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PrESOgenesis: A two-layer multi-
label predictor for identifying 
fertility-related proteins using 
support vector machine and pseudo 
amino acid composition approach
Mohammad Reza Bakhtiarizadeh1, Maryam Rahimi1, Abdollah Mohammadi-Sangcheshmeh1, 
Vahid Shariati J2 & Seyed Alireza Salami3

Successful spermatogenesis and oogenesis are the two genetically independent processes preceding 
embryo development. To date, several fertility-related proteins have been described in mammalian 
species. Nevertheless, further studies are required to discover more proteins associated with the 
development of germ cells and embryogenesis in order to shed more light on the processes. This 
work builds on our previous software (OOgenesis_Pred), mainly focusing on algorithms beyond what 
was previously done, in particular new fertility-related proteins and their classes (embryogenesis, 
spermatogenesis and oogenesis) based on the support vector machine according to the concept of 
Chou’s pseudo-amino acid composition features. The results of five-fold cross validation, as well as 
the independent test demonstrated that this method is capable of predicting the fertility-related 
proteins and their classes with accuracy of more than 80%. Moreover, by using feature selection 
methods, important properties of fertility-related proteins were identified that allowed for their 
accurate classification. Based on the proposed method, a two-layer classifier software, named as 
“PrESOgenesis” (https://github.com/mrb20045/PrESOgenesis) was developed. The tool identified 
a query sequence (protein or transcript) as fertility or non-fertility-related protein at the first layer 
and then classified the predicted fertility-related protein into different classes of embryogenesis, 
spermatogenesis or oogenesis at the second layer.

Proteins are involved in different aspects of life activities and play critical roles in various biological processes 
such as the early stages of life development1. Germline developmental events including spermatogenesis and 
oogenesis, and also other variety of differentiation processes such as embryogenesis and organogenesis are regu-
lated by a number of protein signaling cascades which are critical for normal development2–5. Gametogenesis is 
the first stage in sexual reproduction, by which haploid sperm and egg cells are formed from the diploid gamete 
cells in the ovaries and testes. This process is called oogenesis in the female and spermatogenesis in the male2–5. 
Embryogenesis (or embryo development) is the development of a fertilized egg that fuses with a sperm, forming 
a zygote. After zygote stage, many changes occur and the embryo undergoes several mitotic divisions to generate 
tissues layers that eventually develop into specific organs6,7. During oogenesis, spermatogenesis and embryogen-
esis cells initially proliferate and then differentiate into specific tissues. Moreover, oogenesis and spermatogenesis 
are tightly regulated complex processes critical for fertility8,9. Therefore, because of the importance of proteins 
related to the fertility, their large-scale identification will provide a knowledge base for detailed understanding of 
biological processes and the mechanisms underlying each step of spermatogenesis, oogenesis and embryogenesis.

A survey of the UniProtKB/TrEMBL databases showed that a large number of un-reviewed proteins exists, 
which are not annotated and yet to be reviewed. Furthermore, owing to the availability of large number of 
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proteins generated in postgenomic age, wide varieties of unannotated data sets are accumulated in various spe-
cies and databases10. On the other hand, an investigation of protein folding, structure, and function has remained 
experimentally costly, time consuming and requires sophisticated technical equipment. Hence, there seems to be 
some benefit in developing efficient computational approaches that can predict protein functions timely and pre-
cisely8,11–16. By applying such computational models, it is possible to provide an advantageous and powerful sub-
stitutional strategy for automating whole proteome annotation without costly and time-consuming experiments.

Over the years, different methods have been proposed for predicting the putative function of unannotated 
proteins17,18. The sequence similarity-based search tools, such as BLAST and PSI-BLAST are among the most 
robust approaches that have been extensively applied for predicting the unknown protein annotation13,19–21. These 
approaches become more challenging, once the similarity between the input and target sequences is not too 
much19,21–23. To overcome this obstacle, a great deal of attention has been given recently to predict the protein 
function by applying machine learning based methods. The reliability and efficiency of such methods are well 
demonstrated in different areas12,13,24–27. The higher performance of these methods can be attributed to their 
ability to learn the underlying rules in training datasets by optimizing the related parameters during the model 
development. Among the variety of machine learning algorithms which have been proposed in the literature, 
support vector machine (SVM) is one of the state-of-the-art algorithms and well suited. It is widely believed that 
SVM is a most promising classifier in different disciplines because of its high accuracy, as well as its power of high 
dimensional data handling12,13,28–32.

