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Modelling Peri-Perceptual Brain 
Processes in a Deep Learning 
Spiking Neural Network 
Architecture
Zohreh Gholami Doborjeh   1, Nikola Kasabov   1, Maryam Gholami Doborjeh1 &  
Alexander Sumich1,2

Familiarity of marketing stimuli may affect consumer behaviour at a peri-perceptual processing level. 
The current study introduces a method for deep learning of electroencephalogram (EEG) data using 
a spiking neural network (SNN) approach that reveals the complexity of peri-perceptual processes of 
familiarity. The method is applied to data from 20 participants viewing familiar and unfamiliar logos. 
The results support the potential of SNN models as novel tools in the exploration of peri-perceptual 
mechanisms that respond differentially to familiar and unfamiliar stimuli. Specifically, the activation 
pattern of the time-locked response identified by the proposed SNN model at approximately 200 
milliseconds post-stimulus suggests greater connectivity and more widespread dynamic spatio-
temporal patterns for familiar than unfamiliar logos. The proposed SNN approach can be applied to 
study other peri-perceptual or perceptual brain processes in cognitive and computational neuroscience.

Neuromarketing is a relatively novel area that has been developed to understand the neurobiological mecha-
nisms underpinning preferences towards marketing stimuli, with the view to predicting differences in consumer 
thought processes that might not necessarily be observable in overt behaviour1–5. “Branding” can be considered 
a major factor in consumers’ buying behaviour; thus, “brand familiarity” is typically a proxy for consumer’s pref-
erence towards marketing products6–8. Recent theories of response to branding distinguish sub-processes such as 
brand attachment and attitude towards a brand9, and propose that a bias towards familiar brands may occur at a 
very early stage in information processing.

Understanding how these early stages of processing are affected by familiarity, e.g. by logos, has important the-
oretical implications in the models of memory in general and applications to neuromarketing in terms of objec-
tive evaluation of product presentation and development. Consumers continuously operate with some degree 
of automaticity. Familiarity provokes automaticity, whilst perception and integration of features in unfamiliar 
stimuli require greater cognitive effort10–13. The majority of research on familiarity has been conducted in relation 
to faces, for which distinct neural mechanisms have been proposed for various types of familiarity (e.g., famous, 
personal and visually familiar faces14). Although the last three decades have witnessed development in the mech-
anistic understanding of subconscious behaviour in consumers10–12,15, models of unconscious decisions making 
and choices in the context of neuromarketing have not been fully delineated. Nevertheless, automaticity-related 
studies suggest consumers do not have access to the interior mechanisms that drive their decisions11. Such claims 
might be strengthened by expanding the currently limited empirical evidence from neurocognitive measures.

Whilst functional magnetic resonance imaging (fMRI) studies show recognised brands activate inferior 
frontal gyrus, anterior insula and anterior cingulate gyrus bilaterally16, a greater understanding of the temporal 
dynamics of neurocognitive processes that underpin buying behaviour might be obtained using electroenceph-
alographic (EEG) data. EEG provides a direct measure of electrocortical activity with millisecond precision and 
is sensitive to changes in arousal, perception and cognitive function17. More specifically, EEG measures changes 
in extracellular potentials from large arrays of neurons, predominantly pyramidal cells. The time-locked EEG 
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response to the presentation of a stimulus or behavioural response can be measured as an event-related potential 
(ERP)18.

Consumer-research ERP studies are often concerned with studying the late positive potential (LPP) of the ERP 
waveform. The LPP is a positive component that is elicited approximately 300 ms post-stimulus in response to the 
novel, rare or biologically salient stimuli (P3a) or during effortful target detection (P3b)19,20. Higher P3 amplitude 
could reflect an increase in resources dedicated to the direction of attention (P3a) and/or to updating memory 
(P3b). Neuromarketing studies utilising ERPs to investigate the post-perceptual components of ERP, such as the 
P300, in relation to familiarity21, show higher amplitudes towards familiar than unfamiliar brands, which has 
been interpreted as reflecting strength in categorisation and attitude towards the brand.

The high temporal resolution of ERPs makes it possible to investigate the early stages involved in cognitive 
processes, some of which may occur pre-consciously. Earlier components (N100, P150) occurring between 100 
and 200 ms post-stimulus reflect mechanisms engaged near the onset of perception18. Few studies have investi-
gated how earlier information processing stages are affected by stimuli and the related dynamic spatio-temporal 
patterns of brain activities22,23.

Prior studies have mostly focused on consumer buying behaviour in terms of directly attending to various 
marketing materials in their environment. However, a fundamental question is: How do marketing materials 
impress consumers even when they are not consciously attending to them? Observing and understanding the 
specific details of how these processes occur dynamically over time (especially at a subconscious level) are not 
investigated in depth in current neuroscience research, and little work in computational neuroscience has been 
performed on this topic24. In view of this, the current study proposes a novel computational modelling framework 
that is used here to develop a model of consumer behaviour that represents how early marketing materials are 
perceived at an unconscious level of information processing. The proposed framework is based on recent devel-
opment of deep learning algorithms and neurocomputational models of spiking neural networks (SNNs) which 
incorporate both spatial and temporal components of data25–35. Various SNN architectures have been developed 
thus far, along with their applications for modelling and knowledge discovery across domain areas using various 
high-dimensional spatio-temporal datasets, including brain data36,37.

