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Analysis of public RNA-
sequencing data reveals 
biological consequences of 
genetic heterogeneity in cell line 
populations
Erik Fasterius1 & Cristina Al-Khalili Szigyarto1,2

Meta-analysis of datasets available in public repositories are used to gather and summarise 
experiments performed across laboratories, as well as to explore consistency of scientific findings. As 
data quality and biological equivalency across samples may obscure such analyses and consequently 
their conclusions, we investigated the comparability of 85 public RNA-seq cell line datasets. Thousands 
of pairwise comparisons of single nucleotide variants in 139 samples revealed variable genetic 
heterogeneity of the eight cell line populations analysed as well as variable data quality. The H9 and 
HCT116 cell lines were found to be remarkably stable across laboratories (with median concordances of 
99.2% and 98.5%, respectively), in contrast to the highly variable HeLa cells (89.3%). We show that the 
genetic heterogeneity encountered greatly affects gene expression between same-cell comparisons, 
highlighting the importance of interrogating the biological equivalency of samples when comparing 
experimental datasets. Both the number of differentially expressed genes and the expression 
levels negatively correlate with the genetic heterogeneity. Finally, we demonstrate how comparing 
genetically heterogeneous datasets affect gene expression analyses and that high dissimilarity 
between same-cell datasets alters the expression of more than 300 cancer-related genes, which are 
often the focus of studies using cell lines.

As the number of gene expression experiments continue to increase, so do the availability of datasets in publicly 
available data repositories, such as the Gene Expression Omnibus (GEO)1. Comparisons of in-house data and 
public datasets enable researchers to contrast their results to existing information in a biologically meaningful 
way, while meta-analyses of public datasets can yield biologically and technically relevant information that the 
individually analysed constituent datasets cannot2. The scientific context of different studies vary greatly, but the 
chosen context does not, however, preclude the possibility of subsequently investigating other scientific questions, 
making re-analysis of previously published data an important venture to achieve novel insights3. Indeed, some of 
the earliest “Big Data” articles’ citations have been mainly attributed to novel results from re-analyses of the data 
rather than the original conclusions themselves4. Re-analyses are also an efficient use of scientific resources, as 
new conclusions can be drawn without needing to perform new and costly sequencing experiments. Integration 
of different data types (e.g. transcriptomics and genomics) is also becoming more relevant, as they can reveal a 
more complete biological picture5. Integration of data collections are especially important, since they can yield 
insights into biological questions difficult to assess by direct experiment6. Before any such project can start, how-
ever, investigations need to be made to ensure that included datasets are comparable. There are several reasons 
why a dataset might be disqualified from inclusion, such as low data quality or non-equivalent biological sources2.

Cell lines are commonly used as in vitro models for cancer and drug testing, but a considerable problem is that 
of cell line authenticity: whether or not the cells used are biologically equivalent to their original source7. While 
cell lines are excellent, easy-to-use sources of unlimited experimental materials that side-steps the ethical and 
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practical issues related to using human samples, authenticity remains a major concern. Unauthentic cells can arise 
because of several reasons, such as cross-contamination by another cell line, mislabelling at the lab or genetic drift 
due to long-term culturing. It has been shown that between 15% and 20% of all cell lines are misidentified or con-
taminated8. Mycoplasma infections also affect the cells, but can be avoided by performing routine tests and using 
proper culturing techniques9. The HeLa cell line is among the most frequent sources of cross-contamination due 
to its ubiquitous use in laboratories across the globe. Not only do problems arise during culturing and experimen-
tation on cell lines, but it is now apparent that many have become contaminated at the time of their creation10.

Analysing short tandem repeats (STRs) in the cell line of interest and comparing the results to a database is 
the de facto standard recommended by the American Type Culture Collection (ATCC), but analysis of single 
nucleotide variants (SNVs) is also becoming increasingly used11,12. There are, however, problems with using STR 
profiling as the basis for cell line authenticity, such as microsatellite instability and genetic heterogeneity13,14. 
Researchers have recently shown that a batch of the MCF7 cell line possessed genetic heterogeneity that affected 
its phenotype, while still yielding a perfect STR match to the ATCC reference15.