In a previous study12, for the first time, a model for identifying proteins related to oogenesis was constructed 
using SMV. Based on the constructed model, OOgenesis_Pred software was developed, which provides a conven-
ient way to annotate the candidate proteins. For the development of this software, a new algorithm was offered 
to predict not only the proteins involved in oogenesis, but also those implementing spermatogenesis and embry-
ogenesis processes. It is believed that discrimination of biological functions will become more accurate if a col-
lective approach which considers the different kinds of fertility related proteins and their functions are used. 
Actually, this kind of multi-prediction systems may lead to deeper informative data. Thus, herein, this study 
aimed to employ the multi label theory in order to develop a new algorithm based on previous SVM classifier 
along with informative protein physicochemical features. It is expected that this software will be useful in simulta-
neously predicting the proteins involved in oogenesis, spermatogenesis and embryogenesis processes. Evaluation 
through a five-fold cross validation and independent test dataset were applied to prove the validity of this method 
and to check its efficiency, reliability and robustness for prediction of fertility-related proteins.

Methods
Datasets. To develop a powerful statistical predictor tool and to train and test it, a high quality and objective 
benchmark dataset is need. This step is the most important concern in any machine learning method33,34. To this 
end, the following steps were performed:

 1. The proteins sequences were collected through searching the UniProtKB database (release 2017_4) with 
gene ontology terms “oogenesis”, “spermatogenesis” and “embryogenesis”, individually, and then, the initial 
positive datasets for each fertility-related protein classes were created.

 2. Then, only the reviewed proteins which have been experimentally annotated, with the length <6000 or 
>60 amino acids were selected.

 3. The homologous sequences from the datasets using CD-HIT software35 were eliminated to ensure that any 
two sequences shared a pairwise sequence identity of less than 50%.

 4. Thereafter, the protein sequences with non-canonical amino acids such as B, X, and Z were excluded.

In this study and by adopting the aforementioned steps, a total of 345, 641, and 831 proteins for “oogenesis”, 
“spermatogenesis” and “embryogenesis” classes, respectively were obtained, which constituted the positive data-
sets in this direction. The protein sequences of the negative dataset were also constructed using the UniProtKB 
database (release 2017_4)12,13. Briefly, the database was depleted by comprehensive searching of all keywords 
suspicious of implying fertility functionality. Only reviewed proteins with length of <6000 and >60 and canon-
ical amino acids were retained. The CD-HIT software with a 50% cutoff was used to remove the highly similar 
sequences.

Datasets λ*

Five-fold cross-validation test Independent evaluation test

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

MCC 
(%)

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

MCC 
(%)

1 0.02 82.8 82.86 83.15 65.57 83.33 84.62 80.88 66.7

2 0.001 84.06 83.21 85.04 68.13 83.33 84.62 80.88 66.7

3 0.02 85.33 83.57 86.99 70.71 84.06 86.15 81.16 68.23

4 0.02 82.05 80.71 83.39 63.87 86.23 86.15 84.85 72.4

5 0.001 81.89 81.79 82.37 63.76 82.61 84.62 79.71 65.32

Average 0.01 84 83 85 79.4 84 86 82 67.87

Table 1. Five-fold cross-validation and Independent evaluation (IE) test results of the SVM method for 
oogenesis datasets. *The optimum λ parameter value of kernel function of SVM using a grid-search technique 
based on five-fold cross-validation. Also, the optimum parameter C value was obtained 100 in all of models.
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In the next step, the domains of all proteins (negative and positive datasets) were compared with each other 
and proteins with a shared domain were removed from negative datasets. To accomplish this, all related domains 
were extracted through Pfam database. This enabled the construction of a more reliable negative dataset, which is 
solely constructed by non-fertility related proteins. Eventually, a number of 342,891 non-fertility related protein 
sequences were obtained as negative dataset.

The resulting positive (minority class) and negative (majority class) datasets were extremely unbalanced, an issue 
which is known as the class imbalance problem. Such an imbalance always has undeniable impact on classification 
results and would lead to a higher prediction rate in favor of majority class36. To overcome this issue, a commonly 
used approach, called random sampling solution (reducing the majority class)37, was used. For this purpose, proteins 
were randomly selected from the negative dataset at the same size of the positive datasets (without replacement). 
This was performed to generate a balanced benchmark dataset and to minimize influences of the larger negative 
dataset. However, the efficiency and capability of the predictor cannot be accessed using only one random sample 
from the negative dataset38. Hence, to increase the confidence which is preserved by the present diversity in the nega-
tive dataset in random sampling processes, each positive dataset was mixed with five non-overlapping negative sam-
ples (drawn without replacement from negative dataset). In other words, the negative dataset was first divided into 
five sub-datasets with non-overlapping sequences, where the number of sequences in each sub-dataset was equal to 
that of the positive dataset. Then, the negative sub-datasets and the positive dataset were combined to form a new 
dataset. Eventually, five new datasets were constructed for each class. Moreover, to create a general fertility-related 
protein class, all the positive datasets were incorporated and mixed with five different negative sub-datasets. By so 
doing, 20 benchmark datasets were constructed, with each being applied to train a different SVM model (three 
classes including embryogenesis, spermatogenesis and oogenesis along with incorporation of all these classes, and 
each class was combined with five different negative samples).