In this paper, a SNN-based data modelling approach is proposed for learning, modelling, visualising and a bet-
ter understanding of the dynamics of neuroinformation processing and applied here on neuromarketing-related 
EEG data. The proposed SNN has a biologically plausible structure owing to the following reasons:

•	 A brain template (atlas) is used to construct a 3-dimensional SNN model that maps the location of brain 
structures.

•	 Spatial mapping of input features (data variables) in the SNN model preserves spatial information in the brain 
data.

•	 Input data are encoded to spikes, emphasising certain changes in the brain data (signals) at a millisecond 
time scale.

•	 Initialisation of the SNN model uses the brain-inspired small-world connectivity rule.
•	 Biologically plausible learning rules are applied to evolve the SNN functional connectivity in a deep learning 

mode, resulting in long chains of connections.

In the current study, we demonstrate for the first time that such SNN models can learn deep spatio-temporal 
patterns of EEG/ERP data, reflecting peri-perceptual processes during a neuromarketing experiment in which 
familiar and unfamiliar logos are presented. The proposed SNN architecture reveals unstudied components of 
perception of familiar and unfamiliar brands at a peri-perceptual level. This SNN architecture provides unique, 
novel insight into a window of neurocognitive processing that has essentially been technically infeasible thus far.

Results
Statistical Analysis of ERPs.  As an initial analysis, WinEEG (Mitsar system) was used to derive grand-av-
eraged ERP waveforms across 19 channels. Analysis of ERPs was confined to occipital and parietal electrodes 
– O1, O2, P3 and P4 – where the peak amplitudes for early ERP components (N100 and P200) were maximal 
compared to other sites, in the task currently used (Fig. 1).

Mean amplitudes of early components of ERPs in posterior regions were extracted (P100, 100–180; N100, 
100–180 ms; and P200, 180–240 ms) (in Supplementary Tables 1 and 2). The mean amplitudes of P100 in Parietal 
lobe and N100 in Occipital lobe were higher in the right hemisphere for familiar logos than for unfamiliar ones. 
Analysis of variance (ANOVA) was used to test for difference between variables (ANOVA)38 are reported in 
Supplementary Tables 3 and 4.

Repeated-measures ANOVA was performed separately for each time window, with respect to Familiarity 
(familiar, unfamiliar) and Electrode Site (right, left) in the occipital and parietal lobes for 20 subjects. For the 
parietal P200, there was a significant main effect of the factor Familiarity [F (1, 18) = 4.54, p = 0.04 and a signifi-
cant Electrode Site*Familiarity interaction [F (1, 18) = 4.61, p = 0.01].

For the occipital N100, there were significant main effects of Electrode Site [F (1, 18) = 11.45, p = 0.01)] and 
Familiarity [F (1, 18) = 3.51, p = 0.01]. A significant interaction between Electrode Site and Familiarity was also 
observed [F (1, 18) = 4.66, p = 0.04)].

ERP Data Modelling with the SNN-based Methodology.  The brain is a highly interactive and deep 
learning network, but nearly all multivariate models employed in cognitive neuroscience are linear and do not 
model interactions. Understanding of the dynamic patterns of spatio-temporal brain data through the above tra-
ditional analysis is limited because temporal features manifest complex interactions that change dynamically over 
time. Therefore, it is crucial to develop new computational models that are capable of learning spatio-temporal 
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interactions between multivariate data streams. SNNs are the third generation of neural networks and comparing 
to conventional neuronal networks which deal with static vector-based data (temporal information needs to 
be converted into vectors of static features)33, SNNs incorporate spatio and temporal components of data into 
operating. One of the significant aspects of SNNs is their compact representation of space and time that makes 
them suitable for learning spatio-temporal brain data (STBD) and for their analysis, where spatio and temporal 
information are both essential to be preserved.

Therefore, SNN is a way of using spike-time dynamics to extract interactive structures from the brain data, 
without over-fitting to a particular classification problem, and which constrains the immense space of possible 
interactions in a biologically plausible way.

We hypothesise that a properly designed SNN model can be used to model brain data and to detect deep 
spatio-temporal patterns for a better understanding of data. In the second phase of analysis, we have applied the 
SNN-based methodology to evaluate how peri-perceptual processes of the brain can be modelled and under-
stood. Specifically, spatial and temporal features of EEG data are modelled together to better understand the 
interactions and relationship between the data variables over time.

The proposed SNN architecture includes the following functional modules (shown graphically in Fig. 2):

	 1.	 Mapping: Spatially map EEG data into a 3D SNN model that represents a brain template;
	 2.	 Learning: Train the SNN model using spike-time learning rules with the EEG epochs extracted within 

50–200 milliseconds post-stimulus time window;
	 3.	 Pattern visualisation: Visualise the deep-learned patterns of interactions between the EEG channels over 

time as evolved chains of connectivity in the SNN model;
	 4.	 Classification: Classify the learned patterns of spiking activity when familiar and unfamiliar logos are 

presented.

