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Place Cell-Like Activity in the 
Primary Sensorimotor and 
Premotor Cortex During Monkey 
Whole-Body Navigation
A. Yin1,2, P. H. Tseng1,3, S. Rajangam1,3, M. A. Lebedev1,3 & M. A. L. Nicolelis1,2,3,4,5

Primary motor (M1), primary somatosensory (S1) and dorsal premotor (PMd) cortical areas of rhesus 
monkeys previously have been associated only with sensorimotor control of limb movements. Here we 
show that a significant number of neurons in these areas also represent body position and orientation 
in space. Two rhesus monkeys (K and M) used a wheelchair controlled by a brain-machine interface 
(BMI) to navigate in a room. During this whole-body navigation, the discharge rates of M1, S1, and PMd 
neurons correlated with the two-dimensional (2D) room position and the direction of the wheelchair 
and the monkey head. This place cell-like activity was observed in both monkeys, with 44.6% and 33.3% 
of neurons encoding room position in monkeys K and M, respectively, and the overlapping populations 
of 41.0% and 16.0% neurons encoding head direction. These observations suggest that primary 
sensorimotor and premotor cortical areas in primates are likely involved in allocentrically representing 
body position in space during whole-body navigation, which is an unexpected finding given the classical 
hierarchical model of cortical processing that attributes functional specialization for spatial processing 
to the hippocampal formation.

Little is known about the role of sensorimotor cortical areas, such as the primary motor (M1) and somatosensory 
(S1) cortices, in representing parameters of whole-body navigation. To date, neurophysiological mechanisms 
enabling whole-body navigation have been most extensively studied in the rat hippocampus1–4, where “place 
cells” representing spatial locations and navigation parameters were originally reported by O’Keefe and his col-
leagues1,2. Much less neurophysiological research has been conducted in nonhuman primates, employing virtual 
navigation tasks5 and whole-body motion6–10. In humans, neural correlates of navigation have been investigated 
using electroencephalography (EEG)11,12, neuroimaging13,14, and intracranial recordings15–17. Our recent studies 
in rhesus monkeys have shown that cortical motor (M1 and PMd) and somatosensory (S1) areas contribute to the 
encoding of body position during whole-body navigation9,18. This is surprising because, according to the classical 
hierarchical model of cortical processing19–22, space-coding should be restricted to the interactions between the 
hippocampus and association areas of the cortex.

To clarify the role of different brain areas in controlling whole-body navigation, we9,18 and others8,23 have 
recently started using a new experimental paradigm, where monkeys navigate in a room while seated in a 
motorized wheelchair. In these settings, monkeys can learn to control their wheelchair navigation8,9,23 using a 
brain-machine interface (BMI). In our implementation of the BMI for driving9, the velocity commands to the 
wheelchair were generated from the linearly combined activity of cortical neuronal ensembles recorded in the 
primary motor (M1), primary somatosensory (S1), and the dorsal premotor cortex (PMd). In the same study, 
we reported that a large fraction of cortical neurons in M1, S1, and PMd were tuned to the distance between the 
monkey and the target of navigation. This observation led us to hypothesize that monkey cortical neurons in these 
areas could also encode spatial location, which bears similarity to the encoding of space by the rodent place cell. 
Here, we report the results of testing this hypothesis. Our findings reveal that, in addition to representing arm 
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reaching and wheelchair kinematics in egocentric coordinates, M1, S1 and PMd neurons allocentrically represent 
the monkey’s body location, as well as head and body orientation. Altogether, these findings suggest that hier-
archically low cortical areas contribute to the representation of allocentric space during whole-body navigation.

Results
Two monkeys (K and M) were employed in our experiments. During each recording session, a monkey sat in 
a motorized wheelchair and navigated from one out of three possible starting locations in a room towards the 
location of a grape dispenser (Fig. 1A). This whole-body navigation was performed under BMI control, where a 
linear decoding algorithm transformed cortical ensemble activity into translational and rotational velocity com-
ponents responsible for the wheelchair movements9. The wheelchair passed through different room locations, 
which allowed us to construct position tuning maps that described how firing rates of individual M1, S1, and 
PMd neurons depended on wheelchair position (Fig. 1B–G). While most of the room was covered by the naviga-
tion trajectories, the coverage was not uniform for all locations, with the edges of the room being less visited. The 
distribution of the trajectories was also dependent on the wheelchair starting location – those starting at one side 
of the room tended to stay on that side. For analysis purposes, the region of the room where the grape dispenser 
was located was defined as the “front of the room” (Fig. 1A), whereas the “back of the room” corresponded to the 
region from which the wheelchair started to move. The “left” and “right parts of the room” corresponded to the 
monkey’s view when it faced the dispenser, the “front of the room”. We analyzed data from nine daily sessions in 
monkey K and 23 sessions in monkey M. Spike sorting was conducted on day one; afterwards the sorting param-
eters were adjusted when changes in neuronal waveforms were noticed. We analyzed activity patterns of 116 
neurons in monkey K (27 in S1, 64 in M1, and 25 in PMd; see Supplementary Materials for selection criteria) and 
124 neurons in monkey M (59 in S1 and 65 in M1).

Individual neurons are tuned to both spatial location and orientation. Figure 1B–G shows that, 
in both monkeys, individual M1, S1, and PMd neurons modulated their firing rates according to the wheelchair 
spatial position. The position tuning of these neurons reflected not only the distance, r, from the wheelchair to 
the grape dispenser, but also whether the wheelchair was in the left or right part of the room. For example, the 
M1 neurons (from both monkeys) shown in Fig. 1B,E increased their firing rate when the wheelchair entered the 
right part of the room. Meanwhile, the PMd neuron shown in Fig. 1C (recorded in monkey K) showed an oppo-
site pattern of position tuning: its firing rate decreased when the wheelchair entered the right part of the room and 
increased when it entered the left part. Figure 1D,F depicts an M1 neuron from monkey K and an S1 neuron from 
monkey M that, despite being very weakly tuned to the left-right dimension, were clearly tuned to the distance 
from the wheelchair to the grape dispenser: the firing rate increased in both neurons with decreasing distance. 
Figure 1G depicts an M1 neuron from monkey M whose firing rate decreased as the wheelchair approached the 
grape dispenser. In many neurons (see Fig. 1D–G), we observed a sharp change in firing rate that occurred when 
the wheelchair entered the “reach zone” (marked by black semi-circles in Fig. 1), from which the monkeys could 
reach for the food. Since monkey K was a smaller monkey, its reach zone was also smaller compared to the zone 
for monkey M.

In addition to the reach zone, Fig. 1 also shows the “docking zone” (marked by red circles). Inside this region, 
an autopilot program took over and maneuvered the wheelchair to dock it next to the dispenser to facilitate the 
monkey’s access to the grapes. For monkey M, the reach zone and the docking zone mostly coincided, since video 
analysis showed that this monkey began reaching while the wheelchair was being docked. Conversely, monkey K 
initiated reaching only when the wheelchair traveled close enough to the grape dispenser. This difference in the 
onset of reaching in the two monkeys was clearly visible in the neuronal patterns: a transition to reach-related 
activity occurred in monkey K only within the small reach zone (Fig. 1D), whereas in monkey M neuronal activ-
ity sharply changed when the wheelchair entered the docking zone (Fig. 1E–G). Overall, Fig. 1 shows that S1, M1 
and PMd neurons in both monkeys were tuned to the 2D room position, including tuning in both left-right and 
back-front dimensions, while exhibiting, in addition, the well-known typical firing modulations related to arm 
reaching and hand grasping movements that have been classically associated with these cortical areas.