Figure 1. Summary of our pipeline for developing PrESOgenesis.
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It is worth noting that cd-hit-2d tool from CD-HIT package was applied across the positive and negative 
sequences in each benchmark dataset to remove the sequences with 100% identity. This task was possible due to 
the incomplete annotation of protein sequences in UniProtKB database. Therefore, it is not too far from expected 
that some negative sequences are identical with positive sequences in each benchmark dataset. The complete 
information and details of these benchmark datasets is provided in Supplementary File 1. Also, the exact number 
of proteins in each of the train and test datasets are displayed in Fig. 1.

Extraction of protein features. Owing to all the existing machine-learning methods which can only 
handle vector but not sequence samples, a crucial step in computational biology and in the construction of 
machine learning-based classifier is the formulation of protein sequences with an effective mathematical vector 
or a discrete model. In this regard, the pseudo amino acid composition (PseAAC), proposed by Chou (Chou’s 
PseAAC)39, is an efficient and widely used method for the conversion of a protein sequence to a vector for devel-
oping different predictors12,13,33,40–48. The PseAAC makes use of a set of more than 20 discrete factors to represent 
a protein sequence and captures its key features without completely losing its sequence-pattern information19. In 
the current study, using the concept of Chou’s PseAAC, the protein sequences were encoded with a multi-feature 
integration strategy to fuse the six different modes of Chou’s PseAAC, using protr package. This package offers 
a comprehensive and unique tool for generating diverse sequence descriptors of protein sequences49. In total, a 
number of 1920 features were extracted including a 420 dimensional vector indicating amino acid composition 
and dipeptide composition, a 720 dimensional vector representing Moreau-Broto autocorrelation, Moran auto-
correlation and Geary autocorrelation descriptors, a 147 dimensional vector indicating composition, distribution 
and transition, a 160 dimensional vector indicating sequence-order-coupling number and quasi-sequence-order 
descriptors, a 130 dimensional vector indicating Pseudo amino acid composition (Type I PseAAC) and amphi-
philic pseudo amino acid composition (Type II PseAAC), and a 343 dimensional vector indicating Conjoint Triad 
descriptors. Previous studies have shown the efficiency and robustness of these features in predicting the protein 
function12,13. The detailed description of these features is provided in Supplementary File 2 (S1).

Support vector machine (SVM). Different methods have been used to predict the protein function, such 
as decision tree50, random forest51, neural network13 and ensemble learning52. In this study, SVM was applied to 
develop all possible models for prediction of fertility-related protein, due to its excellent learning ability and good 
capability for non-linear classification46,53. SVM is a supervised learning hypothesis which can transform the 
non-linearly separable input vector into a high-dimensional Hilbert space and construct an optimal hyperplane 
to classify two types of samples54. As SVM can transform the input vector from a low dimensional space to a 
higher dimensional space, its generalization power is better than other machine learning methods for majority of 
classification tasks. Accordingly, this method has been extensively used in bioinformatics for pattern recognition 
as well as protein structure and function classification12,13,31,46,55–61. LIBSVM package (version 3.22)62 was used to 
implement SVM using radial basis function (RBF) as kernel function. The kernel function determines the learn-
ing ability of SVM and prediction performance can be improved by an appropriate choice of kernel function63. In 
this study, RBF was used due to its suitability for non-linear classification as well as its good general performance. 
For achieving the best model, the optimal values of tunable parameter C and the kernel width parameter γ were 
determined by the grid search method; this method selects the values of parameters with the consideration of 
the highest accuracy based on five-fold cross validation. To train and test the model, the benchmark datasets 
were divided into two independent subsets, training (80% of the benchmark dataset) and testing datasets (20% 
of the benchmark dataset). To carry out five-fold cross-validation, the training dataset was randomly split into 
five sub-datasets with approximately equal size. For each cross validation, SVM model was trained based on four 
sub-datasets (called sub-training set) and the other sub-dataset was used as testing set (called sub-testing set). 
The process was repeated five times to ensure that each sub-dataset was used once as the sub-testing set. The five 
validation results were then combined to generate a single estimation. Since possibly in the binary classification 
mode, the constructed model can be overfitted to the training dataset, the testing dataset which is definitely blind 
to the process of model training, was used to further evaluate the effectiveness of the predictor.