To investigate the consumer performance towards familiar-related logos versus unfamiliar-related logos, 
ERP time series of different time intervals (50, 100, 150 and 200 ms after stimuli presentation) related to the 
peri-perpetual processes of the brain were used. EEG data were mapped using the Talairach brain template39,40, 
as it was also the basis for the 3D SNN model, defining the positioning of the spiking neurons in the model. 
The mapped SNN models were initialised using the small-world connectivity rule41,42 in which a probability of 
a neuron to be connected to another neuron depends on the distance between the two neurons, the larger the 
distance – the smaller the probability. To speed up this initialisation, a radius that defines the maximum distance 
of connections of one neuron to another in the 3D space of the SNN can be defined. We assigned a radius equals 

Figure 1.  Grand average ERP waveforms of 20 subjects across 800-milliseconds epoch after familiar 
versus unfamiliar marketing stimuli presentation. Peak amplitudes correspond to the P100, N100 and P200 
components of ERPs across the EEG channels located at posterior areas of the brain (O1, O2, P3 and P4 
channels). Black line = familiar logos; red line = unfamiliar logos.
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to 2 which means two neurons away from each direction in (x,y,z) coordinate in the 3D SNN model. The initial 
connections are assigned with small random weights, so that on average 80% of them are weighted by positive 
values while 20% of them are weighted by negative values, uniformly distributed, as commonly used in such 
studies (see43,44).

To train the SNN model, EEG signals are first encoded as sequences of binary events of 1 and −1, called 
spikes, representing the positive and negative changes, respectively, in the signal time series. A threshold-based 
representation (TBR)45 technique was applied to every EEG channel time series to encode it as a spike sequence. 
Figure 3 shows a spatial mapping of EEG electrodes into the same 3D space of spiking neurons, positioned accord-
ing to the Talairach template39,40. The generated spike trains from EEG channels are then entered into the spe-
cially mapped SNN models via input neurons and the spatio-temporal patterns of EEG data were captured in 
the form of neuronal connectivity. In Fig. 3(a,b), we visualise the neuronal connections created during the Spike 
Time-Dependent Plasticity (STDP) learning in the SNN models, reflecting the dynamic patterns of EEG data 
corresponding to different epoch lengths: 100 ms, 150 ms and 200 ms after presentation of familiar and unfamiliar 
marketing logos. The average weight of all neuronal connections in each SNN model is also reported in Fig. 3 as 
a metric for comparison. In Table 5 of the Supplementary Material provided, we report the average weight of the 
neuronal connections that were formed around each EEG channel (between input neurons and its connected 
neurons). The connections, generated during learning for an input neuron, reflect on the changes of the data 
in the corresponding EEG channel. As many input neurons spike at different times, reflecting on the dynamics 
of brain activity, clusters of neurons get connected in a chain, reflecting on the temporal dynamics in the mul-
tivariable brain data. The SNN creates a functional connectivity model, where many-to-many neurons become 
connected to capture functional dynamical patterns from the data, even though the learning rule is applied to 
neuron-to-neuron connections.

During the STDP learning process in SNN models, consecutive snapshots of the firing state of the neurons 
were captured to represent a trajectory of dynamic, deep-learned patterns of neurons’ spiking activity with respect 
to the temporal order in which clusters of neurons emitted spikes. Figure 4a,b illustrate the sequential spiking 
activity patterns in the SNN models for familiar and unfamiliar logos. The earlier a cluster of neurons (surround-
ing an EEG channel) fires in time (shown as red neurons, which their post-synaptic potential crosses the firing 
threshold and emits an output spike), the earlier spiking activity is observed in a chain of functional activity. It 
illustrates how early different areas of neurons in the SNN models fired (sent their spikes out) at different time 
frames (every 50 ms) towards familiar and unfamiliar logos. Although there was a similar pathway of spiking 
activity in both models, the size of the activated clusters of neurons was significantly different between the famil-
iar logos and the unfamiliar ones. Numerical information about the number of spikes in time and space is also 
reported in Fig. 4. A comparison between the activated neurons in SNN models, shown in Fig. 4, is presented in 
Supplementary Table 6.

Considering the temporal order in which clusters of neurons around the EEG channels emitted spikes (red 
neurons) during 200 ms (one frame every 50 ms), we captured a chain of sequentially activated areas as a tra-
jectory of deep-learned patterns in the SNN models. As illustrated in Fig. 5, the trained SNN model forms a 
deep architecture as whole spiking input sequences which are learned as chains of spiking activities. Unlike 
hand-crafted layers used in second-generation neural networks46–50, or randomly connected neurons in the com-
puting reservoir of a liquid state machines32, the chains of directional connections established in our proposed 
SNN model (Fig. 5) represent the spatio-temporal relationships (adapted over time) between the sources of the 
spike sequences (the input variables). Due to the scalable size of a SNN model, the chains of connected neurons 
are not restricted in length during learning, which can be considered as unrestricted deep learning, in contrast to 
existing deep learning methods that use a fixed number of layers.

During the STDP learning process, we measured the intensity of the spikes in a cluster of neurons around each 
EEG channel. The intensity is measured as a percentage of the number of neurons that fired among all the neurons 
that are connected to an EEG channel. The spike intensity is reported in Supplementary Table 7. In Table 1, the 
activated areas in the SNN models are labelled as low, medium and strong levels of activation with respect to the 
number of spiking neurons involved at each time frame. As defined in Supplementary Fig. 5, the activation level 

Figure 2.  The proposed SNN architecture performs as follows: encoding EEG data as spike sequences; mapping 
of these sequences into a 3D SNN model created with the use of a brain template; unsupervised learning of 
the spike sequences in the SNN model; supervised learning and classification of the learned patterns in a SNN 
classifier. The Figure was drawn by authors Z.G. and M.D.
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is categorised to low (from 0.1 to 0.4) medium (from 0.4 to 0.7) and high (from 0.7 to 1) representing the per-
centage of the fired neurons among all the connected neurons to an input neuron. The spike intensity in a cluster 
of neurons around each EEG channel i is defined as a percentage of the number of fired neurons divided by the 
number of connected neurons to i. The maximum level of activation at each time frame t is 1 which means all the 
connected neurons to i fire, while 0 refers to the minimum level of activation which means no neuron fires. We 
partitioned this interval to three levels as shown in Supplementary Fig. 5.