Further analysis revealed that, in addition to representing room position, the firing rates of M1, S1, 
and PMd neurons were affected in varying degrees by the direction relative to room landmarks in which 
the monkeys turned their heads and the rotations of the wheelchair. We named this type of neuronal tuning 
“orientation-related”. To illustrate orientation tuning, Fig. 2A–D compares the instances when the monkey’s head 
pointed to the right of the grape dispenser (45 < α < 135, Fig. 2A,C) to the instances when the monkey’s head 
pointed to the left of the dispenser (−135 < α < −45, Fig. 2B,D). Two neurons from monkey K are illustrated: a 
PMd neuron exhibited a strong preference to the right part of the room, irrespective of where the monkey’s head 
pointed (Fig. 2A,B), while an M1 neuron displayed firing patterns that were clearly different in these two cases; 
when the monkey’s head pointed to the right of the dispenser (Fig. 2C) this neuron’s firing rate was much lower 
than when the monkey’s head pointed to the left (Fig. 2D). In general, we observed that M1, S1, and PMd neurons 
represented both room location and monkey head orientation, with some neurons being more location-tuned 
and others more orientation-tuned.

To estimate the proportion of neurons that show significant tuning to spatial location and body/head orien-
tation, we conducted a mutual-information analysis10,24,25 that evaluated the correspondence between neuronal 
rates and individual task covariates (spatial location, monkey head angle α, and wheelchair angle β; Fig. S1 and 
Table S1). In monkey K, significant mutual information (permutation test with FDR correction, p < 0.05) to at 
least one of these three covariates was found for 80.4 ± 12.9% neurons (mean ± std across sessions) (73.3 ± 21.1% 
in S1, 84.7 ± 11.6% in M1, and 76.9 ± 12.3% in PMd). In monkey M, 47.5 ± 18.7% neurons were tuned to at least 
one parameter (47.2 ± 18.4% in S1 and 47.9 ± 19.5% in M1). Tuning to room position was found for 64.0 ± 18.8% 
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Figure 1. Wheelchair navigation setup and examples of spatially-selective neurons. (A) View from the top of 
the experimental room, where the monkey navigated in a motorized wheelchair under BMI control from one of 
three possible starting locations (shown as green circles) to the grape dispenser (marked by a ‘+’). The four 
walls of the experiment room are labeled as “front”, “back” “right” and “left”, which correspond to the monkey 
facing the grape dispenser and navigating from the back to the front of the room. Red semicircle labels the 
docking zone upon which an auto-pilot took over the wheelchair control. Black semicircle labels the reach zone 
within which monkeys initiated reach movements for the grape. The position of the monkey’s body and 
orientation of the head (gray ellipse) and trunk (tan ellipse) were evaluated using the following coordinates: θ- 
the angle of the wheelchair’s location with respect to the dispenser; r – the distance from the wheelchair to the 
dispenser; α– the angle of the dispenser location with respect to the monkey’s head direction; and β– the angle 
of the dispenser location with respect to the wheelchair’s direction. (B–D) Spatial tuning diagrams in 
representative neurons from monkey K and monkey M (E–G), axis labels as in (A). Color represents trial-
average z-scored firing rates for different room locations. Cortical areas, where the neurons were recorded, are 
indicated.
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Figure 2. Neuronal tuning to room location and head orientation. (A–D) Modulation of spatial tuning 
patterns by head orientation in two neurons from monkey K. Conventions as in Fig. 1B–G. The color plots 
correspond (see key on top) to the right from the grape dispenser (α from 45 to 135 degrees; A, C) or to the left 
from the dispenser (α from −45 to −135 degrees; B, D). The spatial tuning pattern of one PMd neuron did not 
substantially change with the head orientation (A,B), whereas the pattern of another M1 neuron dramatically 
changed (C,D). (E–I) Scatterplots of tuning depth (TD) to room location versus TD to orientation (α and β) for 
monkey K’s (E–G) or monkey M’s (H-I) neurons with significant mutual information to either parameter from 
all sessions, across cortical areas: S1 (E, H), M1 (F, I) and PMd (G). The diagonal lines show where space-TD 
equals to orientation-TD. The dashed ellipses below and above the diagonal lines illustrate clusters of highly-
tuned position-preferring and orientation-preferring neurons, respectively.
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(63.0 ± 20.6% in S1, 62.8 ± 20.3% in M1, and 68.0 ± 15.7% in PMd) and 36.5 ± 16.1% (35.4 ± 14.7% in S1, and 
37.4 ± 17.7% in M1) in monkey K and monkey M respectively.

To quantify the dependence of the firing rate of individual neurons on position and rotational covariates, 
we pulled out the neurons with significant mutual information to position or orientation parameters. Next, we 
applied generalized additive models26,27 (GAM) to these neurons. This analysis was complicated by the fact that 
orientation and position parameters were mildly correlated (Pearson correlation coefficient <0.3 for all sessions). 
To cope with this issue, we included all second-order interaction effects between covariates. We defined the neu-
ronal tuning depth (TD) of a neuron to a covariate or a group of covariates as the fraction of that neuron’s firing 
rate deviance uniquely explainable by that covariate or group of covariates (see Methods).

To assess the composition and properties of the neuronal populations tuned to room position and wheel-
chair and head orientation, we grouped the covariates of our GAM into position-related (x and y) and 
orientation-related (α and β). Next, for each neuron entered into the GAM analysis, we calculated its position and 
orientation neuronal TD, respectively, and plotted position TD against the orientation TD values (Fig. 2E–I). In 
these scatter-plots, each point represents an assessed neuron with significant TD (F-test, p < 0.005) to at least one 
parameter. The scatter-plots showed that many M1, S1, and PMd, neurons were tuned to both room position and 
orientation parameters. Of the neurons with significant mutual information to position or orientation parameters 
that were used in the GAM analysis, 30.4 ± 17.6% (mean ± std across sessions) in monkey K (S1, M1, and PMd) 
and 25.7 ± 18.5% in monkey M (S1 and M1) showed significant tuning to both parameters (see Table S2–3). 
While representing both position and orientation, neurons could still be classified as position-preferring versus 
orientation-preferring (above and below the diagonal lines, respectively, in Fig. 2E–I). Additionally, for each 
monkey, we defined highly tuned neurons as those with preferred TD (for position or orientation) exceeding 
the median TD for the neuronal sample that entered the GAM analysis in the corresponding recording sessions. 
The proportions of highly tuned neurons and neurons with preferences for either position or orientation tun-
ing varied according to cortical area (S1, M1, or PMd) and monkey (K or M). In both monkeys, the distribu-
tion of TDs was positively skewed because of the presence of highly-tuned neurons (Supplementary Fig. S3). In 
monkey K, the TDs for highly tuned neurons, preferring either location or orientation, were markedly stronger 
(Kruskal-Wallis, p < 0.001; α = 0.05 for Tukey’s multiple comparison; on TDs pooled over all sessions) for PMd 
neurons (0.011 ± 0.020; session pooled median ± interquartile range) than for M1 neurons (0.005 ± 0.003) and 
S1 neurons (0.006 ± 0.004). The GAM showed that most neurons were position preferring in PMd, where they 
constituted 81.9 ± 6.5% (mean ± std) of all neurons and 91.5 ± 5.0% of highly tuned neurons. In M1, 32.1 ± 19.0% 
of all neurons and 44.8 ± 13.1% of highly tuned neurons were position-preferring. In S1, 53.1 ± 16.8% of all neu-
rons and 71.9 ± 16.6% of highly tuned neurons were position-preferring. The percentage of all neurons that were 
position-preferring in PMd was significantly higher than in M1 (Friedman’s test, p < 0.001; α = 0.05 for Tukey’s 
multiple comparison) but not than in S1. The percentages of highly-tuned neurons that were position-preferring 
in both PMd and S1 were significantly higher than in M1 (Friedman’s test, p < 0.001; α = 0.05 for Tukey’s multi-
ple comparison). Although M1 had fewer position-preferring neurons, a clear cluster of neurons with high TD 
for position was found in this area (marked by an ellipse in Fig. 2F). In monkey M, preferred TDs were lower 
compared to monkey K (p < 0.005, Wilcoxon rank-sum test, neurons pooled over sessions; see also Fig. S3), and 
position-preferring and orientation-preferring neurons were approximately equally represented in both M1 and 
S1 (Friedman’s test; See also Table S3).