In this study, a novel two-layer classification framework was developed, as the SVM model in the first-layer 
classifier was trained with all the training datasets (oogenesis, spermatogenesis and embryogenesis), serving to 

Datasets λ*

Five-fold cross-validation test Independent evaluation test

Accuracy 
(%)

Sensitivity  
(%)

Specificity  
(%)

MCC 
(%)

Accuracy 
(%)

Sensitivity  
(%)

Specificity  
(%)

MCC 
(%)

1 0.03 82.15 82.12 82.59 64.28 85.99 85.12 85.12 71.88

2 0.03 85.17 81.92 88.02 70.53 84.05 84.3 82.26 68.04

3 0.04 82.73 81.54 83.94 65.47 84.44 84.3 82.93 68.8

4 0.03 83.61 82.88 84.51 67.23 88.33 86.78 88.24 76.56

5 0.05 84.1 81.92 86.06 68.29 81.71 80.99 80.33 63.31

Average 0.04 83.55 82.07 85.02 67.16 84.9 84.29 83.77 69.71

Table 2. Five-fold cross-validation and Independent evaluation (IE) test results of the SVM method for 
spermatogenesis datasets. *The optimum λ parameter value of kernel function of SVM using a grid-search 
technique based on five-fold cross-validation. Also, the optimum parameter C value was obtained 100 in all of 
models.
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predict a query protein sequence as fertility or non-fertility related protein. The SVM models in the second layer 
were trained with oogenesis, spermatogenesis and embryogenesis training datasets, separately as binary pre-
dictor to further identify the class of the predicted protein in the previous layer (oogenesis, spermatogenesis or 
embryogenesis).

Performance evaluation. To quantitatively analyze the efficiency of the proposed predictor, all the SVM 
models were evaluated with four wildly used performance measures, including specificity (Sp, ability to correctly 
identify non-fertility), sensitivity (Sn, ability to correctly identify fertility), accuracy (Acc, overall accuracy of 
the discrimination between positive and negative) and Matthew’s correlation coefficient (MCC, a correlation 
coefficient between the observed and predicted binary classifications, which takes into account both over- and 
underpredictions). To make these performance measures easily understood by readers, a set of equations were 
applied as follows64:
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In the above equations, N+ and N− represents the total number of the positive and negative protein sequences 
investigated, respectively, whereas −

+N  represents the total number of the positive proteins incorrectly predicted 
to be negative and +

−N  represents the total number of false prediction which is incorrectly predicted true. For 
example, when =−

+N 0 implies that none of the fertility-related proteins were mis-predicted to be a non-fertility 
related protein, so the sensitivity is 1. Also, when =+

−N 0 implies that none of the non-fertility related proteins 
correctly predicted as fertility-related proteins, so the specificity is 1.

In the statistical prediction, independent dataset test, subsampling (K-fold cross validation) test, and jackknife 
cross-validation are often employed to examine the predictive capability of a predictor. As demonstrated in a 
series of studies65–68, among the three test methods, the jackknife cross-validation is deemed as the most objective 
one that always yield a unique result and hence has been widely used to test the quality of various predictors. 
However, to save computational time, the five-fold cross-validation (during training the model) and independ-
ent test (during testing the model) methods were applied to evaluate the models and generate the performance 
measurements.

Feature importance. In machine-learning methods, not all features are equally important for the perfor-
mance of the trained model, especially for high dimension data. Hence, some features make key contributions 
and are more important than the others. Thus, it is imperative to employ feature selection technique in order 
to discover the top ranked feature set according to their predictive contribution. In this study, to discover the 
most relevant and informative features for discriminating fertility-related proteins, a feature selection method 
was employed based on a previous study12. Running towards this, Rapidminer package (Version 5.2) was 
applied to fuse 10 different feature weighting algorithms including chi squared statistic, information gain rule, 

Datasets λ*

Five-fold cross-validation test Independent evaluation test

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

MCC 
(%)

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

MCC 
(%)

1 0.02 80.23 80.74 80.38 45.08 80.12 81.41 77.44 47.33

2 0.03 81.05 79.7 82.39 62.14 79.22 77.56 78.06 58.26

3 0.001 80.75 80.59 81.32 65.2 83.43 78.85 84.83 69.42

4 0.03 82.33 81.19 83.54 67.79 78.92 79.49 76.54 62.23

5 0.001 81.43 81.19 82.04 62.85 80.42 82.05 77.58 60.91

Average 0.02 81.15 80.68 81.93 60.61 80.42 79.87 78.89 59.63

Table 3. Five-fold cross-validation and Independent evaluation (IE) test results of the SVM method for 
embryogenesis datasets. *The optimum λ parameter value of kernel function of SVM using a grid-search 
technique based on five-fold cross-validation. Also, the optimum parameter C value was obtained 100 in all of 
models.
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information gain ratio, gini index, deviation, uncertainty, relief, principle component analysis (PCA) and SVM 
(Supplementary Files 2, S2). Important features were initially defined (based on five general benchmark datasets, 
a combination of all three fertility-related classes) according to their score from each algorithm (a feature with 
score >0.5 marked as important). Then, only the features that were marked as important by at least five algo-
rithms were considered. Eventually, common important features in five benchmark datasets were reported as 
optimal feature set. Furthermore, the optimal feature set was applied to train SVM model, based on five general 
benchmark datasets, and to investigate the performance of this set for discriminating fertility-related proteins.

