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Formation of zinc sulfide species 
during roasting of ZnO with pyrite 
and its contribution on flotation
Yong-xing Zheng1,2, Jin-fang Lv3, Hua Wang1,2, Shu-ming Wen1 & Jie Pang3

In this paper, formation of zinc sulfide species during roasting of ZnO with FeS2 was investigated and 
its contribution on flotation was illustrated. The evolution process, phase and crystal growth were 
investigated by thermogravimetry (TG), X-Ray diffraction (XRD) along with thermodynamic calculation 
and scanning electron microscopy-Energy-dispersive X-ray spectroscopy (SEM-EDS), respectively, to 
interpret the formation mechanism of ZnS species. It was found that ZnS was initially generated at 
about 450 °C and then the reaction prevailed at about 600 °C. The generated FexS would dissolve into 
ZnS and then form (Zn, Fe)S compound in form of Fe2Zn3S5 when temperature increased to about 
750 °C. This obviously accelerated ZnS phase formation and growth. In addition, it was known that 
increasing of ZnO dosage had few effects on the decomposition behavior of FeS2. Then, flotation tests 
of different zinc oxide materials before and after treatment were performed to further confirm that the 
flotation performances of the treated materials could be obviously improved. Finally, a scheme diagram 
was proposed to regular its application to mineral processing. It was systematically illustrated that 
different types of ZnS species needed to be synthetized when sulfidization roasting-flotation process 
was carried out to treat zinc oxide materials.

Zinc is one of the most important metals supporting modern society. Nowadays, more than 70% of Zn is pro-
duced from zinc sulfide concentrates by conventional roasting-leaching-electrowinning processes in the world1,2. 
With continuous exploitation of resources, the primary resources are presently insufficient to supply demand. 
Fortunately, there are still abundant of zinc oxide resources undeveloped, such as zinc oxide ore, lead and zinc 
smelter slags and steelmaking dust. However, it seems to be difficult for valuable metal recovery from the refrac-
tory zinc oxide resources, which are usually characterized by low grade, complex composition and high content 
of slime3,4.

Flotation is the most common and commercial technique applied to recover nonferrous oxide minerals and 
for zinc recovery, sulfidization with alkali metal sulfides, followed by treatment with cationic collectors is usually 
adopted. After sulfidization, the hydrophilicity of the mineral surface decreases due to the presence of the sulfide 
ion adsorbed. In present case, the mineral can be well collected with cationic collectors5,6. However, its effective-
ness is not entirely satisfactory when significant amounts of slime occur3. Moreover, it becomes almost impossible 
to recover zinc by conventional flotation when the zinc exists in form of amorphous glassy state, e.g. zinc in the 
lead smelter slag7,8.

In order to overcome the above disadvantages, many metallurgical methods are directly proposed. In the pyro-
metallurgical ones, Waelz and Ausmelt methods are commonly and industrially applied to recover zinc. But these 
processes need consuming considerable amounts of power and coal for providing high operating temperature 
(1150–1250 °C)9. Meanwhile, a variety of pollution caused by heavy metals, SO2 and waste water are produced. So, 
it seems not to be economically and technically feasible, especially for the low grade materials. In the hydrometal-
lurgical ones, acid leaching and alkaline leaching are widely used to extract zinc. Acid leaching using sulfuric acid 
as solvent is usually considered to be effective in treating the zinc oxide materials, but there are many limitations 
for the materials containing silicates and basic gangues. A large quantity of silicates will dissolve and transform to 
gel, inhibiting the separation of the zinc sulfate solution from the slurry10,11. But for the basic gangues, they mainly 
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consume considerable amounts of sulfuric acid and then transform into precipitation of calcium sulfate, making 
the whole process more complex and in view of this, alkaline leaching using various solvents such as ammonia, 
ammonium chloride and ammonium carbonate exhibits good selectivity against the basic gangues12,13. However, 
the work environment will become bad caused by the volatilization of ammonia.