Figure 3.  Neuronal connections created during learning in the SNN models, reflecting the dynamic patterns of 
EEG data corresponding to different epoch lengths: 100 ms, 150 ms and 200 ms after presentation of (a) familiar 
marketing logos and (b) unfamiliar ones. Excitatory connections are represented by blue lines, while inhibitory 
ones are in red. The thicker the line, the greater the enhancement of the connection captured after the learning 
process. Neurons in the SNN models are labelled by eight brain areas from the Talairach template39,40: Temporal 
(pink), Parietal (light-blue), Frontal (yellow-green), Sub-lobar (orange), Cerebellar (light yellow), Limbic 
(green), Pituitary (blue) and Occipital (red). The connection weights are averaged and reported for each SNN 
model. For a clear visualisation, we only visualised the connection weight greater than 0.08. The pictures show 
that familiar stimuli result in a higher connectivity and higher connection weights at average.
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This confirms the clear discrimination between perceptions of familiar versus unfamiliar logos at the subcon-
scious level.

When the unsupervised training of the SNN models was completed, we applied a SNN supervised learning 
algorithm35 to train a classifier to identify whether SNN model activity was generated in response to the familiar 
or unfamiliar logo. As described in the materials and methods, twenty participants each performed a three-block 
cognitive task that involved the presentation of both familiar and unfamiliar stimuli. Therefore, for each partic-
ipant, there are three EEG samples per class (6 samples per participant). In total, we had 120 EEG data samples 
used for the classification problem using a leave-one-out cross-validation method. This method involves the crea-
tion of 120 models, one for each sample of data, training the model using the remaining 119 samples, and testing 
the accuracy of each of these models for the left-out sample (unseen sample). For optimisation, we performed 
an exhaustive grid search on the combination of parameters for every model. Each parameter was searched 
within a range, specified by the minimum and maximum, through a number of iterations related to the number 
of steps for moving from minimum to maximum. For every model created out of 120 models, we chose three 
main parameters (STDP learning rate, neuron firing threshold, classifier parameter mod) to be optimised. The 
parameters were selected by assigning 10 steps between the minimum and maximum values of each parameter. 
Therefore, for every model creation, 1000 iterations of training (using 119 samples) and testing (using the single 
holdout sample) were performed using a different combination of these three parameters. Then the parameters 

Figure 4.  Clusters of active neurons (spiking) in the 3D SNN models are illustrated for every 50 ms while 
learning from the input EEG data streams of (a) familiar logos and (b) unfamiliar ones. The value A refers to the 
number of active neurons at each time frame.

Figure 5.  Spatio-temporal patterns of activities in the trained SNN models shown as trajectories of 4 aggregated 
stages (t1 = 50, t2 = 100, t3 = 150 and t4 = 200 ms) during learning in the SNN models for (a) familiar logos 
versus (b) unfamiliar logos. In fact, the time for a deep-learning step in the SNN model is a millisecond, and the 
actual activation trajectories (chains) in the SNN are 200 neuronal clusters long, but here the activity of only 4 
steps of learning are visualised.
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that resulted the best accuracy in most of the iterations, have been reported as the optimal parameters. When 
the optimisation procedure was completed, the most selected values for the parameters across all the 120 models 
were selected as: STDP learning rate = 0.01; neuron firing threshold = 0.5; deSNN classifier parameter mod = 0.4. 
Table 2 presents the overall classification accuracy for the two classes of stimuli.

Discussion
This paper proposes a new methodology and a SNN model for training on EEG data to capture differences in 
dynamic brain activation patterns corresponding to peri-perceptual processes in response to familiar and unfa-
miliar stimuli, exemplified here as marketing logos. The proposed SNN architecture reveals unstudied compo-
nents of perception of familiar and unfamiliar stimuli at a peri-perceptual level. This SNN architecture provides 
unique, novel insight into a window of neurocognitive processing that has essentially been technically infeasible 
thus far. When compared with traditional machine-learning techniques or deep-learning neural networks25–31, 
the proposed SNN model has the following advantages: (1) it preserves the spatio and temporal information both 
together in one model and can be interpreted as this model is spatially structured according to a brain template. 
(2) It does not have a fixed structure or number of layers, so can be as deep as required according to data size. 
(3) It learns spatio-temporal patterns from data through biologically plausible learning rules. (4) It allows for 
fast, on-line learning. (5) It allows for interpretation of the interactions and relationships between the brain data 
variables as reported in Table 1 and Fig. 5. (6) It offers a better classification accuracy compared to conventional 
methods, as reported in Table 2. The classification results of EEG patterns learned in a SNN model confirm that 
the model can discriminate with a high accuracy spatio-temporal patterns generated by familiar versus unfamiliar 
stimuli at an early stage of cognitive processing (around 200 ms).