Results and Discussions
The cascade of molecular and intracellular processes which occur in germ cells during spermatogenesis, oogen-
esis and later embryogenesis are still far from being fully exploited, and this could be a serious bottleneck in the 
success of fertilization process. Identifying specific fertility related proteins and elucidating their function in 
regulation of spermatogenesis, oogenesis and embryogenesis are essential for gaining fundamental biological 
insight intoclinical practice69. Machine learning methods, such as SVM, have been used in many fields and their 
applications in bioinformatics are increasing12,13,24–27. However, these methods are yet to be applied in the study 
of fertility-related proteins and their relevant classes. Therefore, this study aimed to apply SVM-based approach 
in combination with a comprehensive physical chemical property set to construct a method, which could be used 
to predict the probability of a sequence, referred to as fertility related protein, as well as its class. The framework 
diagram of this proposed method is presented in Fig. 1.

Models performance. To obtain an efficient and robust predictor which can achieve the highest accuracy 
for identifying fertility-related proteins, it is crucial to apply appropriate training datasets as well as useful phys-
icochemical properties vectors of proteins. Note that no distinct non-fertility related protein dataset exists that 
can be used here as negative database. Therefore, we took the advantages of our previous method to construct the 
dataset, which employed a stringency approach to create positive and negative datasets12,13. Moreover, compre-
hensive and informative protein physicochemical properties were applied for fertility-related protein classifica-
tion, which has been wildly used to predict the different proteins classes70,71. A total of 20 training datasets were 
used for SVM models training, which were associated with oogenesis, spermatogenesis, embryogenesis and gen-
eral classes (which included all three above mentioned classes). The four performance measurements obtained by 
training and testing SVM models in different classes along with optimized parameter γ for each dataset are listed 
in Tables 1–4. The experimental results of an independent assessment of SVM as a binary classifier over different 
training and testing datasets are stored in the rows in the Table. Using five-fold cross validation approach, SVM 
model achieved an average prediction Acc of 82.97% with average MCC of 66.95 at the first layer (general class).

At the second layer, the average prediction Acc achieved was 84.00% with average MCC value of 79.40 for 
oogenesis, an average of 83.55% prediction Acc with average MCC value of 67.16 for spermatogenesis and 81.15% 
average prediction Acc with an average MCC value of 60.61for embryogenesis (Tables 1–4). Also, the maximum 
prediction Acc of 85.33%, 83.61%, 82.33% and 82.56% was obtained in oogenesis, spermatogenesis, embryogen-
esis and general classes, respectively. These results showed that the performance of the classifiers was similar in 
different classes.

The average Sn and Sp achieved for fertility-related protein prediction was nearly equal and greater than 80% 
in all classes. This finding indicates that there was no bias in classification, implying an equal chance of identifying 
the fertility and non-fertility-related proteins correctly (Tables 1–4). To examine the efficiency of the proposed 
model, five different negative samples were adopted, by random sampling, for each positive dataset. The obtained 
results on different datasets were slightly different, but consistent in general and the average Acc, Sn, Sp and MCC 
were all higher than 80% by five-fold cross validation. Therefore, down-sampling of the negative dataset was quite 
useful.

To further emphasize the effectiveness of the proposed models, roughly 20% of total datasets was retained in 
each class (testing datasets) for independent evaluation of the final model. Similar results were obtained based 
on the independent blind test, as the positive datasets could be discriminated from negative datasets with accept-
able Acc, MCC, Sn and Sp in all classes. This suggests an encouraging capability and robustness of the proposed 
method for identifying the fertility-related proteins and their classes (Tables 1–4).

Datasets λ*

Five-fold cross-validation test Independent evaluation test

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

MCC 
(%)

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

MCC 
(%)