As RNA sequencing (RNA-seq) has been shown to be highly robust across both platforms, laboratories and 
experimental designs16, we previously developed a method to analyse RNA-seq for cell line authentication17. The 
method uses the vast amounts of sequence information available from RNA-seq experiments to compare variants 
with the Catalogue of Somatic Mutations in Cancer (COSMIC) database on a larger scale than conventional STR 
or SNV profiling does18. While SNVs are traditionally analysed with genomic methods, it has previously been 
shown that 40% to 80% of variants discovered using whole genome sequencing are also found by RNA-seq19. 
There are numerous studies empirically proving that RNA variant analysis can yield novel biological insights20–22. 
This highlights the ability of RNA-seq to also be used for variant analysis (in addition to standard gene expression 
studies), greatly increasing its utility. One of the strengths of the method is its capacity for re-analysis of existing 
sequencing data, allowing it to investigate any publicly available RNA-seq datasets as well as novel data. Another 
advantage is its potential to analyse variants across the entire transcriptome, rather than a preset number of STRs 
or SNVs, thus greatly increasing its statistical power. In addition to filling the need for new and robust methods 
for cell line authentication highlighted by Freedman et al.23, the method both authenticates cell lines to a high 
degree of certainty as well as provides detailed information about deviations from known variants in the cells. We 
also demonstrated that our method could potentially be used for transcriptome-wide authentications, taking the 
totality of overlapping SNVs in each dataset into account. This would represent an improvement over e.g. STR 
panels, as the global analysis of individual mutations is important for many diseases24.

Herein, we present one of the largest studies of genetic heterogeneity and comparability in public datasets to 
date using the previously published method, performing several thousands of pairwise comparisons of 139 sam-
ples across 85 RNA-seq datasets and eight cell lines in the GEO. We characterise the varying degrees of genetic 
heterogeneity present in the different cell lines and confirm that this heterogeneity has an effect on gene expres-
sion and cellular functions, reveal that H9 and HCT116 are remarkably stable while HeLa possesses a high degree 
of variation, and highlight a mislabelled MCF7 dataset. We thus demonstrate the importance of checking that 
public data used for new analyses are based on biologically equivalent sources and provide a general workflow 
demonstrating how this can be achieved.

Results
Selection of GEO datasets and experimental design.  In order to investigate the comparability of cell 
line data, the GEO was queried and filtered to only include cell lines with at least ten RNA-seq datasets to ensure 
statistical power and a collection of samples representative for the cell line populations currently used in research. 
The cell lines were additionally required to be available in the COSMIC database. Due to the nature with which 
metadata is stored in the GEO this process had to be performed in several steps, the last of which required 
manual curation. Datasets were chosen to yield at least 50 × 106 reads on average across one or more samples in 
order to control for biases in sequencing depth, contain a mix of single- and paired-end data and to be of “wild 
type” origin; samples that contained gene knockouts, genetic transformations, treatments or other perturbations 
(according to the metadata) were ignored, as such samples could confound the underlying biology being com-
pared. A total of 139 samples from 85 different datasets and eight cell lines were selected to be analysed (Table 1): 

Cell line
Total 
datasets

Total 
samples

Analysed 
datasets

Analysed 
samples

Average reads 
per dataset

A549 13 79 7 12 48 × 106

H9 13 833 10 19 61 × 106

HCT116 26 272 15 20 66 × 106

HeLa 66 530 18 29 85 × 106

K562 17 126 8 12 75 × 106

MCF7 33 301 12 19 77 × 106

MDAMB231 11 153 8 17 64 × 106

U2OS 11 151 7 11 65 × 106

Total 190 2,445 85 139 68 × 106

Table 1.  Summary of the available and analysed cell line datasets. High quality samples from almost half of all 
the available datasets in the GEO were analysed, covering on average 68 million reads per dataset.
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A549 (lung carcinoma), H9 (lymphoma), HCT116 (colon carcinoma), HeLa (cervical adenocarcinoma), K562 
(leukaemia), MCF7 (breast adenocarcinoma), MDAMB231 (breast adenocarcinoma) and U2OS (osteosarcoma).

Comparisons of the generated SNV profiles with COSMIC data fail to evaluate all datasets.  
The selected datasets were analysed using the cell line authentication method previously presented, which 
includes the best-practice RNA-seq variant calling pipeline from GATK17. The method compares all statistically 
significant variants passing several quality thresholds found in a given RNA-seq dataset generated from the anal-
ysis of a specific cell line with those found in the COSMIC database for the same cell line, yielding a high through-
put sequencing counterpart to existing authentication methods. All of the examined cell lines have a comparable 
number of SNVs listed in the COSMIC database (between 400 and 600) with the exception of HCT116, which has 
2,777 in total (Table 2). We define overlap as the number of variants that are present in both samples for any given 
pairwise comparison (i.e. the RNA-seq datasets and the COSMIC database); between tens and hundreds of the 
COSMIC SNVs overlap with those found in the analysed datasets (Fig. 1A). Four of the cell lines (A549, H9, HeLa 
and MCF7) have at least one dataset without any overlapping variants whatsoever (SFigure 1). The H9 cell line 
represents a clear deviation as only a single or none of the annotated COSMIC SNVs were found in its datasets.