As illustrated in Fig. 1 and Supplementary Tables 1 and 2, the ERP analysis indicates that familiar items are 
associated with larger response amplitudes over the posterior regions. This might mean that both kinds of stimuli 
drive activity over the same regions, but familiar items drive more activity. Beyond the ERP results, the proposed 

Classes

Brain areas involved at different time frames

Activity 
intensity 50 ms 100 ms 150 ms 200 ms

Familiar

Low T4 P3 F7, Fp1 O1, F7, Fp1

Medium O2 Pz, O2, T6 Pz, P3, P4,Cz F8

Strong — — — O2, T4, Pz, P4, Fp2

Un-familiar

Low O2 O1, O2, T6 P3, T4 O2, T6

Medium — — — O1, P4

Strong — — — T4, Fp2

Table 1.  The activated brain areas are reported according to the numbers of activated neurons in the SNN 
models during learning, over time steps: 50, 100, 150 and 200 ms. The level of activation is denoted as low, 
medium and strong. To perform a comparative analysis, we used conventional methods Multilayer Perceptron 
(MLP), Multiple Linear Regression (MLR) and Support Vector Machine (SVM) for classification of EEG data as 
reported in Table 3. The classification problem was performed using leave-one-out cross validation.

Traditional Machine Learning Methods

Methods
MLP (Multi-Layer 
Perceptron)

MLR (Multiple 
Linear Regression)

SVM (Support 
Vector Machine)

Accuracy in % 47.50 37.50 37.50

F-Score 40.00 39.50 41.00

Table 3.  The classification accuracy of EEG data using Multilayer Perceptron (MLP), Multiple Linear 
Regression (MLR) and Support Vector Machine (SVM) through leave-one-out cross validation (computed 
using NeuCom at www.theneucom.com). The MLP configuration is: Number of Hidden Units: 9; Number of 
Training Cycles: 1800; Output Value Precision: 0.0001; Output Function Precision: 0.0001; Output Activation 
Function: linear. The SVM configuration is: SVM kernel: Polynomial, Degree Gamma: 1.

The proposed SNN-based methodology

Predicted Familiar 
Stimuli (C1)

Unfamiliar 
Stimuli (C2)

Total 
accuracy % F-Score % Sensitivity % Specificity %Real

Familiar Stimuli (class C1) 52 8
83.00 84.00 84.00 86.00

Unfamiliar Stimuli (class C2) 10 50

Table 2.  The classification accuracy of 120 EEG samples of familiar logos (class 1) and unfamiliar logos (class 2) 
are obtained using leave-one-out cross validation in a SNN model. In the confusion table, the rows are the real 
values and the columns are the predicted values.

http://www.theneucom.com
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SNN models discovered the differences in the scalp areas involvement between familiar and unfamiliar logos at 
different time points. It means that SNN models can learn and identify which areas of the brain contribute to an 
increase in ERP and also - how does it happen over time. We could not draw such a conclusion from the ERP 
analysis only. In the current study, the SNN-based methodology is used in integrating the temporal and scalp 
topographic information, such that we obtain a better understanding of the pathways of information processing, 
in addition to have discrete measurements of neuronal response (e.g. ERP component amplitudes).

The SNN models trained on familiar logos suggest stronger connections (Fig. 3), even at early processing 
stages (e.g., 200 ms), across the EEG channels compared to the SNN models for unfamiliar logos. For unfamiliar 
logos (Fig. 3b), connections are generally uniform and cannot be differentiated between the channels at any pro-
cessing stage in the SNN model.

Given that perceptual speed increases as individuals adapt to features of the environment, the current findings 
might reflect a more rapid spread of activation in response to familiar stimuli because they are more common-
place in individuals’ environments. Alternatively, it could be that certain characteristic features of the familiar 
stimuli lead to greater activation across brain regions through activation of schemas (those cognitive frameworks 
or concepts that used for organising and perceiving new information)51. Consumers pay more attention to the 
stimuli that assimilate into their schema while re-interpreting conflicts to the schema as exceptions or reshap-
ing them to assimilate52. Indeed, consumers continuously operate with some degree of automaticity. The more 
familiar the stimuli, the more routine the behavior53. In contrast, the more novel the stimuli or environment, the 
more the conscious mind attends to the circumstances54. Whilst these two hypotheses are not mutually exclusive, 
their differentiation would require further support experimentally in relation to the SNN output as a function of 
familiarity schema activation.

Whilst differences in spatio-temporal activation patterns were most prominent when data from the 200 ms 
epoch were streamed for the training process, more subtle differences were observed at earlier time points, sup-
porting the SNN models as being able to distinguish brands of varying familiarity in brain activation patterns at 
a peri-perceptual stage. For example, as shown in Fig. 4 at the 50 ms time point (T1), activation is observed over 
occipital and temporal regions for familiar logos but is restricted to occipital sites for unfamiliar stimuli. This 
may reflect top-down input to perception of temporal regions, for example from those governing memory and or 
emotion55 for familiar logos. Activation for familiar logos then takes more widespread parallel dorsal and ventral 
routes to activating frontal regions, with possible feedback loops to occipital cortex. Whether these routes relate 
to the “where/how” (dorsal) and “what” (ventral) pathways for visual perception56 should be investigated in future 
research. Such work would provide insight into whether greater restriction of the response to unfamiliar logos 
to the ventral pathway is due to a primary goal of the observer in object recognition (i.e., processing “what” the 
object is). In comparison, larger semantic networks may be activated in response to the familiar logo.