Population tuning characteristics. To visualize the position-tuning properties for the populations 
of position-preferring neurons, we plotted the session average heatmaps that represented ensemble-average 
place fields for the position-preferring neurons; only the room locations outside the docking zone are shown 
(Fig. 3A,B). For each neuron, a place field was defined as the room locations where the neuron’s tuning function 
fitted by GAM exceeded the median value over all room locations. For both monkeys, the heatmaps revealed 
non-uniform distributions of neuronal place fields (Kolmogorov-Smirnov test, p < 0.01), with gradients of neu-
ronal activity in back-front and left-right dimensions. In monkey K neuronal place fields were concentrated in 
the front-right part of the room. To visualize orientation tuning, we plotted the average histogram of the preferred 
α (monkey head angle) and β (wheelchair angle) directions for the orientation-preferring cells over all sessions 
(Fig. 3C–F). A diversity of preferred directions was found (Kolmogorov-Smirnov test, p < 0.01) but their distri-
butions were different, with peaks around 135 degrees (i.e. facing away from the grape dispenser) for both α and 
β in monkey K (Fig. 3C,E), and peaks around 0 and 180 degrees (i.e. facing either toward or away from the grape 
dispenser) for α and β in monkey M, respectively (Fig. 3D,F).

Spatial tuning properties across different days. By recording from the same sample of neurons over 
several daily sessions, we observed that the positional and orientation tuning properties of individual cells often 
remained the same over multiple days. Figure 4A illustrates that the position tuning of monkey K’s PMd neuron, 
the same as the one shown in Fig. 1C, remained stable over nine recording sessions. This neuron consistently 
increased its firing rates when the wheelchair entered the left side of the room (also see Fig. 4B for modulations in 
the firing rate of the same neuron along individual navigation trajectories). Figure 4C illustrates the position tun-
ing of monkey K’s M1 neuron shown in Fig. 1B, which remained stable over six recording sessions. This neuron 
increased its firing rates when the wheelchair was on the right side of the room. Figure 4D illustrates the nine-day 
stability of neuronal spatial patterns in a highly-tuned position-preferring PMd neuron from monkey K, which 
increased its discharge rates as the wheelchair entered the right side of the room but then decreased firing close to 
the right wall. Figure 4E illustrates the nine-session stability of neuronal place-fields patterns in a S1 neuron from 
monkey M, which increased its discharge rates as the wheelchair entered the front of the room.

To estimate the proportion of cells with stable spatial tuning, we first selected neurons from each monkey 
that were highly tuned for at least 70% of all recording sessions. This selection assured that we analyzed only very 
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Figure 3. Place fields and preferred-directions for the neuronal ensembles. (A,B) Heatmaps of ensemble-
average place fields for monkey K (A) and monkey M (B); plots represent averages across all sessions. Only 
position-preferring neurons were included. Each neuron’s place field was defined as the room locations where 
the neuron’s tuning function (as fitted by GAM) exceeded the median value over all room locations. A 
histogram of place-fields was constructed from all position-preferring cells’ place-fields and normalized by the 
number of position-preferring cells in each session. These session histograms were then averaged to produce the 
final heatmap. (C,D) Circular histograms of preferred α directions averaged over sessions for monkey K (C) and 
monkey M (D). For each session, the preferred α directions of all orientation-preferring neurons were extracted 
from their α-tuning curves (as fitted by GAM). The preferred directions were then represented as circular 
histograms. Radial direction represents proportion of neurons. (E,F) Circular histograms for β. Conventions as 
in (C,D).
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stable neurons (in terms of the presence of position tuning) and disregarded the less stable units. In the subse-
quent analyses, all of the selected neurons were considered even if some of them did not have a significant MI in 
a given session. About 35.3% in monkey K (33.3% in S1, 34.4% in M1, and 40.0% in PMd) and 12.1% in monkey 
M (15.3% in S1 and 9.2% in M1) fulfilled this criterion. Using this subset of cells, we then quantified the similarity 

Figure 4. Individual neurons with consistent position tuning across multiple sessions. (A) The position-tuning 
diagram of monkey K’s PMd neuron shown in Fig. 1C for all nine experimental sessions. Session ordered from 
left to right, then top to bottom. The first session displayed corresponds to Fig. 1C. (B) Sample brain-controlled 
navigation trajectories for the same session as the data shown in Fig. 1C. Colors represent normalized firing 
rates along the trajectories. Black ‘*‘ mark the location at the end of each trial, and black ‘o’ mark the starting 
locations of each trial. (C) The position-tuning diagram of monkey K’s M1 neuron shown in Fig. 1B, for the first 
six experimental sessions. Session number increases from left to right. The first session is the same as shown in 
Fig. 1B. (D) Position tuning diagrams of monkey K’s PMd neuron for all nine experimental sessions. Session 
ordered from left to right, then top to bottom. (E) Position tuning diagrams of monkey M’s S1 neuron shown 
in Fig. 1F for nine consecutive experimental sessions, just before the session shown in Fig. 1F. Session ordered 
from left to right, then top to bottom.
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between the neurons’ tuning patterns from pairs of sessions as their correlation coefficients (i.e. between-session 
consistency). Correlation coefficient values were computed similarly between halves of the same session (i.e. 
within-session consistency, see Methods). All correlation values were significantly different from zero (permu-
tation test, p < 0.001) and there was no significant difference between within- and between-session correlation 
values (Wilcoxon rank-sum test). Thus, the across-session variability of neuronal patterns was the same as the 
within-session variability, indicating that neuronal spatial tuning properties stayed unchanged across multiple 
days.

Decoding of position. The position tuning properties of the recorded neurons allowed us to conduct offline 
decoding of the wheelchair’s position using neural network decoders. All these decoders had one hidden-layer 
and used spiking activities from either all neurons with significant MI (all), position-preferring neurons 
(position-pref), or orientation-preferring neurons (orientation-pref). The decoder performance was evaluated by 
calculating the mean prediction error (MPE) in meters, defined as the average distance between the decoded and 
actual locations pooled over the experiment room (Fig. 5A). In monkey K, all and position-pref decoders per-
formed significantly better than chance for all sessions, orientation-pref decoders performed better than chance 
for 7 out of 9 sessions (permutation test, p < 0.05). The all and position-pref decoders significantly outperformed 
orientation-pref decoders (Kruskal-Wallis, p < 0.01; α = 0.05 for Tukey’s multiple comparison). Figure 5B–D 
shows MPE at different room positions for a representative session of monkey K. The all and position-pref decod-
ers predicted location with low errors over large areas of the experimental space (Fig. 5B,C). The orientation-pref 
decoders performed well near the center of the room, but poorly around the left and right boundaries (Fig. 5D). 
In monkey M, all and orientation-pref decoders performed significantly better than chance for 11 out of 23 ses-
sions, position-pref decoders performed significantly better than chance for 10 out of 23 sessions (permutation 
test, p < 0.05). Notably, the average trial durations in sessions with significant decoder performance were signifi-
cantly shorter than those in sessions with chance-level decoder performance (p < 0.01, Wilcoxon rank-sum). All 
three types of decoders had similar performances, with the position-pref decoders yielding marginally better pre-
dictions (Fig. 5A). Monkey M’s decoders all predicted position well near the room center but poorly near room 
boundaries (Fig. 5E–G). Better decoding performance in monkey K compared to monkey M is not surprising, 
since monkey K’s neurons generally had higher TD to position than monkey M. Thus, a higher amount of posi-
tion information translated into higher decoding performance.

