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Spinal cord gray matter 
segmentation using deep dilated 
convolutions
Christian S. Perone  1, Evan Calabrese2,3 & Julien Cohen-Adad  1,4

Gray matter (GM) tissue changes have been associated with a wide range of neurological disorders and 
were recently found relevant as a biomarker for disability in amyotrophic lateral sclerosis. The ability to 
automatically segment the GM is, therefore, an important task for modern studies of the spinal cord. In 
this work, we devise a modern, simple and end-to-end fully-automated human spinal cord gray matter 
segmentation method using Deep Learning, that works both on in vivo and ex vivo MRI acquisitions. We 
evaluate our method against six independently developed methods on a GM segmentation challenge. 
We report state-of-the-art results in 8 out of 10 evaluation metrics as well as major network parameter 
reduction when compared to the traditional medical imaging architectures such as U-Nets.

Gray matter (GM) and white matter (WM) tissue changes in the spinal cord (SC) have been linked to a large 
spectrum of neurological disorders1. For example, using magnetic resonance imaging (MRI), the involvement of 
the spinal cord gray matter (SCGM) area in multiple sclerosis (MS) was found to be the strongest correlate of dis-
ability in multivariate models including brain GM and WM volumes, FLAIR lesion load, T1-lesion load, SCWM 
area, number of spinal cord T2 lesions, age, sex and disease duration2. Another study showed SCGM atrophy to 
be a biomarker for predicting disability in amyotrophic lateral sclerosis3.

The ability to automatically assess and characterize these changes is, therefore, an important step4 in the 
modern pipeline to study both the in vivo and ex vivo SC. The segmentation outcome can also be used for 
co-registration and spatial normalization to a common space. Moreover, the fully-automated segmentation is 
useful for longitudinal studies, where the delineation of gray matter is time consuming4.

While recent cervical cord cross-sectional area (CSA) segmentation methods have achieved near-human 
performance5, the accurate segmentation of the GM remains a challenge6. The main properties that make 
the GM area difficult to segment are: inconsistent intensities of the surrounding tissues, image artifacts and 
pathology-induced changes in the image contrast4.

Additional factors also contribute to the complexity of the GM segmentation task, such as lack of standardized 
datasets, differences in MRI acquisition protocols, different pixel sizes, different methods to acquire gold standard 
segmentations and different performance metrics to assess segmentation results6. Figure 1 features several exam-
ples of axial MRI acquired at different centers, demonstrating image variability due variable image acquisition 
systems and protocols.

Despite these difficulties, there have been major improvements in acquisition and analysis methods in recent 
years, making it possible to obtain reliable GM segmentations. From the acquisition standpoint, the advances in 
coil sensitivity7, multi-echo gradient echo sequences8, and phase-sensitive inversion recovery sequences9 dras-
tically improved the contrast-to-noise-ratio between the white and gray matter in the cord. From the analysis 
standpoint, the scientific community recently organized a collaboration effort called “Spinal Cord Gray Matter 
Segmentation Challenge” (SCGM Challenge)6 to characterize the state-of-the-art and compare six independent 
developed methods10–15 on a public available standard dataset created through the collaboration of four interna-
tionally recognized spinal cord imaging research groups (University College London, Polytechnique Montreal, 
University of Zurich and Vanderbilt University), providing therefore a ground basis for method comparison that 
was previously unfeasible.
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In the past few years, we have witnessed the fast and unprecedented development of Deep Learning16 meth-
ods, that have not only achieved human-level performance but, in many cases, have surpassed it17, even in health 
domain applications18. After the results presented in the seminal paper of the AlexNet19, the Machine Learning 
community embraced the successful Deep Learning approach for Machine Learning and, consequently, many 
methods have been developed to since become the state-of-the-art and pervasive in many different fields such as 
image classification20, image segmentation21, speech recognition22, natural language processing (NLP), among 
others.

Deep Learning is characterized by a major shift from traditional handcraft feature extraction to a hierarchical 
representation learning approach where multiple levels of automatically discovered representations are learned 
from raw data16.

In a recent survey23 of over 300 papers that used Deep Learning techniques for medical image analysis, the 
authors found that these techniques have spread throughout the entire field of medical image analysis, with a 
rapid increase in the number of publications between the years of 2015 and 2016. The survey also found that 
Convolutional Neural Networks (CNNs) were more prevalent in the medical image analysis, with Recurrent 
Neural Networks (RNNs) gaining more popularity.

Although the enormous success of Deep Learning has attracted a lot of attention from the research commu-
nity, some challenges in the medical imaging domain remain open, such as data acquisition, which is usually very 
expensive and requires time-consuming annotation from image specialists to create the gold standards necessary 
for algorithm training and validation. Standardized datasets remain also a major problem due to variability in 
equipment from different vendors, acquisition protocols/parameters/contrasts, especially in the MRI domain. 
Furthermore, data availability is limited due to concerns around ethics and regulations on patient data privacy23.