1 0.001 82.94 84.27 82.48 65.87 81.02 80.41 79.48 64.96

2 0.01 82.56 84.34 81.84 70.1 84.46 83.92 83.19 68.82

3 0.03 82.21 82.85 82.23 64.42 82.26 82.75 80.17 64.48

4 0.04 83.31 83.46 83.63 66.62 82.53 81.29 81.52 64.93

5 0.05 83.87 82.85 84.98 67.76 83.77 80.12 84.57 67.41

Average 0.03 82.97 83.55 83.03 66.95 82.88 81.69 81.78 66.12

Table 4. Five-fold cross-validation and Independent evaluation (IE) test results of the SVM method for general 
datasets. *The optimum λ parameter value of kernel function of SVM using a grid-search technique based on 
five-fold cross-validation. Also, the optimum parameter C value was obtained 100 in all of models.
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Feature importance. It is meaningful to determine the most relevant features critical for fertility-related 
proteins prediction, so that it could be possible to figure out the value of each feature and better understand these 
proteins. In this study, a stringency feature selection approach was applied on general benchmark datasets to 
identify optimal feature set. The results led to identification of 22 important features, listed in Table 5, including 
two amino acid frequency features (isoleucine and serine frequency). Additionally, another important feature 
group included one dipeptide frequency feature (IA, isoleucine-alanine), 13 features from the CTD descriptor 
group and five features from the quasi-sequence-order descriptors group and one feature from the conjoint triad 
descriptor. This finding was consistent with a previous study, which confirmed serine as an important feature for 
oogenesis-related proteins prediction12. Interestingly, the importance of serine in fertility-related proteins, espe-
cially oogenesis72–74, was also highlighted in previous studies75–80. Also, how members of the TGF-β superfamily 
induce the constitution of hetero-oligomeric complexes of two distantly related types of serine/threonine kinases 
was also highlighted12.

In order to provide more evidence regarding the important role of serine in spermatogenesis, first the role of 
protamine in maintaining spermatogenesis and spermatozoa quality was highlighted. Protamine is well known 
to function as an essential protein for sperm nuclear condensation. It is a very simple and specialized protein 
which comprises 44 amino acid residues that belongs to three amino acid types: arginine, glycine, and serine. In 
all vertebrate, two structural elements have been identified in protamines. The first, which is facilitating binding 
of protein to DNA, is a series of small ‘anchoring’ domains containing multiple arginine or lysine amino acids. 
The second one is a multiple residues of serine and threonine, which could potentially act as phosphorylation 
sites81. There is also enough evidence that phosphorylation-dephosphorylation events control the deposition of 
protamines on sperm chromatin and the subsequent chromatin condensation. Protamines are highly phospho-
rylated, shortly after their synthesis and before binding to DNA, whereas they become largely dephosphorylated 
during sperm maturation82. Sperm function is regulated by the activation of intracellular signaling systems dur-
ing fertilization, which control protein phosphorylation. Protein phosphorylation is involved in modification of 
proteins, post-translationally, that allows the control of various cellular processes by the cell. Phosphorylation 
mostly occurs on serine or threonine residues, but it is also encountered on tyrosine residues. Protein kinases and 
phosphatases are enriched in sperm and regulate the phosphorylation state of phosphoproteins. Serine/threonine 
phosphorylation are known to occur in spermatozoa and has a pivotal role in the regulation of sperm motility83. 
As a consequence of improved understanding about serine amino acid, perturbation of the cell cycle at the G1–S 
and/or G2–M transitions is likely to occur just following serine deficiency. It was recently demonstrated that in 
the absence of L-serine, the fibroblast cells prepared from knockout embryos are unable to proliferate. Therefore, 
the serine synthesized within cells of embryos plays a crucial role in cell cycle progression of a variety of cell types 
including radial glia during fetal development. With regard to cell cycle dysregulation in the knockout spinal 
cord, it is notable that radial glia cells in the ventricular zone expresses cell proliferation markers PCNA and Ki67, 
and are not assumed to enter neuronal differentiation or a mitotically quiescent G0-like state84.

order Descriptor Protein feature Feature group

1 S Serine Amino Acid Composition

2 I Isoleucine Amino Acid Composition

3 IA Dipeptide Composition (Isoleucine-Alanine) Amino Acid Composition

4 solventaccess.Group1 Solvent Accessibility attribute of Composition CTD

5 solventaccess.Group3 Solvent Accessibility attribute of Composition CTD

6 Schneider.Xr.S QSO in QSOD using Schneider-Wrede distance Quasi-sequence-order

7 Grantham.Xr.I QSO in QSOD using normalized Grantham chemical distance Quasi-sequence-order

8 Grantham.Xd.1 QSO in QSOD using normalized Grantham chemical distance Quasi-sequence-order

9 prop7.Tr2332 Solvent Accessibility attribute of Transition CTD

10 prop5.G2.residue0 Charge attribute of Distribution CTD

11 prop5.G2.residue25 Charge attribute of Distribution CTD

12 prop5.G2.residue50 Charge attribute of Distribution CTD

13 prop5.G2.residue75 Charge attribute of Distribution CTD

14 prop5.G2.residue100 Charge attribute of Distribution CTD

15 VS333 Conjoint Triad Conjoint Triad

16 prop2.G1.residue0 Normalized van der Waals Volume attribute of Distribution CTD

17 prop2.G1.residue25 Normalized van der Waals Volume attribute of Distribution CTD

18 prop2.G1.residue50 Normalized van der Waals Volume attribute of Distribution CTD

19 prop2.G1.residue75 Normalized van der Waals Volume attribute of Distribution CTD

20 prop2.G1.residue100 Normalized van der Waals Volume attribute of Distribution CTD