In order to measure the similarity between the RNA-seq variants and the COSMIC profiles, the concordance 
is defined as the proportion of matching SNVs (i.e. SNVs with the same genotype in both samples) relative to 
the overlap (i.e. SNV matches ÷ total SNV overlaps). Six out of seven cell lines (discounting H9) have a median 
concordance above 90% (a previously employed threshold for cell authenticity)12, while MDAMB231 has 87.6% 
(Fig. 1B). Four cell lines (A549, HeLa, MDAMB231 and U2OS) have at least one dataset with an individual con-
cordance below 90% (SFigure 1). Concordance CVs range from 0.6% to 46.8%, indicating an inherent variability 
in COSMIC SNV comparisons (Table 2).

The number of variants differing from the COSMIC database does not, however, necessarily reflect the bio-
logical effect of the mismatched SNVs. The annotated SNV impacts (HIGH, MODERATE, LOW or MODIFIER, 
where HIGH impact variants have negative effect on protein function) more clearly reflect the biology of the 
SNVs. The distribution of matched and mismatched SNV impacts is comparable to previous cell line data 
(SFigure 2). However, a large proportion of the mismatched COSMIC SNVs are homozygous variants (83.2%; 
SFigure 3), indicating that there is a difference between the COSMIC database and the RNA-based SNVs found 
in the datasets.

These results indicate that the COSMIC-based cell authentication method is useful, but that its coverage of 
annotated SNVs is insufficient for a thorough investigation of dataset comparability.

Transcriptome-wide variant analysis reveal cell line heterogeneity.  By examining transcriptome- 
wide SNVs instead of only considering annotated COSMIC variants the analysis will gain statistical power and 
create opportunities for functional assessment, in addition to provide opportunities for completing and adding 
to the COSMIC data. Such an analysis can capture biological variation in entire cell line populations and bet-
ter highlight problems with data quality. We thus performed several thousands of transcriptome-wide, pairwise 
dataset comparisons using the totality of the high-quality SNVs from the variant calling pipeline. Boxplots of the 
total number of overlapping variants and the concordance for each comparison is shown in Fig. 1C,D. As can be 
seen in Table 3, there are thousands of transcriptome-wide variants found in the different datasets, ranging from 
over 100,000 overlapping variants for HeLa to 1,280 for A549. The median overlapping variants of comparisons 
between different cell lines is 3,569, with a median concordance of 65.2%, yielding an estimate of the baseline 
similarity between two arbitrary cell lines. A concordance of approximately 65% is thus a strong indication that 
the two cell lines being compared are not equivalent.

The transcriptome-wide concordance of the HeLa cell line is the only one to drop below a median of 90%; 
MDAMB231, on the other hand, reaches 93.5% (SFigure 4). The H9 cell line possesses a median overlap of 6,750 
and concordance above 99%. HCT116 show similar results, with 8,525 SNVs and a median concordance of 98.5%. 
The coefficients of variation are below 4% in six out of eight cases, with HeLa and MCF7 remaining the highest 
(slightly above 10%). The high concordances and low variability of the H9 and HCT116 cell lines could indicate a 
higher genomic stability, compared to the other analysed cell lines.

Cell line
Total COSMIC 
SNVs

Median 
overlapping SNVs

Median 
concordance

Coefficient of 
variation: concordance

A549 433 34 96.9% 44.4%

H9 527 0 — —

HCT116 2,777 661 98.3% 0.6%

HeLa 466 76 95.2% 28.0%

K562 554 80 99.4% 3.2%

MCF7 524 29 96.4% 46.8%

MDAMB231 607 129 87.6% 5.8%

U2OS 418 76 97.1% 4.9%

Table 2.  Comparison of SNVs identified in cell lines using RNA-seq data and annotated SNVs in the COSMIC 
database. COSMIC variants are found for all the cell lines, with the exception of H9. The median concordances 
are above 95% for all cells except MDAMB231, with CVs going as high as 47%.
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It is also possible to evaluate variants in specific genes of interest by looking at the whole transcriptome. The 
HCT116 cell line, for example, should have a heterozygous C/T genotype at a site in the KRAS gene, known as 
the G13D mutation. By looking at this site in all the investigated datasets, we can confirm this known mutation in 
the HCT116 samples (STable 1). Such an analysis is possible for any known mutation and constitutes an impor-
tant part of evaluating biological equivalency not only on a transcriptome-wide level, but also on specific gene 
products.