In this work, we propose a new simple pipeline featuring an end-to-end learning approach for fully-automated 
spinal cord gray matter segmentation using a novel Deep Learning architecture based on the Atrous Spatial 
Pyramid Pooling (ASPP)21,24, where we achieved state-of-the-art results on many metrics in an in vivo independ-
ent dataset evaluation. We further demonstrate an excellent generalization on an ex vivo high-resolution acqui-
sition dataset where only a few axial-slices were annotated to accurate segment an MRI volume with more than 
4000 axial slices. Our proposed method is compared with the commonly used U-Net25 architecture and with six 
other independently developed methods.

This work was implemented as the sct_deepseg_gm tool in the Spinal Cord Toolbox (SCT)26 and is now freely 
available at SCT Github repository in https://github.com/neuropoly/spinalcordtoolbox. SCT is a comprehensive, 
free and open-source library of analysis tools for MRI of the spinal cord.

Related Work
Many methods for spinal cord segmentation were proposed in the past. Regarding the presence or absence of 
manual intervention, the segmentation methods can be separated into two main categories: semi-automated and 
fully-automated.

In the work14, they propose a probabilistic method for segmentation called “Semi-supervised VBEM”, whereby 
the observed MRI signals are assumed to be generated by the warping of an averagely shaped reference anatomy6. 
The observed image intensities are modeled as random variables drawn from a Gaussian mixture distribution, 
where the parameters are estimated using a variational version of the Expectation-Maximization (EM)14 algo-
rithm. The method can be used in a fully unsupervised fashion or by incorporating training data with manual 
labels, hence the semi-supervised scheme6.

Figure 1. In vivo axial-slice samples from four centers (UCL, Montreal, Zurich, Vanderbilt) that collaborated 
to the SCGM Segmentation Challenge6. Top row: original MRI images. Bottom row: a crop of the spinal cord 
(green rectangle).
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The SCT (Spinal Cord Toolbox) segmentation method13, uses an atlas-based approach and was built based 
on a previous work27 but with additional improvements such as the use of vertebral level information and linear 
intensity normalization to accommodate multi-site data13. The SCT approach first builds a dictionary of images 
using manual WM/GM segmentations after a pre-processing step, then the target image is also pre-processed 
and normalized, after that, the target image is projected into the PCA (Principal Component Analysis) space of 
the dictionary images where the most similar dictionary slices are selected using an arbitrary threshold. Finally, 
the segmentation is done using label fusion between the manual segmentations from the dictionary images that 
were selected6. The SCT method is freely available as open-source software at https://github.com/neuropoly/
spinalcordtoolbox 26.

In the work10, a method called “Joint collaboration for spinal cord gray matter segmentation” (JCSCS) is 
proposed, where two existing label fusion segmentation methods were combined. The method is based on a 
multi-atlas segmentation propagation using registration and segmentation in 2D slice-wise space. In JCSCS, the 
“Optimized PatchMatch Label Fusion” (OPAL)28 is used to detect the spinal cord, where the cord localization is 
achieved by providing an external dataset of spinal cord volumes and their associated manual segmentation10, 
after that, the “Similarity and Truth Estimation for Propagated Segmentations” (STEPS)29 is used to segment the 
GM in two steps, first the segmentation propagation, and then a consensus segmentation is created by fusing 
best-deformed templates (based on locally normalized cross-correlation)10.

In the work12, the Morphological Geodesic Active Contour (MGAC) algorithm uses an external spinal cord 
segmentation tool (“Jim”, from Xinapse Systems) to estimate the spinal cord boundary and a morphological geo-
desic active contour model to segment the gray matter. The method has five steps: first, the original image spinal 
cord is segmented with the Jim software and then a template is registered to the subject cord, after which the same 
transformation is applied to the GM template. The transformed gray matter template is then used as an initial 
guess for the active contour algorithm12.

The “Gray matter Segmentation Based on Maximum Entropy” (GSBME) algorithm6 is a semi-automatic, 
supervised segmentation method for the GM. The GSBME is comprised of three main stages. First, the image 
is pre-processed, in this step the GSBME uses the SCT26 to segment the spinal cord using Propseg5 with manual 
initialization, after which the image intensities are normalized and denoised. In the second step, the images are 
thresholded, slice by slice, using a sliding window where the optimal threshold is found by maximizing the sum 
of the GM and WM intensity entropies. In the final stage, an outlier detector discards segmented intensities using 
morphological features such as perimeter, eccentricity and Hu moments among others6.

In the Deepseg approach15, which builds upon the work11, a Deep Learning architecture similar to the U-Net25, 
where a CNN has a contracting and expanding path. The contracting path aggregates information while the 
expanding path upsamples the feature maps in order to achieve a dense prediction output. To recover spatial 
information loss, shortcuts are added between contracting/expanding paths of the network. In Deepseg, instead 
of using upsampling layers like U-Net, they use an unpooling and “deconvolution” approach such as in the work30. 
The network architecture possesses 11 layers and is pre-trained using 3 convolutional restricted Boltzmann 
Machines31. Deepseg also uses a loss function with a weighted sum of two different terms, the mean square 
differences of the GM and non-GM voxels, thus balancing sensitivity and specificity6. Two models were trained 
independently, one for the full spinal cord segmentation and another for the GM segmentation.