Experimental results are illustrated here mainly to represent visual exploration of the SNN models, but 
numerical information (such as connection weights and spiking intensity) are also facilitated and can be exported 
from the models. For comparative analysis we calculated the average value of connection weights in each trained 
SNN model (Fig. 3) and reported this number as activation level towards each stimulus (Familiar and unfamiliar). 
We obtained a higher activation level of 1.01 in the trained SNN model that corresponds to familiar stimuli at 
200 ms post-stimulus (see Fig. 3, connection weights). Our findings suggest that stronger functional connectivity 
may indicate increased interplay of activated brain areas underlying cognitive functions. More information can be 
obtained from the Supplementary Table 5 in which the averaged connection weights for every single EEG channel 
are reported for both familiar and unfamiliar stimuli. It shows a higher average of connection weights towards 
familiar stimuli at every time frame (0.35, 0.70 and 1.01 at 100, 150 and 200 ms respectively).

Figure 4 illustrates the sequential spikes in the SNN models for familiar and unfamiliar logos from 50 ms to 
200 ms. This figure is supported by numerical information which represents the number of spikes emitted at each 
time frame. It shows more neurons fired and sent out spikes in the SNN model of familiar than unfamiliar in all 
time frames. This information is also reported in Supplementary Table 6 that shows for instance, the intensity of 
spike activation for familiar is 3.7 times greater than unfamiliar. In order to interpret which EEG channels were 
mostly involved in the spiking activity at each frame, Supplementary Table 7 was presented with respect to the 
intensity of activation measured for each EEG channel. This intensity was computed with respect to the percent-
age of the number of spikes in a cluster of neurons around an input neuron (connected neurons to input neuron). 
It shows that the Pz, P4, T4, Fp2 and O2 channels at 200 ms post-stimulus had greater intensity of spikes emitted 
during the learning process for familiar stimuli than unfamiliar ones.

Table 2 summarises the classification accuracy achieved from the proposed SNN method while Table 3 
represents the results of conventional learning techniques. In Table 2 a confusion table is reported to show the 
miss-classified samples versus the correctly classified ones. The conventional machine learning methods pre-
sented in Table 3 deal with vector-based data and do not model the spatio-temporal interactions related to the 
processes that generated the data as it is in the SNN models. Table 2 shows that applying SNN for classification of 
spatio-temporal data resulted in significantly higher accuracy as compared with conventional methods such as 
MLP, MLR and SVM. This can be justified with respect to a vital aspect of SNN that can preserve time informa-
tion along with the spatial information of the sources of temporal data. In the proposed SNN model, each data 
sample for training and for testing the model represents the intensity of all EEG channels within a whole time 
interval, e.g. 200 m sec. During the training process, the temporal information of all channels is entered as a data 
stream to the SNN model through the spatially mapped input neurons and the spiking neurons were dynamically 
processing these inputs. However, in the conventional machine learning methods, each sample is a single input 
vector, where neither temporal- nor spatial information of the data is adequately represented.

Thus, the current results illustrate that our proposed methodology is promising and suitable for pattern rec-
ognition of peri-perceptual brain activity in response to stimuli familiarity. Future work will investigate whether 
it could be used as a tool in the early detection of spatio-temporal patterns generated by other stimuli in relation 
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to neuromarketing. For example, the model might be further developed to recognise patterns of choice behav-
iour, and as such could be used to direct marketing strategies. Thus, future studies should evaluate the potential 
for refinement of the model and application of peri-perceptual processing measures to neuromarketing, as an 
objective measure of consumer preference for logos and product presentation. Although the present study has 
investigated familiarity to logos, the current findings might not be restricted to such stimuli. Thus, future research 
should investigate whether similar effects are seen in relation to familiarity to other stimuli, for example, faces.

Other studies have investigated the roles of the social environment, social attributes and the reward system in 
choosing familiar brands57,58. Thus, future work should investigate brain activation patterns using the SNN model 
in terms of psychosocial factors, personality variables and inter-individual differences that may affect a person’s 
cognitive response to familiar logos and, indeed, brand preference. For example, future studies should investigate 
the early and late ERP components in relation to brand attachment and brand attitude. One might expect the 
earlier components to relate to an empathic attachment to the brand.

In summary, the results of previous neuromarketing research suggest that frontal regions are widely engaged 
in consumers’ preferences and attentional functioning. The results of our study confirm these findings, but further 
extend it to suggest that this effect can be deeply understood through evaluating the activation time and spiking 
intensity across peri-perceptual regions affected by marketing stimuli. Making use of a SNN based methodology 
enabled us to have a better understanding in terms of the dynamics of the brain processes under performing a 
complex cognitive task. The proposed SNN approach can be applied to study other peri-perceptual brain pro-
cesses, such as processes related to decision making, to human past-experience and/or to human preference.

Materials and Methods
The research is supported by the Knowledge Engineering and Discovery Research Institute at Auckland 
University of Technology (www.kedri.aut.ac.nz), and all experiments were performed in accordance with relevant 
guidelines and regulations.

Participants.  Twenty right-handed volunteers, who had no neurological abnormalities, participated in the 
data acquisition procedure (10 males with mean age of 24.40 and Standard Deviation = 1.33; 10 females with 
mean age of 22.60 and Standard Deviation = 2.87). The recording procedure was performed in the “Hamrah 
Clinic” of Tabriz, Iran. The EEG data were recorded from human participants. Prior to commencing this research, 
ethical approval was granted by the “Ethics Committee of the Hamrah Clinic, Tabriz, Iran”, and informed consent 
was provided by all participants. Identifying information of participants, including names and initials, is not 
reported in the written descriptions.