It is well known that the sulfide minerals are easier to float than their corresponding oxide minerals. If an 
effective method to vulcanize the oxide mineral is developed, the existing mineral processing and metallurgical 
processes can be applied to treat these synthetic sulfides. In the available literature, mechanical-chemical14,15 and 
hydrothermal processes16,17 were suggested to vulcanize the zinc oxide materials, but there were some limitations 
in application due to slow transformation process and fine particle nature. Generally, high temperature is favora-
ble for improving reaction rate and crystallinity7,18. Therefore, roasting process was proposed to vulcanize the zinc 
oxide materials. Li et al.19 and Zheng et al.20 investigated the sulfidization of zinc oxide mineral with elemental 
sulfur at high temperatures and their sulfidization extents could reach above 90%. Zheng8 studied mineralogical 
reconstruction of the lead smelter slag using pyrite as vulcanizing reagent and zinc recovery. The results showed 
that the sulfidization extent of zinc reached 85.62% and the zinc grade increased from 14.07% to 25.12% after one 
stage of flotation. However, the previous researches about sulfidization roasting have been mainly restricted to the 
investigation of process optimization. Studies about interaction mechanisms between zinc oxide and vulcanizing 
reagent and flotation responses of the treated materials are limited.

In this paper, the formation mechanisms of zinc sulfides involving evolution process, phase variation and crys-
tal growth were investigated by TG, XRD, thermodynamic calculation and SEM-EDS. Then, flotation tests of dif-
ferent zinc oxide materials including natural smithsonite before and after sulfidization roasting, natural sphalerite 
and lead smelter slag (mainly Zn2SiO4) were carried out to further confirm that the treated zinc oxide materials 
exhibited good flotation responses in conventional flotation system. Finally, a systematic technical scheme was 
devised. The objective of this study was to clarify the formation process of zinc sulfide species at high tempera-
tures and provide an excellent theory reference for recovering Zn from different zinc oxide resources.

Materials and Methods
Materials. ZnO sample at a particle size less than 74 μm was prepared by decomposing basic zinc carbonate 
with an analytical grade. About 150 g of the sample was loaded into an alundum crucible equipped with a cover. 
Then, the pan was placed in the furnace heated at 600 °C for 1.5 h and then cooled. The obtained roasting prod-
ucts were analyzed by XRD, as shown in Fig. 1(a), which revealed that the sample is of high purity. Smithsonite, 
sphalerite and pyrite are natural crystal minerals, which were provided from a mine in Yunnan province. They 
were ground to −74 μm, waiting for roasting tests and various analyses. Chemical analyses21,22 showed that the 

Figure 1. XRD patterns of the synthesized and natural samples (a) synthesized ZnO; (b) natural smithsonite; 
(c) natural sphalerite; (d) natural pyrite).
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smithsonite containing 51.24% Zn, the sphalerite containing 65.3% Zn and 32.8% S and the pyrite containing 
47% Fe and 47.9% S. XRD patterns of these natural minerals are shown in Fig. 1(b–d), which also disclosed them 
with high purity.

Argon (Ar) was used as a protective gas with a purity of 99.9%. Copper sulphate as an activator, butyl xanthate 
as a collector, and terpineol as a frother were used in the micro-flotation experiments.

Experimental method. TG tests. Roasting of zinc oxide with pyrite was conducted at a thermal-analyzer 
(NETZSCH5, STA 449 F3). Some parameters such as initial and final temperature (25~900 °C), gas flow rate, sam-
ple mass and heating rate could be exactly preset. Firstly, pyrite and zinc oxide were weighted using an electronic 
balance with an accuracy of 10−4 g, and then were mixed on an Al2O3 pan, suspended on a holder. A vertical 
electric furnace tube was moved downward and a vacuum of 99% was obtained. With the flow of argon from 
bottom of the furnace at a rate of 100 mL/min, the vacuum was slowly released to zero. The non-isothermal tests 
were carried out within 25 to 900 °C at a heating rate of 15 °C/min. In the isothermal tests, sample was heated at a 
heating rate of 30 °C/min to a desired temperature and then reacted for about 120 min. The related reactions can 
be described as7,23:

