag, and Ag-doped Al) were deposited by thermal evaporation in 
vacuum (~10−5 Pa). To fabricate the top-emission white phosphorescent OLED unit, functional organic layers 
were deposited onto the Ag-doped Al anode by thermal evaporation in vacuum (~10−5 Pa) using an organic 
patterned shadow mask. The top cathode (Ag-doped Mg) was deposited by co-evaporation (Ag:Mg 1:9), and 
was patterned using a shadow mask with an array of 1-cm2 openings without breaking the vacuum (~10−5 Pa). 
Immediately after preparation, the obtained device was encapsulated under a nitrogen atmosphere using epoxy 
glue and transparent glass lids.

Characterization.  Film thickness was measured using Dektek8 profile meter, and the sheet resistivity of ITO 
film was measured utilizing a conventional four-probe technique. Surface roughness was analyzed using a Bruker 
Dimension Icon atomic force microscope. The optical transmittance of ITO film was measured using a Shimadzu 
UV-3150UV–vis–NIR spectrophotometer. To characterize the bulk-heterojunction inverted OPV, current den-
sity–voltage curves were recorded using a Keithley 2400 source measure unit. Light intensity was determined by 
a monosilicon detector (with a KG-5 visible color filter) calibrated by the National Renewable Energy Laboratory 
to reduce spectral mismatch. For the characterization of the top-emission white phosphorescent OLED unit, 
EL spectra were acquired using an optical multichannel analyzer (Hamamatsu Photonics PMA-11). Current 
density–voltage and luminance–voltage curves were recorded using a Keithley source measure unit 2400 and a 
KonicaMinolta CS200 luminance meter, respectively. External quantum efficiencies were calculated from front 
luminances, current densities and EL spectra.

Device Von (V) V (V) PE (lm W−1) CE (cd A−1) EQE (%)

Dual mode OPV-OLED 3.10 4.52 13.8 19.9 9.9

Single OLED 3.11 4.67 9.6 14.3 8.6

Table 2.  OLED characteristics of composite and single devices.
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