Cognitive Task Description.  Prior to completing the task, participants listened to a short story about 
choosing a drink brand, in order to equalise the participants’ context and engage attention to the paradigm. 
Participants completed a visual oddball paradigm59,60 that consisted of three blocks. Every block started with the 
target logo presentation (a logo for water) that was presented 28 times in each block randomly (pre-set order) 
dispersed among 8 non-target logos (4 locally widely familiar logos and 4 non-familiar logos), each presented 
14 times. Thus, 140 stimuli (duration = 200 ms; inter stimulus interval = 1300–1500 ms) were presented in each 
block. Participants were instructed to respond to the target logo as soon as they observed it on the screen (coun-
terbalanced across participants to press either the left or right mouse button with left or right hand). In this task, 
the same target stimulus was used for all the subjects. Prior to designing the cognitive task, the brand familiarity 
was measured using a survey that was done in various local supermarkets in the city where the EEG data were 
recorded. Therefore, we have collected comprehensive information in terms of well-known/unknown brands, 
brands that were frequently requested by consumers in the supermarkets, and other measures. Therefore, through 
this survey, we could select the locally most familiar and unfamiliar brands as our stimuli.

Electrophysiological Acquisition.  EEG was measured through nineteen channels: C3, CZ, C4, F7, F3, FZ, 
F4, F8, P3, PZ, P4, T3, T4, T5, T6, FP1, FP2, O1, and O2 positioned in an adaptable cap with the standard 10–20 
configuration61–63. The EEG data sampling rate was 256 Hz. The channel Fpz was used as a ground electrode, and 
all the channels’ impedances were under 5 kΩ. Off-line artefact rejection was used to eliminate the effects of eye/
muscle movements. To run the cognitive task on a PC monitor, Psytask software was used as a stimulus presenta-
tion system. During the task presentation, event-related potentials (ERPs) were also measured along with EEG 
data.

The SNN Architecture for Analysis of Spatio-Temporal Brain Data.  Spiking neural networks 
(SNNs) are computational models that are inspired by the brain’s neuronal structure. In a SNN, an artificial 
spiking neuron is an information-processing unit that learns from input temporal data over time to resemble the 
learning processes of the brain. Spiking neurons are interconnected through their synapses, which memorise the 
learning patterns. They incorporate the concept of time into their operating models. SNN models have improved 
the level of biological plausibility in neural networks. Therefore, SNNs are considered suitable models for pro-
cessing spatio-temporal brain data (STBD). A SNN model can be implemented using several models, such as 
leaky integrate-and-fire (LIF) models (as shown in Supplementary Fig. 1). In this type of model, the post-synaptic 
potential (PSP) of a spiking neuron increases or decreases with respect to every spike from a pre-synaptic neuron, 
modulated by the corresponding synaptic connection weight. As soon as the PSP reaches a threshold θ, the neu-
ron generates an output spike and sends it to its connected neighbours. Its PSP then resets to a baseline value. The 
PSP can leak by a certain value (temporal parameter τ) when no spike arrives within a given time period.

The proposed SNN-based methodology is based on the framework of evolving spiking neural networks, 
designed to learn from both temporal and spatial information35. The SNN architecture includes several functional 
modules (as shown in Fig. 6): an input-encoding module; a 3D SNN module for unsupervised training; an output 
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classification/regression module for supervised training; an optimisation module; and a knowledge extraction 
and visualisation module35,41. These modules are described in the following sections.

Input Data Encoding and Mapping.  The EEG signal from each electrode is translated into a spike train (as 
demonstrated in Supplementary Fig. 2), and spikes from a given electrode will enter to the SNN model at a par-
ticular location. Each electrode corresponds to a single unit (input neuron) in the SNN.

For a temporal signal S(t) over time t = 1, 2, …, n, the signal amplitude variation over time is denoted by V(t) 
where at baseline, V(1) = S(1). At the next time point t, if the upcoming signal amplitude S(t) is greater than 
V(t−1) + θ (sum with a threshold θ), then a positive spike is generated, whereas for a decreased signal, a negative 
spike is generated. The encoding of positive and negative spikes is defined as follows:

θ θ
θ θ=









← − + ≥ − +
− ← − − ≤ − +spike t

then V t V t if S t V t
then V t V t if S t V t

otherwise
( )

1 ( ) ( 1) ; ( ) ( 1)
1 ( ) ( 1) ; ( ) ( 1)

0 ) (1)

As shown in Relation 1, the encoded spike sequences are in the form of binary events, in which −1 refers to a neg-
ative spike (the site of downward changes in signal values) and 1 is a positive spike (the site of upward changes). 
This method has been successfully used in dynamic vision sensors (DVS)64. Supplementary Fig. 2 shows an exam-
ple of encoding EEG data recorded from the Cz channel into a sequence of positive and negative spikes using the 
TBR algorithm35,65. It shows that out of a total of 115 spikes generated, 58 were positive (indicated as +1) and 57 
negative (indicated as −1). The spike trains are used for training the SNN model.