21 Schneider.Xr.I QSO in QSOD using Schneider-Wrede distance Quasi-sequence-order

22 Grantham.Xr.S QSO in QSOD using normalized Grantham chemical distance Quasi-sequence-order

Table 5. The top 22 important features selected by attribute weighting feature selection method for general 
dataset.
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Isoleucine is believed to be genetically related to male fertility through its synthetic and metabolic activities85. 
For instance, mutation of encoding gene of ubiquitin-specific protease 26 (responsible for a valine to isoleucine 
change) has been reported to cause male infertility and adversely affect the testicular function86. Cytochrome 
P4501A1 participates in isoleucine–valine exchange; mutation of its heme-binding region is also associated with 
infertile men87. Haqq et al., highlighted the importance of isoleucine in sex-determining region Y (SRY) protein, 
specifically the orientation of isoleucine side chain in DNA minor groove88. Isoleucine plays essential roles in 
embryogenesis, particularly during fetal development89. Isoleucine is among the branched chain amino acids 
(BCAA), which have been considered as one of the vital elements in fetus development. In this regard, it has been 
shown that BCAA supplemented diets can improve the gene and protein expression of IGF-1 and IGF-2 in fetal 
liver, consequently leading to amelioration of fetal growth restrictions90.

A SVM-based machine learning method was also built using the general datasets for the prediction of 
fertility-related proteins based on optimal feature set. Similarly, five-fold cross validation and independent tests 
were applied to estimate the performance. The performances of the trained model using optimal feature set on 
general datasets are shown in Table 6. When optimal feature set were used, the model could reach (on average) 
81.68%, 79.44%, 79.98% and 59.9 (evaluated by five-fold cross validation) for Sn, Sp, Acc and MCC, respectively. 
Also, the average Sn, Sp, Acc and MCC were 78.53%, 76.15%, 78.32% and 55 based on independent test, respec-
tively (Table 6). As shown in Table 6, once optimal feature set was used for training the SVM model compared 
to the original feature set, there was decrease in the Acc by 3% and 4.6% by five-fold cross validation and inde-
pendent test, respectively. This can be somehow attributed to the stringent feature selection method, which led to 
finding only 22 very important features. However, the models trained by SVM using the optimal feature set could 
classify fertility-related proteins and their classes, with a relatively high accuracy as well as with a relatively high 
and equal sensitivity and specificity (Table 6). Overall, the results in this study imply that a comprehensive feature 
set is more efficient than selected features in recognizing fertility-related protein. It is in complete agreement with 
previous studies suggesting that using a comprehensive and proper protein feature set gives the better result12,13,91.

Software development. A software support is required to make the development of new classification 
models publicly available. In order to enhance the value of our evolving software into practical applications, a 
two-layer classifier called PrESOgenesis (Predict Embryo-, Spermato- and Oogenesis) has been provided freely at 
https://github.com/mrb20045/PrESOgenesis. The best model in each class was selected based on five-fold cross 
validation results for the development of the predictor. The first layer predicts the input sequence, whether it 
is fertility-related or not, using a binary SVM classifier. If not, the classifier is automatically stopped. If yes, the 
sequence is considered as a fertility-related protein candidate and is subsequently submitted into the second layer. 
Then, in this layer, three binary SVM classifiers (for oogenesis, spermatogenesis, and embryogenesis classes) are 
applied to determine to which classes of fertility-related proteins they are assigned. The class is designated as one 
of the three categories (oogenesis, spermatogenesis or embryogenesis), on the basis of highest SVM score. In 
this study, a two-layer classifier was proposed for predicting fertility-related protein. The high efficiency of this 
method has been reported in previous studies such as predicting membrane proteins92, enhancer prediction93, 
remote protein homology detection94, identifying piwi-interacting RNAs34 and miRNA Drosha processing site 
detection95.

PrESOgenesis can be used by a wide variety of researchers with limited knowledge of the SVM computing 
environment, since it just requires simply upload sequence(s) in FASTA format for prediction. The user receives 
the prediction reports as output and the estimated probability scores. Probability score (ranging from 0 to 1), 
which reflect the confidence of decisions, is assigned to each predicted protein. PrESOgenesis marks inputted 
sequences with probability score >0.5 as fertility-related protein (first layer) or one of the fertility-related classes 
(second layer). However, the threshold can be adjusted by users to adjust the false positive results (higher score 
can lead to lower false positive).