Orientation parameters (α and β) were decoded similarly as well using all, position-pref, and orientation-pref 
decoders. The decoding performances measured in Pearson’s product-moment correlation coefficient (cc) are 
shown in Figure S4. In monkey K, prediction of both orientation parameters was significantly better than chance 
for all of the sessions for all types of decoders used. The prediction of α by all and orientation-pref decoders 
were significantly better than that by position-pref decoders (Kruska-Wallis, p < 0.05 and p < 0.01, respectively; 
α = 0.05 for Tukey’s multiple comparison). In monkey M, prediction of α was significantly better than chance 
for all sessions with all and position-pref decoders, and for 20 out of 23 sessions with orientation-pref decoders. 
Prediction of α by all decoders were significantly better than that by orientation-pref decoders (Kruskal-Wallis, 
p < 0.01; α = 0.05 for Tukey’s multiple comparison). Prediction of β was significantly better than chance for 
all sessions with all and position-pref decoders, and for 22 out of 23 sessions with orientation-pref decoders. 
Prediction of β by all decoders were significantly better than that by orientation-pref decoders (Kruskal-Wallis, 
p < 0.01; α = 0.001 for Tukey’s multiple comparison).

Decoding of arm reach state. As the wheelchair entered the reach zone, monkeys initiated reach move-
ments for the grape. Population perievent time histograms aligned on the wheelchair entering the reach zone 
clearly showed reaching-related neuronal activities (Fig. S5). We classified the presence of reaching movements 
from these patterns of neural activities using decision-tree ensemble classifiers. Figure S5 shows the classifi-
cation results in both monkeys as heatmaps of reach-state probability in different parts of the room for rep-
resentative sessions. Classification was performed using different populations of neurons: all neurons with 
significant MI (Fig. S5C,F), subpopulations of position-preferring neurons (Fig. S5D,G) or subpopulations 
of orientation-preferring neurons (Fig. S5E,H). The classifier correctly recognized the reaching state in the 
smaller reach zone for monkey K (Fig. S5C–E) and the larger zone for monkey M (Fig. S5F–H). As the num-
ber of units with significant MI, position- and orientation-preferring units varied across sessions, we plotted in 
Supplementary Fig. S5I the accuracy of classifiers as a function of the ensemble size. The accuracy was quantified 
by Cohen’s κ28, a metric that is appropriate for measuring classification accuracy on unbalanced datasets. All 
of monkey K’s classifiers and approximately half of monkey M’s classifiers, using all units with significant MI, 
achieved good accuracy (0.61 < κ < 0.80, marked by the gray band) on the Landis and Koch scale28. In both mon-
keys, the classifiers’ performance increased with the ensemble size. This dependence was significantly different 
for the neuronal populations in monkey M (nonparametric ANCOVA, p < 0.001), but not in monkey K (nonpar-
ametric ANCOVA)29. For both monkeys, after taking into account the sample size, the classification accuracy did 
not significantly differ by subpopulation type (nonparametric ANCOVA).

Discussion
In the present study, two rhesus monkeys employed a BMI to control the movements of a motorized wheelchair 
in order to navigate to a fixed target location in a room. This experimental setting allowed us to study cortical 
representation of the animals’ body position and orientation. We observed that a significant fraction of S1, M1, 
and PMd neurons exhibited spatial tuning, with both position and orientation encoded by neuronal discharges. 
These neuronal patterns resembled two classes of neurons previously reported in the hippocampus: place cells1–4 
and head-direction cells30,31. Additionally, the spatial tuning properties of cortical neurons remained stable over 
several days, which is also similar to the place-fields observed in the hippocampal place-cells2,32. Since we did not 
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record from the hippocampus, it remains to be examined to what extent space-representing neuronal activity that 
we observed in navigating monkeys would match the hippocampal activity during the same task. We leave this 
question for further studies.

There are several potential explanations that could account for our findings, different from cortical encoding 
of body position and orientation per se. For example, neurons in the sensorimotor and premotor cortical areas 
have been shown to encode rewards33,34, so it is possible that expectation of reward could explain neuronal tuning 
to the distance from the monkey to the grape dispenser9 and the front-back position-selectivity. Yet, position 
selectivity in the left-right dimensions is inconsistent with this hypothesis. Reward expectation depends on the 
distance from the monkey to the reward, but not on the left-right dimension. Even if reward expectation affected 
the neuronal rates in our experiments, a similar result has been reported for monkey hippocampus35. In this latter 
study, the authors concluded that “the primate hippocampus contains a representation of the reward associations 

Figure 5. Decoding of room location from neuronal ensemble activity. (A) Box plots showing the distribution 
of decoding accuracy and chance decoding accuracy (left and right boxes within each group, respectively) 
measured by the mean prediction error (MPE) in meters, in monkey K and monkey M using different 
population of neurons. Only sessions with decoding accuracy significantly above chance are shown. The 
distributions of chance-level decoding accuracy are constructed from the lower-end of the 95% confidence 
interval of the selected sessions’ chance-level error. (**) indicates significant p-value < 0.01 for post-hoc Tukey’s 
multiple comparison following Kruskal-Wallis test. (B–G) Color plots of MPE as a function of room location 
in one representative session each for monkey K (B–D) and monkey M (E–G) – from using all neurons (B,E), 
position-preferring neurons (C,F), and orientation-preferring neurons (D,G).
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of places”. Our findings may be also interpreted in a similar way: activity of M1, S1, and PMd neurons represented 
the 2D location of the monkey’s body with respect to reward.

Motor preparatory activity36 is another possible alternative explanation for our findings. One could suppose 
that monkeys were preparing arm reaching movements in different directions, while traveling in the wheelchair, 
for example leftward reaching when the wheelchair was close to the right wall of the room and rightward reach-
ing when the wheelchair was near the left wall. The flaw with this potential explanation is that our monkeys 
never performed these “eventual” arm reaching movements in different directions. Instead, since these animals 
were over trained, in every session we noticed that only after the wheelchair was docked and the monkeys faced 
the grape dispenser did they produce a comfortable and stereotyped arm reach. Invariably, these arm reaches 
occurred only in the forward direction, relative to the monkeys’ body. As such, reach-related activity could not 
account for the tuning to position. In monkey K, position tuning in the left-right direction was especially strong. 
Yet, this monkey always initiated an arm reach after the wheelchair was securely docked and the movement 
was always in the forward direction. Conversely, monkey M often initiated arm reaching movements before the 
wheelchair was docked, but its neurons were poorly tuned in the left-right dimension during the navigation. 
Based on these considerations, we conclude that motor activity related to arm reaching movements offers a very 
unlikely explanation for the neuronal position encoding observed here.