We defined a biologically plausible 3-dimensional SNN and initialised it with small-world connectivity41,42. 
Small-world structure is an organising principle in many natural systems, including networks of brain neurons, 
as both anatomical connections66 and synchronisation networks of cortical neurons67 exhibit small-world topol-
ogy68. The neurons in the SNN reside at coordinates defined within the Talairach brain atlas, and neurons are 
connected probabilistically, such that neurons that are anatomically adjacent are very likely to be connected 
and those that are anatomically distant from one another are very unlikely to be connected. This constrains the 
space of potential interactions in a biologically plausible way. For instance, small-world networks are observed 
in several large-scale networks of brain neurons, such as the visual system69. The brain information processing is 
performed in both segregated and dispersed functional areas, as presented in66–68,70. Similarly, the small-world 
rule can include both short-distance connectivity (local clusters) within nearby neurons (similar to segregated 
information processing) and long-distance connectivity by linking the local clusters (similar to spread informa-
tion processing). Using small-world rules in computational modelling has several advantages, as it supports high 
local and global efficiency in parallel processing, dynamic operation and rapid adaptation in network reconfig-
uration71. It also results in higher rates of information processing and learning than other techniques, such as 
random graphs71. These theoretical and empirical reasons led us to use small-world rules for the initialisation in 
the proposed SNN model. The SNN models are initialised using the small-world connectivity rule41,42 in which a 
probability of a neuron i to be connected to another neuron j depends on the distance between the two neurons, 

Figure 6.  The SNN architecture, which contains several modules: input spike-time data encoding; a 3D SNN 
reservoir for unsupervised learning; a SNN classification/regression module using RO and STDP for supervised 
learning; gene regulatory network (GRN) as a system parameter optimisation model (optional and not used in 
the current paper). The Figure was drawn by authors Z.G. and M.D.
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the larger the distance – the smaller the probability. In some cases, a radius is defined which represents the max-
imum distance of connections of one neuron to another in the 3D space of the SNN. The initial connections are 
assigned as small random weights, so that for example 80% of them are weighted by positive values while 20% of 
them are weighted by negative values. All the above parameters can be selected based on the task in hand. These 
initial connection weights are then adjusted by biologically plausible unsupervised learning rules which rely on 
the temporal dynamics and spiking activity triggered by input neurons as explained in the next section.

Unsupervised Learning in a 3D SNN Model.  The known unsupervised spike-time-dependent plasticity (STDP) 
learning rule is used for learning in the SNN models proposed here. Through STDP learning, a connection Wi, j 
between neurons i and j is adapted according to the timing of their output spikes. If neuron i emits a spike earlier 
than j, then Wi,j will increase; otherwise, that would imply that neuron j is driving neuron i so Wi, will decrease. 
STDP is described as follows:

τ
τ

Δ =





Δ Δ <
− − Δ Δ ≥

+ +

− −
F t

A t if t
A t if t

( )
exp( / ) 0

exp( / ) 0 (2)

F(Δt) describes the adjustment of synaptic plasticity in respect to the pre-synaptic and post-synaptic spiking time 
in the interval of Δ = −t t tpre post. The parameters A+ and A− are the maximum amounts for synaptic adjust-
ment, which apply if Δt is close to zero. The parameters τ + and τ − control the interval of pre- to post-synaptic 
spikes during which the weakening and the strengthening of the synaptic connection occur. During this learning 
procedure, the input neuron will accumulate spikes to the SNN model and, if neurons cross an activation thresh-
old, they will also emit output spikes. That spike is sent out to all the units it is connected with, and what reaches 
each distal neuron is the spike scaled by the connection weight. That neuron will likewise accumulate activity as 
a function of receiving spikes and, after crossing some threshold, fire45. In such way, spikes are transferred 
between neurons and propagated to the SNN model. Therefore, the STDP rule captures ‘hidden’ spatio-temporal 
relations in the STBD stream, in the form of neuronal connections between spatially located neurons in the SNN 
model.

Supervised Learning and Classification using a SNN Classifier.  At this step, a dynamic evolving SNN 
(deSNN)35,72,73, fully connected to all neurons in the 3D SNN, is used for classification/regression of the acti-
vated spiking patterns in the 3D SNN when input data are propagated through it. Other classifiers can also be 
employed74. The deSNN applies supervised learning in an output classifier layer using the class labels of the 
training samples. For each sample in the training set, one neuron is evolved in the output layer and linked to all 
the neurons in the already trained 3D SNN. The connection Wij between neuron i from the 3D SNN and neuron 
j from the output layer is initialised by using a rank-order (RO) rule. The RO rule emphasises a higher priority 
for earlier spikes to an output neuron. Data with class labels are propagated through the trained 3D SNN and a 
supervised learning process is applied to train an output classifier. The potential PSP(j, t) of output neuron j at 
time t is defined using the following relation:

∑=PSP j t mod W( , ) (3)
order i

ij
( )

where order (i) represents the order of the spike transmitted through Wij and mod is a parameter. Therefore, the 
first spike that reached to the output neuron j from the 3D SNN model causes the highest increase in the corre-
sponding connection weight. After the first spike has arrived, for the next spikes coming at time t from neuron i, 
the connection weight Wij will rise by parameter drift; otherwise, Wij will decrease by a drift value.

Parameter Optimisation.  For model parameter optimisation, an exhaustive grid search method has been utilised 
to minimise the cross-validation classification error. The best classification accuracy has been obtained through 
searching over the main parameters (learning rate of STDP, neuron firing threshold, and deSNN classifier mode). 
Further explanation of these parameters is presented in35,36.

Data availability.  As supplementary material for the Nature Scientific Reports journal, we have made the 
EEG/ERP data available at the R&D systems of the Knowledge Engineering and Research Discovery Institute 
(KEDRI) website: https://kedri.aut.ac.nz/R-and-D-Systems/neuromarketing.
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