We compare our method with all the aforementioned methods on the SCGM Challenge6 dataset.

Methods and Materials
As in the Related Work section, the majority of the previously developed GM segmentation methods usually rely 
on registered templates/atlases, arbitrary distance and similarity metrics, and/or complex pipelines that are not 
optimized in an end-to-end fashion and neither efficient during inference time.

In this work, we focus on the development of a simple Deep Learning method that can be trained in an 
end-to-end fashion and that generalizes well even with a small subset of 2D labeled axial slices belonging to a 
larger 3D MRI volume.

Note on U-Nets. Many modern Deep Learning CNN classification architectures use alternating layers of 
convolutions and subsampling operations to aggregate semantic information and discard spatial information 
across the network, leading to certain levels of translation and rotation invariance that are important for classifi-
cation. However, in segmentation tasks, a dense full-resolution output is required. In medical imaging, the most 
established architecture for segmentation is the well-known U-Net25, where two distinct paths (encoder-decoder/
contracting-expanding) are used to aggregate semantic information and recover the spatial information with the 
help of shortcut connections between the paths.

The U-Net architecture, however, causes a major expansion of the parameter space due to the two distinct 
paths that form the U-shape. As noted previously32, the gradient flow in the high-level layers of the U-Nets (bot-
tom of the U-shape) is problematic. Since the final low-level layers have access to the earlier low-level features, 
the network optimization will find the shortest path to minimize the loss, thus reducing the gradient flow in the 
bottom of the network.

By visualizing feature maps from the U-Net using techniques described in the work33, we found that the fea-
tures extracted in the bottom of the network were very noisy, while the features extracted in the low-level layers 
were the only ones that exhibited meaningful patterns. By removing the bottom layers of the network, we found 
that the network performed the same as, or occasionally better than, the deeper network.

Proposed method. Our method is based on the state-of-the-art segmentation architecture called “Atrous 
Spatial Pyramid Pooling” (ASPP)21 that uses “Atrous convolutions”, also called “dilated convolutions”34. We per-
formed modifications to improve the segmentation performance on medical imaging by handling imbalanced 
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data with a different loss function, and also by extensively removing decimation operations from the network 
such as pooling, trading depth (due to memory constraints) to improve the equivariance of the network and also 
parameter reduction.

Dilated convolutions allow us to exponentially grow the receptive field with a linearly increasing number of 
parameters, providing a significant parameter reduction while increasing the effective receptive field35 and pre-
serving the input resolution throughout the network, in contrast to wide stride convolutions where the resolution 
is lost. Dilated convolutions work by introducing “holes”24 in the kernel as illustrated in Fig. 2. For 1D signal x[i], 
the y[i] output of a dilated convolution with the dilation rate r and a filter w[s] with size S is formulated as:

∑= + ⋅ .
=

y i x i r s w s[ ] [ ] [ ]
(1)s

S

1

The dilation rate r can also be seen as the stride over which the input signal is sampled24. Dilated convolutions, 
like standard convolutions, also have the advantage of being translationally equivalent, which means that trans-
lating the image will result in a translated version of the original input, as seen below:

=f g x g f x( ( )) ( ( )) (2)

where ⋅g( ) is a translation operation and ⋅f ( ) a convolution operation. However, since we don’t need to introduce 
pooling to capture multi-scale features when using dilated convolutions, we can keep the translational equivari-
ance property in the network, which is important for spatially dense prediction tasks, given that a translation of 
the input features should result also in an equivalent translation of outputs.

The overall proposed architecture can be seen in Fig. 3. Our architecture works with 2D slice-wise axial images 
and is composed of (a) two initial layers of standard 3 × 3 convolutions, followed by (b) two layers of dilated 
convolutions with rate r = 2, followed by (c) six parallel branches with two layers each of a 1 × 1 standard convo-
lution, 4 different dilated convolution rates (6/12/18/24) and a global averaging pooling that is repeated at every 
spatial position of the feature map. After that, the feature maps from the six parallel branches are concatenated 
and forwarded to (d) a block of 2 layers with 1 × 1 convolutions in order to produce the final dense prediction 
probability map. Each layer is followed by Batch Normalization36 and Dropout37 layers and we did not employ 
residual connections.

Figure 4 illustrates the pipeline of our training/inference process. An initial resampling step downsamples/
upsamples the input axial slice images to a common pixel size space, then a simple intensity normalization is 
applied to the image, followed by the network inference stage.