A more exotic explanation would involve a “virtual arm” that extends from the monkey to the food while the 
monkey navigates. This explanation would resemble Rizzolatti’s premotor theory of attention37 where a move-
ment in a certain direction is prepared but never executed. This hypothesis, however, does not explain why a 
neuron remains tuned to the same spatial location when the chair is rotated.

Another hypothesis is that the position-tuning patterns observed were related to planning and executing 
a whole-body trajectory in space. This explanation does not contradict the characterization of our findings in 
terms of place cells; rather, it could provide an explanation for the function of place-cell tuning in M1, PM, and 
S1. The explanation is also consistent with previous theories, since it has been suggested that allocentric spatial 
information from the hippocampus-entorhinal circuits is projected to the parietal cortex, where it is transformed 
into body-centered coordinates and then relayed to the motor and premotor cortices for execution22. Yet, if this 
were true, a prevalence of egocentric encoding would be expected for M1, S1 and PMd, which we did not observe 
in our experiments.

In the future, it will be interesting to test whether the cortical place fields reported here rotate, like observed 
for hippocampal place-fields, following rotations of environmental cues38,39. While this possibility has yet to be 
thoroughly tested, we have recently reported that place-fields of M1 and PMd neurons also change when the 
objects in the room are moved18. In that study, one monkey (the Passenger) was carried by a wheelchair while a 
second monkey (the Observer) sat in a corner of the room observing the action. A grape dispenser was placed 
in an adjacent corner. While the Passenger navigated toward the grape dispenser along a convoluted trajectory, 
its M1 and PMd neurons exhibited positional tuning that were like the tuning reported here, but they reflected 
the Passenger’s position with respect to the two other salient objects in the room: the grape dispenser and the 
Observer monkey. In control sessions where the location of the Observer monkey was swapped with that of the 
grape-dispenser, the position-tuning patterns of M1 and PMd also flipped accordingly. Although more experi-
ments would need to be done to examine this effect in more detail, these results confirm that the place fields of 
M1 and PMd are defined by the arrangement of objects in the monkey’s environment.

Thus, our findings show that S1, M1, and PMd generate an allocentric representation of space, very much 
like hippocampal place cells. Additionally, our results are consistent with several studies conducted in differ-
ent species showing allocentric spatial tuning of neurons outside the hippocampus. In the ferret primary audi-
tory cortex, populations of neurons tuned to both allocentric and egocentric spatial location of sound were 
found40. The tuning properties were stable through several sessions. In the rat primary visual cortex41, subsets 
of neurons were found to be predictive of the upcoming visual stimulus in a position dependent manner. The 
position-dependency properties were found to be stable and the authors suggested that the visual cortex forms 
an internal representation of a visual scene based on spatial location, mediated by top-down projections from 
the hippocampus via the anterior cingulate cortex (ACC). In the mouse retrosplenial cortex (RSC)42, a subpop-
ulation of neurons were found to express a sparse, orthogonal and continuous representation of a linear envi-
ronment in a fashion highly similar to CA1 place-cells. The place-fields of these neurons were stable through 
time and could remap upon altering of spatial context. Place-cells in RSC were found to be most prevalent in 
the CA1 recipient layers, making the inheritance of spatial-information from the hippocampus a likely expla-
nation. In the rat claustrum43, a subcortical structure that has extensive direct and indirect connections with the 
hippocampal-entorhinal structures, populations of neurons were found to exhibit activities similar to place-, 
boundary-, and object-cells in the hippocampal-entorhinal complex. The place-cells were found to have stable 
place-fields but did not remap according to distal cues or proximal objects. In rat lateral septum44, neurons were 
observed to represent context-specific location-selective firing. The spatial-selective activities were stable across 
days and remapped to different areas. The authors attributed their observations to direct projections from the hip-
pocampus. All these reported areas have direct connections with the medial temporal hippocampal-enthorhinal 
complex.

Thus our results suggest that encoding of body position in space is much more distributed in the brain than 
previously thought. In this context, our findings expand considerably the extent of cortical circuits known to be 
involved in creating an animal’s spatial localization to include the premotor, and the primary motor and soma-
tosensory areas, which are considered as hierarchically low processing cortical regions because they have no 
direct connectivity with hippocampal structures.
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Materials and Methods
All animal procedures were performed in accordance with the National Research Council’s Guide for the Care 
and Use of Laboratory Animals and were approved by the Duke University Institutional Animal Care and Use 
Committee.

Study Design. The objective of this study was to examine the cortical representation during whole-body 
navigation. The experiments performed were described in detail in9, where we demonstrated whole-body naviga-
tion with control signals derived from neuronal ensemble recordings in multiple cortical area. Two adult rhesus 
macaques (monkey K and M) were used for the study. The two monkeys were chronically implanted with arrays 
of microwires in multiple cortical areas of both hemispheres (M1, S1, and PMd). Our multi-channel wireless 
recording system was employed to sample the spiking activities from hundreds of neurons in sensorimotor cortex 
simultaneously. Both monkeys learned to navigate in a room while seated in a mobile robotic wheelchair using 
their cortical activity as the navigation control signal. Cortical ensemble recordings were converted to steering 
commands for the robotic wheelchair based on linear decoding algorithms. Both monkeys successfully acquired 
the ability to steer the robotic wheelchair towards the reward dispenser using this BMI. They were able of achiev-
ing two-dimensional navigation with multiple starting positions and orientations of the wheelchair.

Task Design. The monkeys were operantly conditioned to drive the wheelchair toward a food reward (grape 
dispenser). Each experimental session consisted of trials during which the monkeys navigated to the dispenser 
from one of three possible starting locations at the back of the room. Upon monkey arrival, the automated grape 
dispenser releasesd a grape (Fig. 1A). The wheelchair was then driven away from the grape dispenser to a new 
starting location and orientation. At the beginning of each experimental session we ran passive navigation trials, 
with the wheelchair executing preprogrammed routes identical from day to day. The passive trajectories were cho-
sen empirically. Cortical neuronal responses during the passive navigation trials was used to obtain initial settings 
for two L2-norm Wiener Filters45,46, which decoded translational (forward and backward) and rotational (clock-
wise and counterclockwise) velocity from neuronal ensemble activity. Both translational and rotational veloci-
ties were expressed in chair-centered coordinates, not in room coordinates. Once the decoders were trained, we 
proceeded to brain-control trials during which the robotic wheelchair was steered directly by the cortical signals.

The translational velocity was limited to −0.28 to 0.28 m/s (negative values for backward movements and 
positive for forward), and rotational velocity was limited to −46 to 46 degrees/s (negative for counterclockwise, 
positive for clockwise). If the decoded velocity exceeded the limit, the command sent to the wheelchair would be 
set to the limit values.

The monkeys navigated in a 3.5-by-2.5 m experimental room, and the wheelchair’s dimension was 1.0-by-
0.6 m. The actual drivable area was chosen to be 3.1-by-2.4 m, to ensure safety. When the robotic wheelchair was 
at the drivable area boundary, the program would stop the wheelchair if the decoded commands would have 
moved the robot across the boundary, and would only execute the decoded commands if the robot moved inside 
the drivable area. In the task, the three starting locations had coordinates of (0.86, 0.65), (1.0, 0), and (0.86, −0.65) 
meters, where (0,0) was the room center (Fig. 1A). During brain-control trials, when the wheelchair came close 
to the grape dispenser (docking range), the program would take over the control and park it automatically close 
to the dispenser to ensure the monkeys could comfortably obtain their rewards. When the monkeys came close to 
the grape dispenser, they could reach for the food. From video tracking and wheelchair localization, we compiled 
the range of distances from the dispenser where reach was initiated. The largest such observed distance in each 
session then defined the reach zone (Fig. 1A).