There are three datasets from the H9, HeLa and MCF7 cell lines that have a low number of identified SNVs 
in total (13, 68 and 42, respectively), compared to the other transcriptome-wide datasets (SFigure 4B,D,F). The 
pairwise concordances of these datasets have a wide range, going from 0% up to 100% (across both different- and 
same-cell comparisons), most likely due to random SNV matches across a small number of variants. In order to 
account for such datasets, we aimed to weigh the concordances in an unfavourable way for comparisons with 

Figure 1.  Overview of the comparisons between the identified variants in the GEO datasets. (A) The number 
of variants overlapping with COSMIC variants, (B) the concordance of COSMIC overlaps, (C) the number of 
overlapping variants for each pairwise transcriptome comparison, and (D) the concordance of each pairwise 
transcriptome comparison. Empty circles in the COSMIC boxplots represent dataset with less than 10 COSMIC 
variant overlaps, while in the transcriptome comparisons represent a pairwise comparison with less than 
50 overlapping variants. Black circles in the COSMIC boxplots are dataset with zero overlapping COSMIC 
variants. Other values are represented with blue circles.

Cell line
Median 
variants

Median overlapping 
SNVs

Median 
concordance

Coefficient of variation: 
concordance

Median 
score

A549 5,106 1,280 97.1% 1.5% 96.6

H9 18,903 6,750 99.2% 3.8% 99.1

HCT116 26,273 8,525 98.5% 1.9% 98.5

HeLa 136,724 22,554 89.3% 10.2% 89.0

K562 12,983 8,490 97.0% 2.3% 97.0

MCF7 10,887 3,162 95.2% 12.7% 95.0

MDAMB231 15,422 7,547 93.5% 3.2% 93.1

U2OS 12,505 2,060 94.4% 1.9% 94.0

Table 3.  Transcriptome-wide analysis of SNV identified per cell line in analysed data sets. Tens of thousands 
of variants are found for each cell line, with several thousands of overlaps across the different datasets. The 
concordances are highly stable across all cell lines: most CVs are below 4%.



www.nature.com/scientificreports/

5SCIenTIfIC REPOrtS |  (2018) 8:11226  | DOI:10.1038/s41598-018-29506-3

few variants. Comparing the transcriptome-wide variants between two samples or datasets can be thought of as 
a binomial experiment: each individual variant comparison is a trial where matching variants are successes. We 
thus define the similarity score as (s + a) ÷ (n + a + b), where s is the number of matching variants, n the number 
of overlapping variants, a = 1 and b = 5. The variables a and b were selected to yield a cutoff equivalent to the one 
used by Yu et al.12, resulting in a lower bound of 44 perfectly matching variants yielding a score of 90; this better 
utilises the increased statistical power from the greater number of variants in transcriptome-wide analyses and 
better highlights potential problems with data quality.

In order to visualise the large-scale analysis of all the datasets investigated herein, a heatmap of the similarity 
score for each of the thousands of pairwise comparisons performed is shown in Fig. 2 (see SFigures 5 to 12 for 
individual cell line heatmaps). The highly similar datasets are clearly grouped according to cell line, but most 
same-cell groups also possess varying levels of genetic heterogeneity. The lowest same-cell similarity scores are 
for HeLa: most are around 90 but some go as low as 70. Strikingly, one dataset from the MCF7 cell line has poor 
similarity with the other MCF7 datasets (around 70) while showing excellent score with all the HCT116 data-
sets (above 97). While this dataset has no publication associated with it at the time of writing (making a deeper 
investigation difficult), it is clear that this dataset contains data from HCT116 mislabelled as MCF7. It has pre-
viously been shown that certain cell lines have a higher incidence of mislabelling depending on their country of 
origin14,25. No such bias can be seen in the datasets in the present study (STable 2).

The three datasets that showed mixed concordances are seen as mostly blank columns/rows, highlighting their 
deviation from the bulk of datasets and need for further investigation. The reason for the low number of variants 
in the GSE39872 dataset (H9) could be due to the imprecise manner in which metadata is submitted and stored in 
the GEO: the molecule and library strategy metadata columns (which were used as selection criteria) are listed as 
“total RNA” and “RNA-seq”, respectively, but details in the corresponding article reveals that this data is of small 
RNA-seq origin, which explains the low number of variants resulting from this dataset. The GSE68471 dataset 
(HeLa) is likewise listed as “total RNA”, but is in fact from low complexity histone-specific libraries from a method 
for sequencing 3′-ends of RNA, while the GSE77033 dataset (MCF7) uses nanoCAGE26, a method for identifying 
5′-ends of transcripts and discovery of new promoters. These three datasets, in addition to the mislabelled MCF7 
dataset, are not included in any subsequent analyses.

Figure 2.  Heatmap of transcriptome-wide cell line similarity scores of pairwise comparisons of all datasets 
included in the study: scores below 50 are shown as pure white, with a grey colour gradient from 50 to 90 and 
a blue gradient up to a score of 100. The highest similarities are found for same-cell comparisons across the 
diagonal, with HeLa being the most genetically heterogenous. Three datasets have very few variants to compare, 
while a single MCF7 dataset is more similar to HCT116 than other MCF7 datasets.
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Taken together, these results demonstrate that transcriptome-wide variant analyses efficiently capture the bio-
logical variation needed to investigate genetic heterogeneity and dataset comparability, as well as its capacity to 
highlight problems in data quality and metadata storage.