Contrary to the task of natural images segmentation, the task of GM segmentation in medical imaging is 
usually very unbalanced. In our case, only a small portion of the entire axial slice encompasses the GM (the rest 
being comprised of other structures such as the white matter, cerebrospinal fluid, bones, muscles, etc.). Due to 
this imbalance, we employed a surrogate loss for the DSC (Dice Similarity Coefficient) called the Dice Loss, which 
is insensitive to imbalancing and was employed by many works in medical imaging38,39. The Dice Loss can be 
formulated as:
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where p and r are the predictions and gold standard, respectively. The ε term is used to ensure loss stability by 
avoiding numerical issues. We experimentally found that the Dice Loss yielded better results when compared to 

Figure 2. Dilated convolution. On the left, we have the dilated convolution with dilation rate r = 1, equivalent 
to the standard convolution. In the middle with have a dilation r = 2 and in the right a dilation rate of r = 3. All 
dilated convolutions have a 3 × 3 kernel size and the same number of parameters.
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the weighted cross-entropy (WCE) used by the original U-Net25, which is more difficult to optimize due to the 
added weighting hyper-parameter.

Medical image datasets are usually smaller than natural image datasets by many orders of magnitude, there-
fore regularization and data augmentation is an important step. In this work, the following data augmentation 
strategies were applied: rotation, shifting, scaling, flipping, noise, and elastic deformation40.

The main differences when we compare our proposed architecture with that of the work21, are the following:
Initial pooling/decimation: Our network does not use initial pooling layers as we found them detrimental to 

the segmentation of medical images;
Padding: We extensively employ padding across the entire network to keep feature map sizes fixed, trading 

depth to reduce memory usage of the network;
Dilation Rates: Since we do not use initial pooling, we retain the parallel dilated convolution branch with 

the rate r = 24. As we found improvements by doing so, due to the large feature map size that doesn’t cause filter 
degeneration as seen in21;

Loss: Contrary to natural images, our task of GM segmentation is highly unbalanced, therefore instead of 
using the traditional cross-entropy, we use the Dice Loss;

Data Augmentation: In this work we apply rotation, shifting, added channel noise, and elastic deformations40, 
in addition to the scaling and flipping used previously21.

Figure 3. Architecture overview of the proposed method. The MRI axial slice is fed to the first block of 3 × 3 
convolutions and then to a block of dilated convolutions (rate 2). Then, six parallel modules with different rates 
(6/12/18/24), 1 × 1 convolution, and a global average pooling are used in parallel. After the parallel modules, all 
feature maps are concatenated and then fed into the final block of 1 × 1 convolutions to produce the final dense 
predictions.

Figure 4. Architecture pipeline overview. During the first stage, input axial slices are resampled to a common 
pixel size space, then intensity is normalized, followed by the network inference.
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Table 1 compares the setup parameters of our approach as well as the participant methods of the SCGM 
Segmentation Challenge6.

U-Net architecture. For the U-Net25 architecture model that was used for comparison, we employed a 14-layers 
network using standard 3 × 3 2D convolution filters with ReLU non-linearity activations17. For a fair comparison, 
we used the same training protocol and loss function. For the data augmentation strategy, we employed a more 
aggressive augmentation due to overfitting issues with the U-Net (see the Discussion section). We also performed 
an extensive architecture exploration and used the best performing U-Net model architecture.

Datasets. In this subsection, we present the datasets used for evaluation in this work.

Spinal Cord Gray Matter Challenge. The Spinal Cord Gray Matter Challenge6 (SCGM Challenge) dataset con-
sists of 80 healthy subjects (20 subjects from each center). The demographics range from a mean age of 28.3 
up to 44.3 years old. Three different MRI systems were used (Philips Achieva, Siemens Trio, Siemens Skyra) 
with different acquisition parameters based on a multi-echo gradient echo sequence. The voxel size range from 
0.25 × 0.25 × 2.5 mm up to 0.5 × 0.5 × 5.0 mm. The dataset is split between training (40) and test (40) with the test 
set hidden. For each labeled slice in the dataset, 4 gold standard segmentation masks were produced by 4 inde-
pendent expert raters (one per site). Examples of the datasets from each center are shown in Fig. 1.

Method Init. Training External data Time p/slice

JCSCS Auto. No Yes 4–5 min

DEEPSEG Auto. Yes (4 h) No <1 s

MGAC Auto. No No 1 s

GSBME Manual Yes (<1 m) No 5–80 s

SCT Auto. No Yes 8–10 s

VBEM Auto. No No 5 s

Proposed Auto. Yes (19 h) No <1 s

Table 1. Parameters of each compared method. Time per slice is an estimated value, since different hardware 
were employed by the different techniques. Values replicated from the work6.

Resampling and 
Cropping

All volumes were resampled to a voxel size of 0.25 × 0.25 mm, the highest resolution found between acquisitions. 
All the axial slices were center-cropped to a 200 × 200 pixels size.

Normalization We performed only mean centering and standard deviation normalization of the volume intensities.

Train/validation split
For the train/validation split, we used 8 subjects (2 from each site) for validation and the rest for training. The test 
set was defined by the challenge. We haven’t employed any external data or used the vertebral information from the 
provided dataset. Only the provided GM masks were used for training/validation.

Batch size We used a small batch size of only 11 samples.

Optimization We used Adam48 optimizer with a small learning rate η = .0 001.