Electrode Implantation. Monkey M was implanted with four multielectrode arrays for a total of 384 micro-
electrodes. Within each array, microelectrodes were grouped in two four-by-four, uniformly spaced grids each 
consisting of 16 microwire triplets of different lengths, for a total of 96 microelectrodes. Each hemisphere received 
two arrays, one each in the primary motor cortex (M1) and primary somatosensory cortex (S1). In the current 
experiment we used 256 channels in monkey M to record from neurons in the bilateral arm and leg areas of M1 
and S1 (Fig. S1A).

Monkey K was implanted bilaterally with six multielectrode arrays containing 96 microwires each for a total 
of 576 microelectrodes. The arrays were implanted in the arm and leg representation areas of M1 and S1 and also 
in the bilateral premotor (PMd) cortices. In the current experiment we used 128 channels in monkey K to record 
from neurons in the S1, M1, and PMd in the right hemisphere (Fig. S1A).

Experimental Apparatus. The experiment apparatus was composed of three components: (1) experiment 
control system (2), wireless recording system, and (3) robotic wheelchair. (Fig. S1B). The experiment control 
system controlled the experimental sequence, performed decoding of neuronal ensemble activity to wheelchair 
commands, dispensed grape, and handled the video tracking of both wheelchair and monkey head pose. The 
wireless recording system recorded neuronal ensemble activity from the monkey brain and sent the neuronal 
data to the experiment control system. The robotic wheelchair accommodated the monkey chair and received 
driving commands wirelessly from the experiment control system. The three components communicated with 
each other in a local network.

Experiment control system. The experimental control system controlled the flow of the experiment, which 
included controlling the experimental sequence such as starting a trial, initiating docking sequence, delivering 
grape reward, and ending a trial. The experimental control system also received the neuronal ensemble spiking 
activities from the wireless recording system, computed and sent navigation (velocity) commands to the robotic 
wheelchair, performed video tracking of the wheelchair and computed the wheelchair and monkey head pose. 



www.nature.com/scientificreports/

1 2SCieNtifiC REPORTS |  (2018) 8:9184  | DOI:10.1038/s41598-018-27472-4

During brain-control trials, the system also ran BMI decoding algorithms that computed navigation commands 
for the robotic wheelchair from the neuronal ensemble activities.

The location and orientation of the wheelchair were tracked using an ASUS Xtion camera (640 × 480 pixels, 
30 frames/sec) mounted on the ceiling of the experiment room. The video tracking software was written in C++ 
and built with OpenCV library. The software processed the video stream, and segmented the video frames to 
determine the robotic wheelchair location. The wheelchair orientation was determined based on the markers 
located at the front and back of the wheelchair. The wheelchair position signals were smoothed using a Kalman 
filter. Similarly, we put color markers on the cover of the monkey headcap to track its location and orientation the 
same way as we tracked the wheelchair. The position coordinate of the wheelchair was taken as the position of the 
center of the wheelchair.

Robotic wheelchair. The robotic wheelchair was a modified, commercially available mid-wheel drive model 
(Sunfire General) manufactured by Drive Medical. A Roboteq VDC2450 dual channel motor controller served 
as the interface between an onboard Raspberry Pi (RP) and the wheelchair motors. The RP received the com-
puted motor commands through User Datagram Protocol (UDP) from the experiment control system, and the 
RP sent the commands to the Roboteq controller via serial data bus connection. As a safety feature, the Roboteq 
was programmed to stop the robotic wheelchair when the communication failed (i.e., the robotic wheelchair did 
not receive any motor commands for 1 s), or hit obstacles (i.e. the wheels failed to turn as current limit was set to 
50 Amps). An emergency manual power disconnect was prominently placed on the vehicle that would disable 
the power to the wheels should a malfunction occur that requires a complete manual shut down. A secondary 
2.4 GHz wireless control system also interfaced to the Roboteq controller and was used as a remote manual wire-
less control to assist in maneuvering the vehicle between experiments when it was not receiving commands from 
the experiment control system.

Wireless recording system. The wireless recording system was built -in-house and described in47. Briefly, the 
wireless recording system comprised the following: headstages, wireless-to-wired bridges, and client software. 
Each headstage includes digitizing amplifiers capable of recording from 128 microelectrode channels, micro-
processors for digital signal processing and spike-sorting after receiving templates from the client software, and 
a 2.4 GHz wireless transceiver. The bridge received incoming radio packets from the headstage and transmitted 
them via UDP to the client software on the recording computer. The client software visualized the incoming data, 
performed spike sorting, and transmitted spike-timing data to the experimental control system.

The recording system was capable of detecting two neuronal units per recorded microelectrode channel. We 
recorded from 128 channels in monkey K and 256 channels in monkey M, yielding for each session 147.0 ± 10.2 
neurons for monkey K and 157.1 ± 23.9 neurons for monkey M on average.

Data Analysis. Data description. We ran 21 sessions with monkey K sessions and 28 sessions with monkey 
M, and sometimes two sessions in a day. Two sessions of monkey K and five sessions of monkey M were excluded 
from the analysis because (1) the sessions had less than 10 attempted BMI navigation trials (3 sessions) (2), 
technical issues occurred during recording (1 session) (3), a decoder was ill-trained and biased toward negative 
velocity (1 session), or (4) communication between the experiment control system and the Raspberry Pi on the 
robot failed frequently (two sessions). Ten sessions of monkey K were further excluded from analysis because (1) 
monkey head orientation was not recorded (eight sessions), and (2) total number of valid BMI trials were less 
than 10 (two sessions). A BMI trial was invalid if the localization algorithm lost track of the wheelchair, if the trial 
was paused, and if movement errors occurred. In the end, nine sessions from monkey K and 23 sessions from 
monkey M entered the analysis. On average, each analyzed session yielded 57.9+/−33.0 and 45.4+/−8.6 valid 
BMI navigation trials by monkey K and M, respectively.

Spike sorting was conducted on the first experimental session. However, neuronal units’ activity profile can 
vary between sessions due to microelectrode shifting and noise level changes. Minimal resorting was conducted 
in subsequent sessions. We excluded neurons that were not present in all analyzed sessions yielding 116 neurons 
in monkey K (27 in S1, 64 in M1, and 25 in PMd) and 124 neurons in monkey M (59 in S1 and 65 in M1).

Position-tuning diagrams. To visualize the position-tuning properties for each neural unit (Fig. 1B–G), we first 
aligned the measured wheelchair position to the neural activities. The wheelchair position measurement was 
down-sampled to 10 Hz, and the spike counts were binned into 100 ms time-bins. Next, each unit’s spike counts 
were z-scored by the 100 ms spike-counts of that unit, then smoothed by a 3-point moving average. The room was 
divided into 5cm-by-5cm spatial bins. Then, we sorted the normalized spike counts into this spatial grid based 
on the corresponding wheelchair position, and averaged the normalized spike counts that fell into the same bin. 
Lastly, missing values of the position-tuning diagram were filled in and Gaussian-smoothed (N = 7, σ = 3) by its 
neighboring spatial-bin values for illustration purposes. The position-tuning diagrams for different directions 
(Fig. 2A–D) were constructed similarly, where the alignment of neural activities and wheelchair position were 
conditioned on the monkey’s head orientation (α) or wheelchair orientation (β) being in a particular range.