→ +2FeS 2FeS S (g) (1)2 2

+ = + +2ZnO 3FeS 2ZnS 3FeS SO (g) (2)2 2

From Eqs (1) and (2), it can be known that 1 mole of elemental sulfur will be lost in form of sulfur vapour (S2) 
when 1 mole of pyrite was heated. When ZnO was added into the system while the pyrite dosage was fixed as 1 
mole, only 1/3 mole of elemental sulfur will be lost in form of SO2. In order to investigate the effect of ZnO intro-
duced on the pyrite decomposition behaviors, which was nearly considered to be the interaction mechanism of 
ZnO and pyrite, the amount of pyrite (30.0 mg) was fixed while the amount of ZnO (6.75~20.25 mg) was varied 
in the non-isothermal process. Nevertheless, the remaining percentage outputted by the computer was based on 
the total amounts of zinc oxide and pyrite. Therefore, the remaining percentage relative to the amount of pyrite 
(30.0 mg) can be transformed as:

= −
× − ×

×R 1 M (1 a%) 1/2
M

100%
(3)

1

2

where R is the remaining percentage of pyrite when the zinc oxide was added; M1 is the total weight of zinc oxide 
and pyrite, M2 is the weight of pyrite (30.0 mg); a% is the remaining percentage for the mixed sample of pyrite and 
zinc oxide; 1/2 is the weight percentage of sulfur accounting for the sulfur dioxide.

Pretreatment of zinc oxide minerals and flotation tests. Sulfidization roasting were usually performed in the 
temperature range of 600–750 °C20,24. In order to examine the flotation performances of zinc oxide minerals 
after treatment, the roasting temperature was determined as 650 °C. In our previous theoretical calculation25, 
the amount of ZnS nearly reached 100% when the FeS2/ZnCO3 mole ratio was fixed to be about 0.7 at 700 °C. 
Therefore, FeS2/ZnCO3 mole ratios of 0.30 and 0.15 for the surface thermal modification were selected in this 
paper. Pyrite and smithsonite were mixed in a desired mole ratio. The mixture was loaded into a 50 mL alundum 
crucible equipped with a cover. Then, the alundum crucible was placed in the furnace while the argon was intro-
duced at a flow rate of 1.8 L/min. Finally, the heating procedure was started up until the desired temperature was 
obtained. After 60 min of residence time, the roasted sample was cooled under argon, waiting for flotation tests.

Micro-flotation was carried out in a cell with an effective volume of approximate 40 cm3 and the flotation flow 
sheet is shown in Fig. 2. After flotation, concentrate and bottom product were washed with distilled water, filtered, 
dried, weighed and calculated.

Figure 2. Experimental schematic of the micro-flotation.



www.nature.com/scientificreports/

4SCiENtiFiC RepoRts |  (2018) 8:7839  | DOI:10.1038/s41598-018-26229-3

XRD and SEM-EDS analyses. The samples obtained from the isothermal tests were examined on a Bruker-axs 
D8 Advance XRD (Germany) with Cu Kα radiation (λ = 1.5406 Å). The operation voltage and current kept at 40 kV 
and 40 mA, respectively. Morphological analyses of the obtained products were detected by SEM. The SEM (JEOL.
LTD, JSM-6360LV) was working at 20 kV electron accelerating voltage. Semiquantitative information analyses were 
also performed using an X-ray energy dispersive spectrometer (EDAX.LTD, EDX-GENESIS 60S).