Batch Normalization We used a momentum φ = .0 1 for BatchNorm due to the small batch size.

Dropout We used a dropout rate of 0.4.

Learning Rate 
Scheduling

Similar to the work21, we used the “poly” learning rate policy where the learning rate is defined by η η= −⁎( )1t
n
N

p

0
 

where ηt0
 is the initial learning rate, N is the number of epochs, n the current epoch and p the power with p = 0.9.

Iterations We trained the model for 1000 epochs (w/ 32 batches at each epoch).

Data augmentation
We applied the following data augmentations: rotation, shift, scaling, channel shift, flipping and elastic 
deformation40. The data augmentation parameters were chosen using random search. More details about the 
parameters of the data augmentation are presented in Table 3.

Table 2. Training protocol for the Spinal Cord Gray Matter Challenge dataset.

Augmentation Parameter Probability

Rotation (degrees) [−4.6, 4.6] 0.5

Shift (%) [−0.03, 0.03] 0.5

Scaling [0.98, 1.02] 0.5

Channel Shift [−0.17, +0.17] 0.5

Elastic Deformation40 α = .30 0, σ = .4 0 0.3

Table 3. Data augmentation parameters used during the training stage of the Spinal Cord Gray Matter 
Challenge dataset.
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During the development of this work, we found some misclassified voxels in the training set. These issues 
were reported, however, for the sake of a fair comparison, all the evaluations done in this work used the original 
pristine training dataset.

Ex vivo high-resolution spinal cord. To evaluate our method on an ex vivo dataset, we used an MRI acquisition 
that was performed on an entire human spinal cord41, from the pyramidal decussation to the cauda equina using 
a 7 T horizontal-bore small animal MRI system.

MR images of the entire spinal cord were acquired in seven separate overlapping segments. The segment 
field of view was 8 × 2 × 2 cm with 1 cm of overlap on each end. Between each acquisition, the specimen was 
advanced precisely 7 cm through the magnet bore using a custom-machined gantry insert. T2*-weighted ana-
tomic images were acquired using a 3D gradient echo sequence with an acquisition matrix of 1600 × 400 × 400, 
resulting in 50 micron isotropic resolution. Scan parameters included: TR = 50 ms, TE = 9 ms, flip angle = 60°, 
bandwidth = 100 kHz and number of averages = 1. Per-segment acquisition time was 2 hours 22 minutes, result-
ing in a total acquisition time of approximately 16 hours. Individual image segments were composed into a single 
volume using automated image registration and weighted averaging of overlapping segments.

Although the acquisition was obtained from a deceased adult male with no known history of neurologic 
disease, the review of images revealed a clinically occult SC lesion close to the 6th thoracic nerve root level, with 
imaging features suggestive of a chronic compressive myelopathy or possible sequela of a previous viral infection 
such as herpes zoster.

The volume is comprised of a total 4676 axial slices with 100 isotropic resolution.
The annotations (gold standard) for axial slices of this dataset were made by a researcher with the help of an 

expert radiologist. The annotation procedure was as follows: first, the contour of the GM was delineated using a 
gradient method from MIPAV42 software. After that, a pixel-wise fine-tuning was performed using the fslview 
tool from FSL43.

Training Protocol. Spinal Cord Gray Matter Challenge. The training protocol for the SCGM Challenge6 
dataset experiments are described in Table 2 and the data augmentation parameters are described in Table 3.

Contrary to the smooth decision boundaries characteristic of models trained using cross-entropy, the Dice 
Loss has the property of creating sharp decision boundaries and models with high recall rate. We found exper-
imentally that thresholding the dense predictions with a threshold τ = 0.999 provided a good compromise 
between precision/recall, however, no optimization was employed to choose the threshold τ value for the output 
predictions.

Since the test dataset is hidden from the challenge participants, to evaluate our model we sent our produced 
test predictions to the challenge website for automated evaluation. Results are presented in Table 4 under the 
column “Proposed Method”, alongside with the six other previously developed methods and 10 different metrics.

The training time on a single NVIDIA P100 GPU took approximately 19 hours using single-precision 
floating-point and TensorFlow 1.3.0 with cuDNN 6, while inference time took less than 1 second per subject.

Inter-rater variability as label smoothing regularization. The training dataset provided by the SCGM Challenge 
is comprised of 4 different masks that were manually and independently created by raters for each axial slice. As 
in the study11, we used all the different masks as our gold standard. We also found that this approach shares the 
same principle of using label smoothing as seen in work44.