Mutual information. Information theoretic analysis for single neurons have been widely used to quantify the 
amount of information conveyed by the firing rate of a neuron about any experimentally measured variable or 
combination of variables10,24. If each stimulus, s, were to evoke its own response, r, then on measuring r one would 
confirm s, and thus gain = −I s log s( ) P( )2  bits of information, where P(s) is the a priori probability of occurrence 
of a particular stimulus s. If instead, the same response can be invoked by several stimuli with different probabil-
ities, this probabilistic stimulus-response relation can be expressed by a joint probability distribution P(s,r). The 
information about s gained by knowing r can be evaluated by
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Averaging over different stimuli s in the set of stimuli S, the average information gain (MI) about the set of stimuli 
S present in the neuronal spike data R, (where R denotes the set of responses r) is
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To obtain the amount of information a neuron’s spike train conveys about the wheelchair’s spatial location 
pre-docking, we first divided the experimental room into 0.4m-by-0.4 m grids (set of stimulus S). Wheelchair 
position measurement and spike counts were aligned and binned into 100 ms time-bins. For each neuronal unit, 
the set of responses R is the distinct spike-count observed in a 100 ms time-bin. Then, we sorted the spike-counts 
into the spatial-grid based on the wheelchair position and constructed joint-probability tables between all pairs 
of stimulus and response for each neuron. The amount of information each unit’s neuronal activity conveys about 
spatial location in bits/100 ms is then computed according to equation (2). We further bias-corrected these MI 
values following the procedures in48 by subtracting a correction-term

= − −C
Nln

N N1
2 2

( 1)( 1) (3)s R1

from each value, where NS is the number of distinct stimulus, and NR is the number of distinct neuronal response. 
We set a neuron’s final mutual-information value to 0 if its bias-corrected mutual-information value was less than 
0, or if its C1 value was greater than 1. MI for orientation parameters (α and β) were computed similarly, with the 
set of stimulus S as α and β values discretized into eight angular bins of 45 degrees each.

We chose the position and angular stimulus discretization to ensure adequate sampling of the stimulus space – 
the number of discrete bins must not be too high for limited sampling effects, even after the correction procedure, 
to bias information estimated based on limited numbers of trials49.

To test the significance of the mutual-information values, we performed permutation tests. We shifted the 
alignment of the wheelchair position, α or β a random interval between 10 to 50 seconds with respect to the neu-
ronal activities and computed the resulting bias-corrected MI values. This was done 1000 times to obtain distri-
butions of permuted MI values. From this permuted distribution the p-value of the actual MI value can be 
obtained for each neuron. The p-values were then corrected by false-discovery rate (FDR) and considered signif-
icant if the corrected value is under 0.05.

Generalized Additive Model (GAM). A generalized additive model is an extension generalized linear model 
(GLM) that involves a weighted sum of smooth functions of covariates26. In GAM, the relationships between 
the individual predictors and the dependent variable combine generalized linear models with the benefits of 
non-parametric smoothing. Nonparametric here means that the shape of predictor functions were fully deter-
mined by the data as opposed to parametric functions that were defined by a typically small set of parameters. 
This provides the advantage of having the ability to capture nonlinear relationships between the response variable 
and the covariates (otherwise known as “tuning function”), while still having the interpretability of a linear model. 
Mathematically, a GAM has the form of

∑ ∑= + += =g E y f x x( ( )) ( ) (4)n
N

n n m
M

m1 1 

where y is the response variable, E y( ) denotes the expected value, .g( ) denotes the link function that links the 
expected value to the predictors xn and xm. The first summation contains the nonparametric terms where fn are 
smooth non-linear functions describing the relationship between xn and the response variable. The second sum-
mation contains the linear terms and  represents the noise term – these are identical to those in a GLM.

In GAM, each fn is represented by a linear combination of spline basis functions that describes the 
predictor-response relationship as a piecewise polynomial. Penalized regression splines are used to prevent overfit-
ting of the spline functions fn. All GAMs in this work were fitted using the mgcv R-package27. To quantify the 
dependence of firing rate of individual neurons on the different parameters, we implemented the following full 
model with mgcv:
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The response variable Y is the number of spikes in 100 ms time bins, Y(t − 1) and Y(t + 1) represent the num-
ber of spikes shifted in time by one time bin. The link function ⋅g( ) was chosen to be log and the response was 
fitted assuming quasipoisson conditional distribution. The predictors x, y, v, ω, α, and β represent the wheel-
chair’s x-position, y-position, linear velocity, rotational velocity, monkey head angle and wheelchair angle, respec-
tively. The functions S() and ti() indicate nonparametric smoothing is to be used. ti() was used because both the 
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main-effects and the interaction between the main-effects were included in the model. In equation(5), the terms 
on the right-hand stand of the first line represents the main-effects of position, wheelchair velocity, head, and 
wheelchair angles, respectively – these can be seen as the “tuning function” or “tuning curve” of the neuron to 
these predictors. Note that the effects of both position and velocity main-effects are to be modeled with 2D 
smoothing functions, as indicated by the bivariate functional form. The second line of equation (5) represents all 
the interaction terms between position and the other three predictors. Since the main-effect of position is 
assumed to be a bivariate function, these terms represent the interaction between a bivariate function with either 
a bivariate (e.g. ωti x y v( , , , )) or univariate (e.g. αti x y( , , )) function. The third and fourth line of equation (5) 
include all the interaction terms between velocity and orientation parameters, and between the orientation 
parameters, respectively. The last line of equation (5) includes the effects of previous and next bins of spike-counts 
– these terms are included for a more complete model specification because spike-counts are known to and 
indeed exhibited autocorrelation50. This full model specification was deemed appropriate after examining diag-
nostic plots.

To assess the relative importance of a group of covariates, we fitted partial models from the full model by 
removing those covariates. For example, to assess the effects of position on a neuron’s activities, we constructed 
the partial model by removing the ti x y( , ) term from equation (5). F-test was conducted to check if the full-model 
is significantly better than the partial-model, i.e. if a neuron is “tuned” to position. To quantify the effects of posi-
tion, or tuning-depth (TD), we calculated the McFadden’s pseudo R-squared51 as

−
D
D

1
(6)

F

P

where DF and Dp are the deviance of the full and partial-models, respectively. Deviance is analogous to the sum 
of squares of residuals in regression by ordinary least squares (OLS) and measures the lack-of-fit of a model. The 
pseudo R-squared quantity is analogous to partial R-squared in OLS and measures how much of the neuronal 
activities can be explained by position. The full and partial model differ only in the main-effect term of position, 
and the interaction terms between position and all other predictors are kept so that equation (6) measures only 
the contributions to the neuronal activities from position alone, excluding those due to predictor correlations. TD 
to position, head-direction α and wheelchair direction β were calculated this way for all neurons.

Place-field heatmap. The GAM fitting process produces the neurons’ position tuning-functions as the bivariate 
position main-effect terms. For each neuron, we defined its place field as the room locations where the neuron’s 
tuning function exceeded the median value over all room locations. A histogram of place-fields was constructed 
from all position-preferring cells’ place-fields and normalized by the number of position-preferring cells in each 
session. These session histograms were then averaged to produce the final heatmap.

Preferred-direction histogram. The GAM fitting process produces the neurons’ α- and β- tuning curves as the 
univariate cyclical α and β  main-effect terms. For each neuron, we defined its preferred directions as the argmax 
of the tuning curves. Histograms of the preferred directions were constructed from all orientation-preferring 
cells’ tuning curves and normalized by the number of orientation-preferring cells in each session. These session 
histograms were then averaged to produce the final histogram.