Protein or mRNA transcript sequences can be used as input sequences to PrESOgenesis. Accordingly, the soft-
ware was equipped with TransDecoder tool (version 3.0.1, http://transdecoder.sourceforge.net), which obtained 
the candidate protein region based on the open reading frame (ORF) and nucleotide composition. Then, the 
predicted protein sequences were automatically inputted to the first layer of classifier for predicting their potential 

Datasets λ*

Five-fold cross-validation test Independent evaluation test

Accuracy 
(%)

Sensitivity  
(%)

Specificity  
(%)

MCC 
(%)

Accuracy 
(%)

Sensitivity  
(%)

Specificity  
(%)

MCC 
(%)

1 0.05 79.95 82.1 79.15 59.9 79.5 80.12 77.18 58.99

2 0.08 79.74 80.88 79.53 59.46 77.99 77.78 76 55.9

3 0.09 80.12 81.29 79.88 60.22 77.03 78.36 74.24 54.11

4 0.04 79.91 82.24 79.02 59.68 77.58 78.07 75.21 55.13

5 0.09 80.19 81.9 79.63 60.37 79.5 78.36 78.13 50.91

Average 0.07 79.98 81.68 79.44 59.92 78.32 78.53 76.15 55

Table 6. Five-fold cross-validation and independent evaluation test results of the SVM method for general 
datasets with selected features. *The optimum λ parameter value of kernel function of SVM using a grid-search 
technique based on five-fold cross-validation. Also, the optimum parameter C value was obtained 100 in all of 
models.

https://github.com/mrb20045/PrESOgenesis
http://transdecoder.sourceforge.net
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as fertility-related proteins. This capability can be applied to annotate the unknown transcripts that have been 
generated from deep sequencing projects such as RNA-Seq studies.

In this study, to address the issue of whether the new PrESOgenesis has a better or at least comparable perfor-
mance to the previously introduced OOgenesis_Pred, a comparison of the two softwares was made. Towards a 
fair performance comparison, a negative sample including 1000 protein sequences were randomly selected from 
the negative dataset and were used as query. To avoid bias, none of the sequences in the negative sample appeared 
in the datasets used to train both of software. The results showed that PrESOgenesis achieved better performance 
in predicting the protein sequences as non-oogenesis related protein than OOgenesis_Pred. Using these two soft-
ware, 140 (by PrESOgenesis) and 184 (by OOgenesis_Pred) proteins as non-oogenesis-related proteins were iden-
tified (Supplementary File 3). The higher performance of PrESOgenesis can be attributed solely with certainty the 
two-layer prediction architecture of this software, which is equivalent to making full use of the interclass relation-
ships between fertility and non-fertility related proteins. Since PrESOgenesis is the first classifier ever developed 
for identifying fertility related proteins, it is not possible to compare its accuracy precisely against its counterparts 
for exactly the same purpose. However, its power can be compared with some related tools in other areas.

The trained models in this study could achieve an accuracy more than 81%8,11–16,96. The accuracy and robust-
ness of the model could also be evaluated using new fertility-related proteins belonging to different classes which 
were added into Uniprot databases (release 2017_10) since after PrESOgenesis had been developed. Therefore, to 
test the prediction power of PrESOgenesis, proteins sequences were collected again by searching the UniProtKB 
database (release 2017_10) with gene ontology terms “oogenesis”, “spermatogenesis” and “embryogenesis” and 
new added protein sequences were retrieved from the datasets. 18, 39 and 144 new protein sequences were 
obtained in oogenesis, spermatogenesis and embryogenesis classes, respectively. Interestingly, PrESOgenesis 
could properly predict 15 of 18 (83.33%), 35 of 39 (89.74%) and 117 of 144 (81.25%) sequences. These results 
further proved the reliability of PrESOgenesis for identifying fertility-related proteins (Supplementary File 4).

Limitation and future work. Three classes of fertility-related proteins have been focused on in this study; 
though there are other relevant protein classes to fertility. Incorporating such proteins data and thus complement-
ing the training datasets, may well improve the accuracy of predictors and help to reduce the false positive rates. 
Therefore, in future work it is necessary to attempt to add other fertility-related protein classes to the training 
datasets, which can be used in combination to further improve the reliability of the predictor.

Since both user-friendly and publicly accessible web-servers97–99 and databases100,101 represent the direction of 
developing new prediction method, efforts shall be made in future work to provide a web-server for the predic-
tion method presented in this paper.

Conclusions
With the advent of post-genomic era and increasing use of computational techniques, the computational 
annotation of proteins has become a priority research area nowadays. In this study, the hypothesis was that 
fertility-related proteins possess some characteristics which distinguish their sequences from their non-fertility 
counterpart proteins. To this end, six sequence-based feature descriptors were integrated with a vector of 1,920 
dimensions to facilitate the analysis and identification of fertility-related proteins and their classes. Here, for the 
first time, a two-layer classification framework was developed based on the SVM method, called PrESOgenesis. 
At the first layer, each protein was classified by SVM classifier to determine whether it is a fertility-related protein 
or not. If so, it was further classified by three SVM models to determine to which functional classes it belongs. 
Five-fold cross-validations along with independent test indicated that the proposed method is very powerful and 
promising. Also, an in-depth feature analysis was used to identify the most important features for identifying 
fertility-related proteins. A total of 22 important features were identified such as serine and isoleucine frequency 
and showed that they significantly contribute to the prediction. It is anticipated that PrESOgenesis will become a 
very useful bioinformatics tool for predicting fertility-related proteins.
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