JCSCS DEEPSEG MGAC GSBME SCT VBEM Proposed Method

DSC 0.79 (0.04) 0.80 (0.06) 0.75 (0.07) 0.76 (0.06) 0.69 (0.07) 0.61 (0.13) 0.85 (0.04)

MSD 0.39 (0.44) 0.46 (0.48) 0.70 (0.79) 0.62 (0.64) 0.69 (0.76) 1.04 (1.14) 0.36 (0.34)

HSD 2.65 (3.40) 4.07 (3.27) 3.56 (1.34) 4.92 (3.30) 3.26 (1.35) 5.34 (15.35) 2.61 (2.15)

SHD 1.00 (0.35) 1.26 (0.65) 1.07 (0.37) 1.86 (0.85) 1.12 (0.41) 2.77 (8.10) 0.85 (0.32)

SMD 0.37 (0.18) 0.45 (0.20) 0.39 (0.17) 0.61 (0.35) 0.39 (0.16) 0.54 (0.25) 0.36 (0.17)

TPR 77.98 (4.88) 78.89 (10.33) 87.51 (6.65) 75.69 (8.08) 70.29 (6.76) 65.66 (14.39) 94.97 (3.50)

TNR 99.98 (0.03) 99.97 (0.04) 99.94 (0.08) 99.97 (0.05) 99.95 (0.06) 99.93 (0.09) 99.95 (0.06)

PPV 81.06 (5.97) 82.78 (5.19) 65.60 (9.01) 76.26 (7.41) 67.87 (8.62) 59.07 (13.69) 77.29 (6.46)

JI 0.66 (0.05) 0.68 (0.08) 0.60 (0.08) 0.61 (0.08) 0.53 (0.08) 0.45 (0.13) 0.74 (0.06)

CC 47.17 (11.87) 49.52 (20.29) 29.36 (29.53) 33.69 (24.23) 6.46 (30.59) −44.25 (90.61) 64.24 (10.83)

Table 4. Comparison of different segmentation methods that participated in the SCGM Segmentation 
Challenge6 against each of the four manual segmentation masks of the test set, reported here in the format: 
mean (std). For of fair comparison, the metrics are the same as used in the study6 and the results from other 
methods are replicated here, where we have: Dice similarity coefficient (DSC), mean surface distance (MSD), 
Hausdorff surface distance (HSD), skeletonized Hausdorff distance (SHD), skeletonized median distance 
(SMD), true positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), Jaccard index (JI) 
and conformity coefficient (CC). In bold font, we represent the best-obtained results on each metric. We also 
note that MSD, HSD, SHD and SMD metrics are in millimeters and that lower values mean better results.



www.nature.com/scientificreports/

8SCIentIFIC REPORTS |  (2018) 8:5966  | DOI:10.1038/s41598-018-24304-3

Label smoothing is a mechanism that has the effect of reducing the confidence of the model by preventing the 
network from assigning a full probability to a single class, which is commonly evidence of overfitting. In the study45, 
a link was found between label smoothing and the confidence penalty through the direction of the Kullback-Leibler 
divergence. Since the different gold standard masks for the same axial slices diverges usually only in the border of the 
GM, it is easy to see that this has a label smoothing effect on the contour of the GM, thereby encouraging the model 
to be less confident in the contour prediction of the GM, a kind of “empirical contour smoothing”.

This interpretation suggests that one could also incorporate this contour smoothing by artificially adding label 
smoothing on the contours of the target anatomy, where raters usually disagree on the manual segmentation, 
leading to a potentially better model generalization on many different medical segmentation tasks where the 
contours are usually the region of raters disagreement.

We leave the exploration of this contour smoothing to future work.

Ex vivo high-resolution spinal cord. The training protocol for the ex vivo high-resolution spinal cord dataset 
experiments are described in Table 5 and the data augmentation parameters are described in the Table 6.

Like in the SCGM Segmentation task, we used a threshold τ = 0.999 to binarize the prediction mask.
The training time on a single NVIDIA P100 GPU took approximately 2 hours using single-precision 

floating-point and TensorFlow 1.3.0 with cuDNN 6. While inference time took approximately 25 seconds to seg-
ment 4676 axial slices.

Data availability. The SCGM Challenge dataset analyzed during the current study is available on the SCGM 
Challenge repository at http://rebrand.ly/scgmchallenge. The ex vivo dataset analyzed during the current study is 
not publicly available, but is available from the corresponding author on reasonable request.

Results
In this section, we discuss the experimental evaluation of the method in the presented datasets.

Spinal Cord Gray Matter Challenge. In this subsection, we show the evaluation on SCGM Challenge6 
dataset.

Qualitative Evaluation. In Fig. 5, we show the segmentation output of our model in four different subjects, 
from acquisitions performed at the four different centers, on the test set of the SCGM Segmentation Challenge. 
The majority voting segmentation was taken from the study6. As we can see in Fig. 5, our approach was able to 
capture many properties of the GM anatomy, providing good segmentations even in presence of blur, as seen in 
the samples from Site 1 and Site 3.

Cropping All the slices were center-cropped to a 200 × 200 pixels size.

Normalization We performed only mean centering and standard deviation normalization of the volume intensities.

Train/validation split
For the training set we selected only 15 evenly spaced axial slices out of 4676 total slices from the volume. For the 
validation set, we selected 7 (evenly spaced) axial slices and our test set was comprised of 8 axial slices (also evenly 
distributed across the entire volume).

Batch size We used a small batch size of only 11 samples.

Optimization We used Adam48 optimizer with a small learning rate η = .0 001.