Genetic heterogeneity in cell line populations affect gene expression.  The transcriptome-wide 
analyses demonstrate that the different cell lines have distinct degrees of heterogeneity: H9 and HCT116 are 
highly stable across datasets, while the others are more variable. These results raise the important question as 
to whether comparability of multiple datasets as defined in our study obscures or alters the results of common 
transcriptomic analyses. We thus performed differential gene expression analysis on each pairwise, same-cell 
dataset in order to evaluate the effect of the genetic heterogeneity present in public cell line datasets. As abun-
dance measures (such as TPM, “transcripts per million”) are commonly available in many expression databases, 
this analyses was performed using the Kallisto software for isoform abundance estimation27. These abundances 
were subsequently summed to the gene-level by the TXimport R package and analysed with edgeR for differential 
expression, as it has been shown that such workflows have high accuracy27–30. Only datasets with at least two rep-
licates were considered for this analysis, where genes with a two-fold expression change at a significance level of 
0.01 were considered as differentially expressed genes (DEGs). The similarity score per comparison was correlated 
with its total number of DEGs and its median fold change at a significance level of 0.01. Figure 3A,B shows the 
statistically significant correlations, indicating that there is a clear negative correlation between the score and both 
DEG parameters, ranging from −0.58 to −0.99. As overall dataset quality is a possible confounding factor for 
this analysis, we also performed correlations of the number of overlapping variants for each cell line as well as the 
different dates at which each dataset was submitted to the GEO. Neither of these factors had a significant effect on 
the analysis (STable 3). Enrichment analysis of manually curated KEGG functional units was also performed for 

Figure 3.  Correlation between similarity score and gene expression. Significant correlations (α = 0.01) between 
the similarity score versus the total number of DEGs (A) and the median fold change of DEGs (B) of each 
same-cell pairwise comparison: H9 is teal (correlation coefficient −0.71, number of DEGs), HCT116 yellow 
(−0.98 and −0.99 for the number of DEGs and median fold change, respectively), MCF7 green (−0.84, fold 
change only) and MDAMB231 blue (−0.68 and −0.58); (C,D), the same correlations as above, but only using 
differentially expressed prognostic cancer-markers: −0.98 for both DEGs and fold change in HCT116; −0.61 
and −0.40 for MDAMB231; (D), visualisation of impact-specific similarity scores per cell line, where light 
blue circles signify HIGH impact, blue triangles MODERATE, marine blue squares LOW and black crosshairs 
MODIFIER; (E), ANOVA analysis with differences in chromosomal aberrations shown as boxplots of the mean 
allelic ratios for each cell line, where groups with differing colours are significantly different from each other.
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DEGs of the significantly correlated cell lines, indicating that there is a generally higher proportion of enriched 
categories for low similarity scores than for high ones (SFigure 13).

In order to investigate if the genetic heterogeneity present in cell line populations also affect the expression of 
genes known to be related to cancer we performed the same correlations as above, but for existing tissue-specific 
prognostic cancer markers previously published by the Human Protein Atlas project31. The H9, K562 and U2OS 
cells were not used for this analysis, as they do not have a corresponding HPA tissue. It is clear that the same rela-
tionship between the similarity score and DEGs still holds even for prognostic markers (Fig. 3C,D), indicating 
that the genetic heterogeneity can affect not only the global expression profile of the datasets, but also specific 
genes likely of great interest to researchers.

Another (albeit cruder) way of measuring gene expression similitude is the global correlation of all genes 
between pairwise samples. While the statistic rigorousness of a differential expression analysis (as above) is dis-
missed, such an analysis has the potential to give a wider perspective, as not only samples with replicates can be 
included. Indeed, the same pattern as above can be seen not only for four of the cell lines, but U2OS as well - the 
same holds true for correlations of only the prognostic markers (SFigure 15 and 16). These results demonstrate 
that the genetic heterogeneity present in cell populations has a profound effect on gene expression, both on the 
global level and for cancer-related genes.