Results and Discussions
ZnO roasting in presence of pyrite. TG tests. Figure 3 shows the non-isothermal TG and DTG curves 
of the samples. From Fig. 3(a), it can be seen that the mass for single pyrite (Curve 1) slightly decreased when 
temperature increased from 480 °C to 550 °C. This may be accounted by the oxidization reaction of pyrite and 
adsorbed oxygen26. The mass slightly fluctuated as temperature increased from 550 °C to 580 °C. Mass loss con-
tinued and its maximum rate appeared at about 680 °C when temperature increased to 700 °C. These can be 
explained as27,28:

→ + −2FeS (s) 2FeS (s) (2 x)S (g) (4)2 x 2

+ → +2Fe O 5S (g) 6FeS 4SO (g) (5)3 4 2 2

With further increasing temperature, the mass slightly decreased, indicating that the decomposition of 
pyrrhotine (FeSx) continuously occurred (Eq. (6))28. These results suggested that the decomposition process of 
pyrite under argon atmosphere was a slow release process of sulfur from FeS2 to FeS.

= + −2FeS (s) 2FeS(s) (x 1)S (g) (6)x 2

When ZnO was introduced into the system (Curves 2–4), it can be observed that the mass slightly fluctuated 
and then began to decrease when temperature increased to about 450 °C. This can be explained by the solid-solid 
reaction (Eq. (7)).

+ → + + ∆ = − . =θ9FeS 16ZnO 16ZnS 3Fe O 2SO (g) ( G 133 3kJ, T 298K) (7)2 3 4 2 T

Mass loss continued and its maximum rate (Fig. 3(b)) appeared at about 600 °C when temperature increased 
to about 650 °C. In addition, it was found that the remaining percentage of the sample was more than that of the 
single pyrite, confirming that the solid-gas reaction occurred (Eq. (8))20,24. In other words, the released elemental 
sulfur from pyrite was fixed in form of ZnS, resulting in mass increase of the remaining sample.

+ = +4ZnO(s) 3S (g) 4ZnS(s) 2SO (g) (8)2 2

Additionally, mass loss of the sample still continued when the temperature increased above 650 °C. This may 
be attributed to the decomposition of pyrrhotine (FeSx) (Eq. (6)) and its further reaction with ZnO. However, it 
seemed that increasing of ZnO dosage had few effects on the decomposition behavior of pyrite, indicating that its 
capacity of fixing sulfur was limited.

Figure 4 shows the isothermal TG curves of the sample. It can be seen that mass loss slowly decreased in the 
time range of 15–50 min when temperature was fixed as 550 °C. When the temperature increased, the mass loss 
sharply decreased in the time range of 15–20 min. Combining with the TG curves (Fig. 3), it can be known that 
the mass loss was mainly attributed to the interaction of zinc oxide and the generated sulfur vapor (Eq. (8)). 
With further prolonging their holding time, the mass was nearly constant at 550 °C and 650 °C, but the the mass 
decreased at 750 °C and 850 °C, indicating that the further decomposition of pyrrhotine (FeSx) occurred (Eq. (6)). 
In addition, it can be also observed that the temperature was the higher, the less the remaining sample mass was. 
This can be explained that the decomposition of pyrite was accelerated when the temperature increased.

Figure 3. TG and DTG curves of the samples with respect to temperature and different mole ratio of FeS2 to ZnO.
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Phase transformation. In order to confirm the above deductions, phase analyses were carried out for the 
obtained products under isothermal TG tests and the results are shown in Fig. 5. According to this figure, it can 
be seen that there were obvious peaks of ZnS and FexS, weak peaks of ZnO and Fe2.964O4 at 550 °C, indicating that 
the reactions involving Eqs (4), (7) and (8) occurred. The peak of ZnO disappeared and the peak intensity of ZnS 
increased when the temperature increased to 650 °C. With further increasing temperature, the peak intensity 
of ZnS further increased and interestingly, the FexS peak completely disappeared at 850 °C. Moreover, the FeS 
peak which was generated by the further decomposition of FexS (Eq. (6)) couldn’t be also observed. This may be 
explained that the ZnS and FeS formed the (Zn, Fe)S compound.