Batch Normalization We used a momentum φ = .0 1 for BatchNorm due to the small batch size.

Dropout We used a dropout rate of 0.4.

Learning Rate Scheduling Similar to the work21, we used the “poly” learning rate policy where the learning rate is defined by η η= −⁎( )1t
n
N

p

0
 

where ηt0
 is the initial learning rate, N is the number of epochs, n the current epoch and p the power with = .p 0 9.

Iterations We trained the model for 600 epochs (w/ 32 batches at each epoch).

Data augmentation
For this dataset, we used the following aforementioned augmentations: rotation, shift, scaling, channel shift, flipping 
and elastic deformation40. We didn’t employed random search to avoid overfitting due to the dataset size. More 
details about the parameters of the data augmentation are presented in Table 6.

Table 5. Training protocol for the Ex vivo high-resolution spinal cord dataset.

Augmentation Parameter Probability

Rotation (degrees) [−5.0, 5.0] 0.5

Shift (%) [−0.1, 0.1] 0.5

Scaling [0.9, 1.1] 0.5

Channel Shift [−0.3, +0.3] 0.5

Flipping Horizontal 0.5

Elastic Deformation40 α = .30 0, σ = .4 0 0.3

Table 6. Data augmentation parameters used during the training stage of the Ex vivo high-resolution spinal 
cord dataset.

http://rebrand.ly/scgmchallenge
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When compared with the segmentation results from Deepseg15, that uses a U-Net like structure with 
pre-training and 3D-wise training, we can see that our method succeeds at segmenting the gray commissure of 
the GM structure, which was observed to pose a problem for Deepseg, as indicated in Fig. 4 of the work6.

Quantitative Evaluation. As we can see in Table 4 and Fig. 6, our approach achieved state-of-the-art results in 8 
out of 10 different metrics and surpassed 4 out of 6 previous methods on all metrics. A description of the metrics 
used in this work is given in Table 7.

We can also see that the Dice Loss is not only an excellent surrogate for the Dice Similarity Coefficient (DSC) 
but also a surrogate for distance metrics, as we note that our model not only achieved state-of-the-art results on 
overlap metrics (i.e. DSC) but also on distance and statistical metrics.

Figure 5. Qualitative evaluation of our proposed approach on the same axial slice for subject 11 of each site. 
From top to bottom row: input image, majority voting segmentation gold standard, and the result of our 
segmentation method. Adapted from the work6.

Figure 6. Test set evaluation results from the SCGM segmentation challenge6 for each evaluated metric, 
with the Dice similarity coefficient (DSC), mean surface distance (MSD), Hausdorff surface distance (HSD), 
skeletonized Hausdorff distance (SHD), skeletonized median distance (SMD), true positive rate (TPR), true 
negative rate (TNR), positive predictive value (PPV), Jaccard index (JI) and conformity coefficient (CC). Our 
method is shown as “Proposed”. Best viewed in color.
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The True Negative Rate (TNR) and Positive Predictive Value (PPV) or precision, were metrics for which the 
proposed method did not achieve the best results. However, we note that the TNR was very close to the results of 
other methods. We also hypothesize that the suboptimal results of the precision (PPV) are an effect of the sharp 
decision boundary produced by our model due to the Dice Loss. We are confident that the prediction threshold 
optimization can yield better results, however, this cost optimization would require further investigations.

When compared to the Deepseg15 method, the only method using Deep Learning in the challenge, where an U-Net 
based architecture was employed, our proposed approach performed better in 8 out of 10 metrics, even though our 
method did not employ 3D convolutions, pre-training, or threshold optimization as was done in Deepseg15.

Ex vivo high-resolution spinal cord. In this subsection, we show the evaluation on the ex vivo 
high-resolution spinal cord dataset.

Qualitative Evaluation. In Fig. 7, we show a qualitative evaluation of the segmentations produced by our method 
and those of U-Net model, contrasting the segmentations against the original and gold standard images.

As can be seen in the test sample depicted in the first column of Fig. 7, the predictions of the U-Net “leaked” 
the gray matter segmentation into the cerebrospinal fluid (CSF) close to the dorsal horn (see green rectangle on 
first column), while our proposed segmentation was much more contained in the gray matter region only.

Also, in the third column of the Fig. 7, the U-Net significantly oversegmented a large portion of the GM 
region, extending the segmentation up to the white matter close to the right lateral horn of the GM anatomy (see 
the green rectangle), while our proposed method performed well.

We also provide in Fig. 8 a 3D rendered representation of the segmented gray matter using our method.

Quantitative Evaluation. As seen in Table 8, which shows the quantitative results of our approach, our method 
achieved better results on 6 out of 8 metrics. One of the main advantages that we can see from these results is 
that our method uses 6 × fewer parameters than the U-Net architecture, leading to less chance of overfitting and 
potentially better generalization.