In order to more fully investigate the possible origins of the genetic heterogeneity, we hypothesised that it 
might be due to genetic drift through either genomic instability, many years of culturing in and between different 
laboratories, or both. If so, a general accumulation of mutations is to be expected, particularly for low impact 
variants. As can be seen in Fig. 3E, the MODIFIER impact category has the lowest score in four of the cell lines, 
with a pronounced drop for HeLa in particular (and HCT116 to a lesser degree), indicating a higher proportion of 
mismatched lower impact variants. Indeed, HeLa has the highest proportions of MODIFIER variants, in addition 
to being the only cell line to have proportionally more MODERATE than LOW mismatching SNVs, possibly due 
to its ability to produce heterogeneously stable cell populations (SFigure 17D). Interestingly, the impact distribu-
tion of U2OS is clearly divergent, showing more mismatched HIGH impact variants, indicating that it might have 
larger phenotypic variation than the other cell lines (SFigure 17H).

Common causes of genetic drift are chromosomal instability (CIN) and abnormal chromosomal numbers 
(aneuploidy), both of which are recognised as hallmarks of cancer and are often found together32,33. In order to 
further investigate the presence of CIN and aneuploidy, we analysed the GEO data with an orthogonal RNA-seq 
method, which examines the allelic ratio (defined as major allele ÷ minor allele) across the entire transcriptome34. 
The mean allelic ratio of H9 and HCT116 (approximately 1.7) is significantly different from that of the other cell 
lines (closer to 2.0; Fig. 3F), indicating that a lower level of chromosomal aberrations may be the cause of their 
relative genomic stability compared to other cell lines (confidence intervals for each comparison are shown in 
SFigure 18). These results the genetic heterogeneity in public cell line data which can have profound effects on 
gene expression measurements.

Discussion
A growing number of researchers use publicly available expression data to compare with their own results, but the 
accuracy of such analyses have yet to be assessed on a large scale. An increasingly apparent problem is that of the 
biological source of the samples used, as the results may be inaccurate or skewed if the datasets being compared 
are not genetically equivalent. While this applies to any kind of biological sample studied it is especially evident in 
cell line research, where the prevalence of contaminated, misidentified and otherwise unauthentic cells is increas-
ing8. We thus sought to evaluate the comparability, authenticity and heterogeneity of RNA-seq cell line population 
data deposited in the GEO database using the methodology previously described17 on a large scale, performing 
several thousands of pairwise comparisons of high-quality SNVs across 139 samples and 85 datasets from eight 
different cell lines of varying origin.

While comparing SNVs found in a dataset to those in the COSMIC database can be used for cell authentica-
tion, it is problematic for cell lines with fewer COSMIC variants; the H9 cell line with its practically non-existent 
COSMIC overlap is the prime (but not only) example of this. Any result based on a small number of variants is 
less reliable than one based on many variants; the A549 cell line, for example, has below 50 overlapping COSMIC 
variants in four out of seven datasets. The reasons for the low COSMIC overlap for the H9 cell line are unclear; 
it has the third most SNVs of all studied cell lines, and the transcriptome-wide analysis indicate that they are 
highly similar. An analysis of various COSMIC metadata for each cell line highlights H9 and HeLa as having 
an almost zero proportion of “verified” variants, i.e. variants that have been found in more than one dataset 
(SFigure 19). While this might be explained by numerous existing strains for HeLa, not so for H9. The reason for 
the low overlap of H9 may then be a combination of few COSMIC variants and a high level of unverified variants. 
Another issue with COSMIC authentications is the fact that most of the mismatched variants have a homozygous 
genotype according to the transcriptomic data. This is possibly due to allele-specific expression, which has been 
shown to be common and highly variable in humans, occurring in up to 22% of SNVs in human cell lines35,36. 
Such homozygous variants are thus expected when using a genome-based database like COSMIC, but make the 
results more difficult to assess. As the COSMIC database is manually curated, a positive result could be sufficient 
as an assessment of cell line authenticity, but drawing definitive conclusions from small variant sets remains 
problematic.

In order to alleviate these problems, we performed transcriptome-wide analyses on all the datasets investi-
gated in this study in a pairwise manner, thus including the totality of SNVs and possible biological variation 
in each dataset. The most striking result is as previously mentioned for the H9 cell line, which has the high-
est median transcriptome-wide concordance of all the cell lines investigated (reaching 99.6% for several pairs), 
clearly showing that its datasets most likely originate from biologically equivalent sources; similar results were 
found for HCT116. While the concordance is a useful measure of similarity, it doesn’t account for cases with few 
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variant overlaps, such as for the three datasets from H9, HeLa and MCF7. By unfavourably weighing the concord-
ances of comparisons with few overlaps these datasets are more easily incorporated into the analysis, enabling 
consideration of a single parameter (the similarity score) rather than two (concordance and overlap). The dis-
crepancy between the GEO metadata and the detailed information available in the corresponding publications 
of these datasets demonstrate the difficulty of performing a bioinformatic analysis across experiments, but also 
highlights how important dataset assessment is; such information is vital to any researcher wishing to analyse 
publicly available data.