Consistency of tuning properties. To analyze the consistency of individual neurons’ tuning properties within a 
session and across multiple sessions, we first excluded units that were resorted in any of the analyzed sessions. 
Twelve cells were excluded in monkey K and 15 cells were excluded in monkey M. We then selected from each 
monkey neurons that were highly tuned to either spatial location or orientation in at least 70% of analyzed ses-
sions. For each neuron, we constructed a three-dimensional histogram where each bin represents a unique com-
bination of (x-position, y-position, head-direction α). The neuronal activities falling within each histogram bin 
were then averaged. This trivariate tuning function allowed us to compare position- and orientation-tuning prop-
erties at the same time. To ensure adequate sampling, we used 0.1 m discretization for x- and y-positions, and 
divided head-direction into four bins of 90 degrees each.

To evaluate how similar the tuning properties were between two sessions, we obtained the pair-wise con-
sistency index by first calculating the Pearson correlation between each neuron’s trivariate tuning function in 
the corresponding sessions and then averaged that from all neurons. The within-session consistency index was 
calculated similarly by dividing each session into two equal continuous blocks and obtaining a trivariate tuning 
function for each neuron in each block.

To calculate the significance of the consistency index, we performed permutation tests by shuffling the ses-
sions’ neuronal data by a random time between 10 and 50 seconds with respect to the covariates and computing 
all pairwise- and within-session consistency indices. This procedure was repeated 1000 times to obtain distri-
butions of permuted consistency indices. From this permuted distribution the p-value of the actual consistency 
index value was obtained. To compare pairwise- and within-session consistency of tuning properties, we per-
formed the Wilcoxon rank-sum test between pairwise- and within-session consistency indices. The consistency 
indices were considered to be statistically different if the test rejected the null hypothesis at alpha level of 0.05.

Off-line position and orientation decoders. For monkey K, nonlinear autoregressive neural network with external 
input (NARX) decoders were trained and tested off-line to predict position, head-direction α and wheelchair 
direction β. NARX differ from the common feed-forward neural network in that the decoded outputs are fedback 
to the input layer52. This architecture is suitable for time-series prediction because it utilizes the information 
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present in the data’s autocorrelation structure. Position decoders had a single hidden layer with 30 artificial neu-
rons (nodes) fully connected to two output nodes corresponding to the x- and y-position. α and β decoders each 
had a single hidden layer with 10 nodes fully connected to two output nodes corresponding to the sine and cosine 
of the target angle. Decoder output at time t was computed from five 100ms-bins of z-scored spike-counts (each 
bin correspond to time t to −t 4) of the chosen neurons, and three past predictions (time −t 1 to −t 3). For 
monkey M, feed-forward neural network (FFN) decoders were used where the decoded outputs were not fedback 
to the input, and all other network configurations stayed the same. We found this produced less noisy predictions 
for monkey M. The NARX and FFN decoders were implemented using MATLAB 2014b’s (Mathworks, Boston, 
Massachusetts) neural network toolbox. All hidden layer nodes had hyperbolic-tangent transfer function, the 
output layer nodes had linear transfer function. All decoders were trained with conjugate gradient descent with 
Fletcher-Reeves updates52 with early-stopping after 15 validation failures.

For each session we performed 10-fold cross-validation on the brain-controlled trial data pre-docking with 
five retrainings per fold, yielding for each fold a best performing decoder for each parameter. The performance 
was measured by either Pearson’s correlation coefficient (CC) between the predicted and actual values for orien-
tation parameters, or mean prediction error (MPE) for position. MPE is defined as the average distance between 
the predicted and actual locations. The median CC (Fig. S4) or MPE (Fig. 5A) across all folds were taken as a 
session’s decoding performance.

To assess the chance decoding performance, the decoders were trained and tested on shuffled session data 
constructed by first shifting the neuronal data by a random amount with respect to the covariates, and then 
shuffling the resulting time series (to destroy the autocorrelation structure). For each session-population-type 
combination, this was done 100 times to obtain 95% confidence intervals for chance decoding performance, from 
which we obtained the p-value of actual decoding performance.

To visualize the location prediction performance over space (Fig. 5B–G), we first concatenated the prediction 
error, defined as the distance between the predicted and actual locations, from all 10 folds of testing data. These 
prediction errors were then sorted into the spatial-grid defined in position-tuning diagram and averaged within 
each bin. Lastly, spatial bins with missing values were filled in and Gaussian-smoothed (N = 5, σ = 2) by the val-
ues of its spatial-bin neighbors.

Reach activity. Population peri-event time histograms (PETHs) aligned on the wheelchair entering the reach 
zone was constructed from smoothed z-scored spike-counts (100 ms time bins, 3-point moving average) from all 
brain-controlled trials in a session. Neuronal units were sorted by the slope of its peri-event activities, as calcu-
lated by ordinary linear regressions (Fig. S5A–B).

Reach decoder. For brain-controlled trials in each session, we labeled all neuronal activities inside the reach-zone 
as reach-related, and all neuronal activities outside as navigation-related. There was roughly nine times as many 
navigation-related time points as reach-related in each session, making the data-set highly imbalanced. Principle 
component analysis (PCA) was first conducted on the smoothed z-scored spike-counts (100 ms time-bins, 
3-point moving average). Ensemble decision tree classifiers were then used to classify reach activities from the top 
five PCs. Each ensemble classifier had 400 decision trees53 with minimum leaf-size of 20, and was trained using 
MATLAB 2014b’s fitensemble function. Random under sampling (RUSBoost)54 was chosen to fit the ensemble 
classifiers. For each session, we performed 5-fold cross-validation, yielding for each fold an ensemble classifier. 
The performance of each classifier is measured by Cohen’s κ28,49 between the actual and predicted labels (reach or 
not) on the testing data. Cohen’s κ takes into account of the distribution of the actual labels and is an appropriate 
measure for imbalanced data classification. The κ values for all five folds were averaged to obtain each session’s 
reach-classification performance.

To visualize reach-classification in space (Fig. S5C–H), we first concatenated the predicted probabilities 
(scores) of reach from all five folds of testing data in a session. The score of reach at each time point is the mean 
terminal leaf probability across all 400 decision-trees in the ensemble classifier at that time. We then sorted the 
scores into the spatial-grid as defined in position-tuning diagram and averaged the scores that fell into the same 
bin. Lastly, spatial bins with missing values were filled in and Gaussian-smoothed (N = 5, σ = 2) by the mean 
scores of its spatial-bin neighbors.

Statistical analysis. To assess the difference between preferred TDs among brain regions within the same 
monkey, we used the Kruskal-Wallis test with Tukey’s multiple comparison on neurons pooled over all sessions. 
To assess the difference in proportion of neurons tuned to space or orientation among brain regions within the 
same monkey, we used Friedman’s test with Tukey’s multiple comparison, where sessions were a repeated meas-
ure. To assess the difference between preferred TDs between different monkeys, we used Wilcoxon rank-sum test 
on neurons pooled over all sessions for each monkey. To compare the position and orientation decoding perfor-
mance from using different neuronal populations, we used Kruskal-Wallis test with Tukey’s multiple comparison. 
To assess the uniformity of the population place-field-heatmap (Fig. 3A,B) and preferred-direction histograms 
(Fig. 3C–F), we used the Kolmogorov-Smirnov test to compare those distributions against the uniform distribu-
tion. To assess the decoding of reach-state taking into account o the ensemble size for reach state decoding, we 
used nonparametric ANCOVA. We consider a statistical test to be significant if p < 0.05, and all Tukey’s multiple 
comparison had α level of 0.05.
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