During the training of the two architectures (U-Net and our method), we noticed that even with a high drop-
out rate of 0.4, the U-Net was still overfitting, forcing us to use a more aggressive data augmentation strategy to 
achieve better results, especially for the shifting parameters of the data augmentation; we hypothesize that this 
is an effect of the decimation on the contracting path of the U-Net, that disturbs the translational equivariance 
property of the network, leading to a poor performance on segmentation tasks.

Discussion
In this work, we devised a simple, efficient and end-to-end method that achieves state-of-the-art results in many met-
rics when compared to six independently developed methods, as detailed in Table 4. To the best of our knowledge, our 
approach is the first to achieve better results in 8 out of the 10 metrics used in the SCGM Segmentation Challenge6.

One of the main differences with other methods from the challenge is that our method employs an end-to-end 
learning approach, whereby the entire prediction pipeline is optimized using backpropagation and gradient 
descent. This is in contrast to the other methods, which generally employ separate registrations, external atlases/
templates data and label fusion stages. As we can also see in Table 8, when we compare our method to the most 
commonly used method (U-Net) for medical image segmentation, our method provides not only better results 
for many metrics, but also a major parameter reduction (more than 6 times).

In the lens of Minimum Description Length (MDL) theory46, which describes models as languages for describing 
properties of the data and sees inductive inference as finding regularity in the data47, when two competing explana-
tions for the data explains the data well, MDL will prefer the one that provides a shorter description of the data. Our 
approach using dilated filters provides more than 6× parameter reduction compared to U-Nets, but is also able to 
outperform other methods in many metrics, an evidence that the model is parameter-efficient and that it can capture 
a more compact description of the data regularities when compared with more complex models such as U-Nets.

The proposed approach has been tested on data acquired using Phase-Sensitive Inversion Recovery (PSIR) 
sequence, and as expected, the method did not work given that the model was not trained on PSIR samples and 

Metric Name Abbr. Range Interpretation Category

Dice Similarity Coefficient DSC 0–1 Similarity between masks Overlap

Jaccard Index JI 0–100 Similarity between masks Overlap

Conformity Coefficient CC <100 Ratio between mis-segmented and correctly segmented Overlap

Symmetric Mean Absolute Surface 
Distance MSD >0 Mean euclidean distance between mask contours (mean error) Distance

Hausdorff Surface Distance HSD >0 Longest euclidean distance between mask contours (absolute error) Distance

Skeletonized Hausdorff Distance SHD >0 Indicator of maximal local error Distance

Skeletonized Median Distance SMD >0 Indicator of global errors Distance

True Positive Rate or Sensitivity TPR 0–100 Low values mean that method tends to under-segment Statistical

True Negative Rate or Specificity TNR 0–100 Quality of segmented background Statistical

Positive Predictive Value or Precision PPV 0–100 Low values mean that method tends to over-segment Statistical

Table 7. Description of the validation metrics. Adapted from the work6.
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Figure 7. Qualitative evaluation of the U-Net and our proposed method on the ex vivo high-resolution spinal 
cord dataset. Each column represents a random sample of the test set (regions from left to right: sacral, thoracic, 
cervical). Green rectangles frame the oversegmentations of the U-Net model predictions.

Figure 8. Lumbosacral region 3D rendered view of the ex vivo high-resolution spinal cord dataset segmented 
using the proposed method. The gray matter is depicted in orange color while the white matter and other tissues 
are represented in transparent gray color.

Metric name U-Net Proposed

Num. of Params. 776,321 124,769

Dice 0.9027 (0.07) 0.9226 (0.04)

Mean Accuracy 0.9626 (0.02) 0.9561 (0.03)

Pixel Accuracy 0.9952 (0.01) 0.9968 (0.00)

Recall 0.9287 (0.05) 0.9135 (0.06)

Precision 0.8831 (0.10) 0.9335 (0.04)

Freq. Weighted IU 0.9913 (0.01) 0.9938 (0.00)

Mean IU 0.9121 (0.06) 0.9280 (0.04)

Table 8. Quantitative metric results comparing a U-Net architecture and our proposed approach on the ex vivo 
high-resolution spinal cord dataset.
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that these data exhibit very different contrast than the T2* images the model was trained on. This can be solved by 
aggregating the PSIR data into the existing datasets before training the model or even by training a specific model 
for PSIR data. Other techniques in the field of Domain Adaptation, which is currently a very active research area, 
could also be useful to generalize the existing model without even requiring annotated PSIR data, depending on 
the technique. These investigations will be the focus of follow-up studies.

Our approach is limited to 2D slices, however, the model does not restrict the use of 3D dilated convolutions 
and we believe that incorporating 3D context information into the model would almost certainly improve the 
segmentation results, however, at the expense of increased memory consumption.

Although we believe that this method can be extended to the GM segmentation in the presence of many differ-
ent neurological conditions such as multiple sclerosis, this will need to be further confirmed in follow-up studies 
in which patients would be included in the training/validation dataset.

We also believe that our method can be expanded to take advantage of semi-supervised learning approaches 
due to the strong smoothness assumption that holds for axial slices in most volumes, especially in ex vivo 
high-resolution spinal cord MRI.
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