Another striking finding is that a single MCF7 dataset is unequivocally more similar to HCT116 than to the 
other MCF7 datasets. There is no published article associated with this dataset, making a thorough investigation 
of the reasons for this disparity difficult to perform. It does, however, present a clear-cut case where use of public 
datasets without proper evaluation can lead researchers to draw erroneous conclusions. If such a dataset was to 
be used for e.g. a baseline for MCF7 cell lines against a drug treatment or for direct comparisons with other breast 
cancer cell lines the results would be meaningless at best and potentially disastrous at worst. Our analysis does not 
dismiss the data itself in its entirety, far from it: seeing as this dataset so clearly comes from HCT116 cells it could 
potentially be incorporated into experimental designs where this would be appropriate.

The stability of H9 and HCT116 has been previously shown, corroborating our results37,38. The variation seen 
in HeLa is unsurprising, given its history of producing stable, heterogenous cell populations39. While variations in 
HeLa’s karyotype have been inconsistently reported, it is clear that such changes have an effect on the phenotype 
of the cells40. Indeed, HeLa, MCF7 and MDAMB231 have been established to be genetically unstable38,41,42. While 
the datasets analysed herein were not chosen with suitability for differential expression as primary criteria, the 
correlations of similarity score versus the number of DEGs and fold change indicate that the genetic heteroge-
neity observed has a significant effect on gene expression in the H9, HCT116, MCF7, MDAMB231 and U2OS 
cell lines. This was also seen for cancer-related genes, as upwards of several hundreds of prognostic markers were 
differentially expressed between genetically dissimilar same-cell datasets. The magnitude of the DEGs are also 
significantly affected, as the median fold change for the same datasets can reach as high as well above five. While 
neither date of submission nor number of overlapping variants were significant confounding factors for this anal-
ysis, there might be others. As this analysis is performed on the SNV-level, larger copy number variations (CNVs) 
might affect the analysis. The mean allelic ratios for H9 and HCT116 does, however, indicate that this is likely not 
the case. Experimental factors not included in the GEO metadata might also play a role, such as RNA quality or 
the polymerase used for library preparation43. These results demonstrate that the genetic heterogeneity also affects 
genes that are likely to be key components of cancer research, thus representing a critical confounding factor for 
such studies. While the number of datasets and replicates puts a limitation on the enrichment analysis, there are 
indications that the genetic heterogeneity also has an effect on general cellular functions. These conclusions are 
corroborated by gene expression correlations, both globally and for the prognostic markers.

We hypothesised that this heterogeneity could be due to genetic drift as a result of genetic instability, sup-
ported by a greater proportion of mismatched low impact variants. The genetic instability that leads to genetic 
drift and accumulation of mutations in cancer may have several causes, commonly including chromosomal insta-
bility and aneuploidy33. The analysis of mean allelic ratios separate H9 and HCT116 as having fewer chromosomal 
aberrations than the others, explaining their high stability across datasets. Such biological information is highly 
pertinent for any researcher about to start a cell line-based study: what level of genetic stability is relevant for 
the scientific question examined? A stable cell line may be more suitable for studies examining a specific gene or 
pathway (increased comparability of datasets), while a more varied cell line might be more applicable for drug 
screenings (taking greater biological diversity into account). It is thus not only the patient- or organ-of-origin of 
a cell line that is important: careful consideration of the overall goal of the experimental design also needs to be 
taken into account. Additionally, scientific findings obtained using cell lines have to be carefully scrutinised in the 
light of the inherent intra- and inter-genetic variation encountered in cell line populations. The U2OS cell line, 
for example, has a higher proportion of mismatched higher impact variants than the others, meaning that special 
care needs to be taken to ensure that none of the variants affect genes important to the scientific question at hand. 
Such considerations highlight one of the major strengths of our general methodology: the ability to investigate 
the biological effects of any variant differing between samples. This is particularly relevant given the previously 
demonstrated varying phenotype for perfectly matched STR profiles of the MCF7 cell line15.

There are several factors that need to be considered in regards to the biological equivalency of two or more 
samples. The biology of any sample should be investigated by calculating its global similarity to a reference (pref-
erably transcriptome-wide), if such is available. Any mismatched higher impact variants that might affect genes 
related to the biological question at hand need to be examined, as well as previously known variants. The impact 
of variants should also be investigated, in particular for those variants present in a pathway of interest. This is 
all given that the variant calling itself is performed with the most appropriate methods and software available, 
including choice of genome assembly and quality metrics, as done here. Not only cell line data could be analysed 
in this manner, but also data from tissues, cancer tumours or organoids. By following these guidelines (visualised 
in Fig. 4) researchers gain valuable information pertaining to heterogeneity, comparability and authenticity of 
their samples, leading to more well-informed choices regarding experimental designs and subsequently more 
biologically relevant conclusions.