Additionally, it can be also observed that the (111) peak shifted towards low diffraction angle areas with 
increasing roasting temperature, indicating that the Fe2+ in FeS replaced the Zn2+ in ZnS and then formed the 
(Zn, Fe)S compound in form of Fe2Zn3S5. As Fe2+ in the ilmenite have larger ionic radius than that of Fe3+ gen-
erated by magnetic modification, the unite cell exhibits continuous expansion with increasing roasting tempera-
ture29–31, corresponding to the change in (111) peak position.

In order to gain insight into the phase transformation process, the phase stability boundaries were calculated 
using the Tpp Diagrams module of Out-okumpu HSC5.025,32, assuming that all solids have a unit activity. The 
predominance area diagram of Zn-S-O (red dot line) and Fe-S-O (black solid line) system at 800 °C were plotted, 
as shown in Fig. 6. It can be seen that the condensed phases were obviously affected by the partial pressures of O2 
and SO2. In this study, the desired ZnS could be prepared using ZnO and FeS2 as raw material by controlling their 
partial pressures. In addition, it can be observed that other phases such as Fe, FeO, Fe3O4, FeS, Fe0.877S and FeS2 
could exist with ZnS. Pyrite (FeS2) would be decomposed into FexS in practice, but it would be difficult to further 
transform into metallic Fe. On the other hand, FeS2 and FexS would be also oxidized into Fe3O4. Therefore, it was 
reasonable that only the peaks of Fe3O4 and FexS were detected by XRD.

Morphology changes. It was surprising that the phase of FexS disappeared when roasting temperature increased 
to 850 °C. In order to further clarify this phenomenon, the obtained samples under isothermal TG tests were 
examined by SEM-EDS and their corresponding results are shown in Fig. 7. It can be seen that the ZnS parti-
cles with cotton wool configuration were formed at 550 °C. There was no obvious change when the temperature 
increased to 650 °C. With further temperature increasing, the ZnS particles started to aggregate and grow, result-
ing in occurrence of some grains with tetrahedron and kidney shapes, which exhibited complete crystal nature. 
This may be accounted by the explanation that the molten phase is responsible for the rapid grain coarsening, 
where smaller particles will go into solution preferentially and precipitate on larger particles, accelerating the 
transport rate as liquids diffuse faster than solids8,33,34. In addition, the EDS spectrums of the roasted samples also 

Figure 4. TG curves of the sample with respect to time and temperature (nFeS2:nZnO = 1:1).

Figure 5. XRD patterns of the roasted products at different temperatures (nFeS2:nZnO = 1:1).
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exhibits that the Fe content increased with increasing the roasting temperature, confirming that the ZnS and FeS 
formed the (Zn, Fe)S compound. This result explained that the FexS phase could not be detected by XRD. Besides, 
the elemental sulfur content also increased with increasing the temperature, corresponding to the peak intensity 
of ZnS increased in Fig. 5.

Therefore, pyrite can be considered as an effective vulcanizing agent for sulfidization of ZnO. On the one hand, 
it can not only provide sulfur at high temperatures, but also serve as an activating agent (mainly FeS) to accel-
erate the formation of ZnS phase. However, it is not favorable for the following flotation when excessive dosage 
of FeS2 is added due to the increase of Fe content in (Zn, Fe)S compound. In addition, the un-reacted FexS can 
easily report the flotation concentrate in the process of zinc recovery, making the whole separation process more 
complex.

The effect of above pretreatment on flotation. Surface sulfidization and flotation responses. It is tech-
nically feasible to recover valuable metals from the refractory oxides resources by sulfidization roasting followed 
by flotation. In the available literature, studies mainly focused on improving sulfidization extent of ZnO mate-
rials19,24,34. Factually, it is not fully advisable that the flotation response is an absolute positive correlation with 
its sulfidization extent. It is well known that copper and lead oxide minerals, except zinc oxide minerals, after 
treatment with Na2S can be well collected by xanthate5,35. The poor zinc recovery is mainly ascribed to a terrible 
surface sulfidization of ZnO mineral in the pulp. Combining with the above analyses, a stable thin film of ZnS 
could be formed on the surface of the ZnO mineral by sulfidization roasting with pyrite in a temperature range 
of 450–750 °C. In order to confirm that the zinc oxide mineral after sulfidization roasting can be recovered by 
conventional flotation technology, micro-flotation tests were carried for different minerals, as shown in Fig. 8.