In summary, we have performed a large-scale study of cell line heterogeneity in public RNA-seq data and 
highlighted important considerations for any researcher wishing to use such data in their analyses. We show that 
genetic heterogeneity in cell line populations has a great effect on gene expression measures as well as cancer 
hallmarks. The H9 and HCT116 cell lines are remarkably stable across many different studies and laboratories, 
possibly due to a smaller degree of chromosomal instability than the other cell lines (such as HeLa). We have 
demonstrated the importance of evaluating datasets by biological equivalency on both global and gene level as 
well as data quality and experimental conditions. Our methodology can help scientists make informed decisions 
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vis-à-vis biological equivalency between both new sequencing data and any of the numerous publicly available 
datasets, representing a step forward both in terms of analysing dataset comparability, cell line heterogeneity and 
the conclusions drawn from their experiments.

Materials and Methods
Filtration and selection of GEO data.  Selection and acquisition of data from the GEO was performed 
using an array of tools and online software packages: the NCBI E-utilities44, the GEOquery R package45,46 and the 
SRAdb R package47. The GEO was queried with the NCBI E-utilities for human RNA-seq datasets, and the meta-
data contained in the associated SOFT format files were parsed and filtered using a custom R script together with 
GEOquery. The SOFT files from GEO contain detailed metadata on each dataset not easily accessible through the 
online queries (such as cell type and experimental methods), making them a good choice for selection and filter-
ing of metadata in a large-scale, programmatic manner. Only cell lines with at least ten RNA-seq datasets in the 
GEO and available in the COSMIC database18 were considered. As metadata specific for the raw sequencing data 
(such as file size and the number of sequenced bases) is only available in the SRA, the SRA-specific metadata was 
collated with the GEO metadata using the SRAdb R package and the NCBI E-utilities. This process was performed 
on November 16th, 2016; the final metadata contains 80 different metadata fields per sample (such as study and 
sample IDs, protocols, treatments and sequencing platforms) and can be found in SData 1, while details on each 
cell line are available in SData 2.

Analysis of genetic heterogeneity.  Analysis of SNVs and cell line authentication of the biological sam-
ples analysed in the selected datasets was performed as previously described17. Briefly, raw data from each sample 
was downloaded from the SRA using the fastq-dump utility from the SRA toolkit, followed by read alignment, 
variant calling (including confident homozygous reference sites) and filtering using STAR, GATK and in-house 
scripts, respectively46,48,49. In addition to comparisons of cell line-specific SNVs that were downloaded from the 
COSMIC database, the transcriptome-wide variants were also compared in a pairwise manner to each other. 
All parts of the analysis utilised the GRCh38 assembly. Files containing the results of both the COSMIC and 
transcriptome-wide comparisons are included in SData 3–6.

Differential expression analysis.  Gene expression estimation was performed using the Kallisto (0.43.0)27 
and TXimport (1.2.0)28 software, followed by differential gene expression analysis with edgeR (3.16.1)29. Genes 
with fold changes greater than two and FDR ≤ 0.01 were counted as differentially expressed. The list of prognos-
tic markers was downloaded from table S8 in the Pathology Atlas publication, and DEG analysis was performed 
as above31. Gene expression correlations were performed using log-normalisation of (TPM + 1). KEGG Module 
enrichment was performed using the clusterProfiler (3.5.5)50 R package. Data on DEGs, expression correlations 
and enrichments is available in SData 7–10, while a list of all prognostic markers is available in SData 11. The cell 
lines H9, K562 and U2OS were not used for investigating prognostic markers, as they do not have a correspond-
ing HPA tissue.

Analysis of chromosomal aberrations.  The eSNP-Karyotyping analysis34 was performed as previously 
described on SNVs that passed all of the following GATK variant calling filtering criteria: Fisher strand value 
≥ 30, quality by depth ≥ 2, clusters with no more than 2 variants within a 35 base pair window, total allelic depth 
≥ 10 and minor allelic ratio ≥ 0.2. Moving medians of allelic ratios were calculated across all chromosomes, 
yielding a measure of the mean allelic ratio across the entire transcriptome. All statistical testing was performed 
at significance levels of 0.01; a detailed RMarkdown document for reproducing all figures is available in the sup-
plementary information.

Figure 4.  Representation of the general methodology. The workflow comprises several steps starting with 
the creation of an SNV profile by finding all variants in a given RNA-seq dataset (left panel). This SNV profile 
is then compared to other profiles, either in a pairwise manner (top right panel) or to many others in e.g. 
a population of datasets (bottom right panel). Results include global similarities between profiles, details 
on specific genes of interest and biological impact of SNVs differing across datasets, both for single- and 
population-scale analyses.
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