From Fig. 8(a), it can be seen that flotation yield of natural sphalerite increased to 97.5%, whereas flotation 
yield of smithsonite only reached 15% when copper sulphate concentration increased to 6 × 10−5 M. Increasing of 
butyl xanthate concentrations also had little effects on the flotation yield of smithsonite (Fig. 8(b)). After sulfidiza-
tion roasting with pyrite at different dosages, their flotation performances had obviously changed. From Fig. 8(c), 
it can be observed that flotation yield of the treated smithsonite increased from 20.5% to 66% and from 21% to 
76%, respectively corresponding to the FeS2/ZnCO3 mole ratios of 0.15 and 0.30, when copper sulphate concen-
tration increased from 0 M to 18 × 10−5 M. With further increasing copper sulphate concentration, their flotation 
yields had little changes. Therefore, the optimal copper sulphate concentration was determined to be 18 × 10−5 M 
and the following experiments were carried out at this concentration. The effect of butyl xanthate concentrations 
on their flotation yields were shown in Fig. 8(d). It can be seen that their flotation yields reached 66.5% and 75% 
when butyl xanthate concentrations increased 24 × 10−5 M. With further increasing butyl xanthate concentra-
tion, there were little changes for their flotation yields. Compared with the natural sphalerite, the flotation yield 
seemed to be lower. This may be accounted by the fact that not only ZnS films formed on the surface of zinc oxide 
minerals, but also iron oxides such as Fe3O4 appeared after roasting. The latter could not be collected by the xan-
thate, resulting in the lower flotation yield of the mixed material. In other word, the flotation yield for the separate 
smithsonite after treatment should be higher than 75%. Therefore, it was concluded that the smithsonite after 
sulfidization roasting had a similar flotation behavior to the natural sphalerite. In addition, smithsonite roasted 
with pyrite at a FeS2/ZnCO3 mole ratio of 0.3 exhibited a good flotation performance contrast to the sulfidization 
treatment at a FeS2/ZnCO3 mole ratio of 0.15, further verifying the moderate FeS2/ZnCO3 mole ratio (0.3) in our 
previous studies about surface modification of smithsonite at high temperatures25.

Complete sulfidization and flotation responses. It is very necessary to completely transform the ZnO mineral at 
a fine size fraction into ZnS mineral and even though, the artificial ZnS mineral can be also difficult to be col-
lected by xanthate due to the fine particle nature7,8,34. Taking the lead smelter slag for example, zinc oxide mainly 
existed in form of Zn2SiO4

7,8. It is usually difficult to transform the Zn2SiO4 into ZnS in the temperature range 
of 450–750 °C. This can be explained that the sulfidization of Zn2SiO4 needed more rigorous thermodynamic 
conditions than that of the common ZnO.

Figure 6. Predominance area diagrams of Zn-S-O and Fe-S-O system at 800 °C.
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In our previous studies7,8, it was found that temperature had an obvious affect on the sulfidization extent of 
Zn2SiO4. The results showed that the sulfidization extent of Zn2SiO4 increased from about 21% to 83%, when the 
temperature increased from 550 °C to 850 °C. In addition, it was also confirmed that the (Zn, Fe)S compound 
could be more easily formed at a higher temperature, which obviously facilitated the aggregation of ZnS particles. 
After one stage of flotation for the materials roasted at 850 °C, the zinc grade and recovery increased from about 
14% to 25% and from 0 to 67%, respectively.

Contribution on flotation. In summary, different types of ZnS species need to be synthetized when sulfidization 
roasting-flotation process is carried out to treat different zinc oxide materials. This significantly depends on the 

Figure 7. BSE images and EDS spectrums of the roasted products at different temperatures.
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roasting temperature and pyrite dosage. In order to regularize the application of sulfidization roasting to mineral 
processing, a scheme diagram for the sulfidization of refractory zinc oxides materials was proposed, as shown in 
Fig. 9.

According to the figure, it can be known that recovery of zinc from different zinc materials needed different 
sulfidization methods. When zinc recovery from the zinc oxide ores, where the zinc mainly exists in form of 
carbonate, is carried out, surface sulfidization will be reasonable. On the one hand, the FeS2/ZnCO3 mole ratio 
should be lower than 0.7, which is the critical value in theory for complete transformation of ZnO into ZnS25. On 
the other hand, the roasting temperature should be controlled in the range of 450–750 °C. when the FeS2/ZnCO3 
mole ratio nears to 0.7 and even beyond this value, the remaining iron sulfides also reports the flotation concen-
trate. In addition, when the roasting temperature beyond 750 °C, the generated ZnS mineral not only aggregated 
with FexS, followed by formation of (Zn, Fe)S compound, but also aggregated with other gangues. Both of which 
were not beneficial for improving grade of the flotation concentrate. When zinc recovery from the zinc silicate 

Figure 8. Flotation performances of natural smithsonite before and after treatment and natural sphalerite at 
a natural pH and a terpineol dosage of 5 × 10−5 M (a) butyl xanthate concentrations: 5 × 10−5 M; (b) copper 
sulphate concentrations: 6 × 10−5 M; (c) butyl xanthate concentrations: 40 × 10−5 M; (d) copper sulphate 
concentrations: 18 × 10−5 M).

Figure 9. Proposed scheme diagram for sulfidization of refractory zinc oxides materials.
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materials is performed, it is necessary to completely transform zinc silicates to zinc sulfides. On the one hand, the 
FeS2/ZnO mole ratio should be higher than 0.7. On the other hand, the roasting temperature should be higher 
than 750 °C. According to Fig. 7 and our previous studies7,8, the roasting temperature should be around 850 °C. 
The (Zn, Fe)S compound could be more easily formed at this temperature, accelerating the aggregation of ZnS 
particles.

Conclusions

 (1) Formation of zinc sulfide species during roasting of ZnO with pyrite was accompanied by the decomposi-
tion and transformation of FeS2. Many species such as ZnS, (Zn, Fe)S compound in form of Fe2Zn3S5, FexS 
and Fe2.964O4 were formed in the process. Pyrite could not only provide sulfur at high temperatures, but 
also serve as an activating agent (mainly FeS) to accelerate the formation of ZnS phase.

 (2) Zinc sulfide was initially generated at about 450 oC and then the sulfidization reaction prevailed at about 
600 oC. The generated FexS would dissolve into ZnS and then form (Zn, Fe)S compound in form of 
Fe2Zn3S5 when temperature increased to about 750 oC. With further increasing temperature, the ZnS parti-
cles obviously aggregated, making the particle size increase. In addition, increasing of ZnO dosage had few 
effects on the decomposition behavior of pyrite.

 (3) Zinc recovery from different zinc oxide materials by sulfidization roasting-flotation process was carried 
out. Flotation yield of the natural smithsonite after roasting with pyrite at a FeS2/ZnCO3 mole ratio of 0.30 
increased by about 55%, contrast to the un-treated natural smithsonite. The zinc silicates in the lead smelt-
er slag could be well transformed into zinc sulfides and the zinc flotation performances were obviously 
improved.

 (4) A scheme diagram for the sulfidization of refractory zinc oxides materials was proposed to regularize the 
application of sulfidization roasting to mineral processing. Different types of ZnS species needed to be 
synthetized when sulfidization roasting-flotation process was carried out to treat different zinc oxide mate-
rials. The formation of ZnS species mainly depended on the roasting temperature and pyrite dosage.
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