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Intrinsic Frequency Analysis and 
Fast Algorithms
Peyman Tavallali1,3, Hana Koorehdavoudi  2,3 & Joanna Krupa3

Intrinsic Frequency (IF) has recently been introduced as an ample signal processing method for 
analyzing carotid and aortic pulse pressure tracings. The IF method has also been introduced as an 
effective approach for the analysis of cardiovascular system dynamics. The physiological significance, 
convergence and accuracy of the IF algorithm has been established in prior works. In this paper, we 
show that the IF method could be derived by appropriate mathematical approximations from the 
Navier-Stokes and elasticity equations. We further introduce a fast algorithm for the IF method based 
on the mathematical analysis of this method. In particular, we demonstrate that the IF algorithm can 
be made faster, by a factor or more than 100 times, using a proper set of initial guesses based on the 
topology of the problem, fast analytical solution at each point iteration, and substituting the brute 
force algorithm with a pattern search method. Statistically, we observe that the algorithm presented 
in this article complies well with its brute-force counterpart. Furthermore, we will show that on a real 
dataset, the fast IF method can draw correlations between the extracted intrinsic frequency features 
and the infusion of certain drugs.

Cardiovascular diseases (CVDs) relate to different conditions which can affect the performance of the heart and 
blood vessels. These diseases include: coronary artery disease, valvular heart disease, cardiomyopathy, heart 
rhythm disturbances and heart infections. As an example, congestive heart failure is a disease which happens 
when the heart does not work normally and cannot provide enough blood flow for body tissues. In this disease, 
the heart muscle does not stretch and contract in a normal way. Another example of CVDs is pulmonary hyper-
tension which is a condition that there is a high blood pressure in the arteries that go from heart to the lungs. In 
some cases, the arteries in the lung become narrow or blocked. Therefore, blood flow harder through the arteries 
and this causes blood pressure to further increase in lungs making the blood flow even harder in this organ. All 
these changes will affect arterial pressure waveforms.

Cardiovascular diseases and stroke are major causes of death in the United States. The total cost related to 
CVDs and stroke was estimated to be more than $316 billion in 2011–20121,2. The American Heart Association 
(AHA) estimates that in 2030 the direct costs will reach $818 billion3. It is mentioned that the indirect costs for 
2030 would be $276 billion3. Hence, clinical measurements of cardiovascular health indices are of great impor-
tance. These methods and measurements are essential tools for monitoring cardiovascular health due to their 
relative availability. For example, Left Ventricular Ejection Fraction (LVEF) is a measure of left ventricular con-
tractility4. Carotid-Femoral Pulse Wave Velocity (cfPWV) is a measure of aortic stiffness5. Velocity-encoded 
(VENC) phase contrast Magnetic Resonance Imaging (MRI) helps to detect the existence of flow vorticity that 
measures the morphological changes of the cardiac chamber wall6.

However, current methods of measuring such indices are expensive, sometimes invasive, prone to measure-
ment errors, and not necessarily easy to use. For example, 2D LVEF echocardiography is not accurate compared 
to more expensive and laborious gold standard cardiac MRI method7–10. As another example, obtaining accurate 
cfPWV measurements often requires certain medical devices and a well-trained staff within a clinical setting11. 
Consequently, continuous measurement of these indices is not practical. These limitations emphasize the need for 
new cardiovascular monitoring methods.

Intrinsic Frequency (IF) has been established as a new method of cardiovascular monitoring through a novel 
signal processing methodology12. The IF method needs only an uncalibrated pulse pressure13 to extract pertinent 
information regarding the cardiovascular health of an individual12. The IF method has also been shown to be 
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capable of non-invasively measuring LVEF by means of an iPhone camera14. We believe that methods like IF are 
of clinical and financial benefit in addressing cardiovascular monitoring.

In this paper, at first, we provide an overview of the IF method. Next, we present an approximate derivation of 
the IF model by combining Navier-Stokes equations and continuity with elasticity equations. This helps to build a 
solid mathematical foundation for the IF method and the analysis that follows. Later, we analyze the IF algorithm 
in the space of feasible solutions, and based on that, we introduce a new version of the IF algorithm which is faster 
than the current brute-force IF method13 while maintaining the same accuracy. We then perform a case study on 
real pressure waveforms drawn from canine data using our new algorithm. We will see that the fast IF algorithm 
is capable of capturing the effects of different drug infusions on a canine subject.

Brief Overview of IF Method
A History of Analyzing Cardiovascular Pulse Waveform. Blood pressure was first measured by Hales 
in 173515. In his measurements, he found that blood pressure is not constant in the arterial system. He related 
these variations to the elasticity of the arteries15. Currently, it is known that the shape of the arterial pulse wave is 
intimately related to the physiology and pathology of the whole arterial system16. There has been much research 
on analyzing the dynamics of blood pressure and flow in arterial systems17–21. Specifically, there are two main 
approaches to analyzing cardiovascular pulse wave data. One approach is based on a systematic mathematical 
framework for the cardiovascular system. The other is based on directly analyzing the pulse pressure waveform 
using signal processing methods.

An example of the systematic framework can be seen with the set of Windkessel models22. The formulation of 
a minimal lumped model of the arterial system was first presented by Westerhof et al.22. Based on a Windkessel 
model, the arterial system dynamics have been modeled through a combination of different elements such as 
resistance, compliance and impedance. In this simplified model of the arterial system, the blood flow dynamics 
is modeled by the interaction between the elements (assuming the blood flow acts as the current in the system). 
Because of the type of modeling, the wave transmission of the blood flow is neglected. As a result, the Windkessel 
models is not able to represent the entire dynamics of the blood flow in an arterial system accurately.

On the other hand, there are various methods for direct analysis of an arterial pulse waveform, in both time 
and frequency domains20. For example, the impedance method, which is based on Fourier transform, is a com-
mon method to analyze the pressure waveform in the frequency domain17. As an example, Milnor has shown 
that the pressure and flow waveforms can be a superposition of several harmonics using the Fourier method23. 
Another method to investigate the pressure wave in the time domain is the wave intensity analysis which is based 
on wavelet transform24. These methods do not necessarily convey a physical understanding of the cardiovascular 
system.

The IF algorithm presented in13 is analyzing a pulse waveform through a direct time-frequency signal pro-
cessing machinery setting, from a quantitative perspective. Although, in previous work12, we tried to qualitatively 
express a systems approach to the IF formulation, the quantitative picture has not yet been clear. However, in this 
article, we show this connection from a quantitative perspective.

IF Formulation. In the IF method, the aortic pressure waveform at time ∈t T[0, ), for a cardiac period T, can 
be represented as
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Here, a1, b1, a2 and b2 are the envelopes of the IF model fit. ω1 and ω2 are the Intrinsic Frequencies (IFs) of the 
waveform. Further, p  is the mean pressure during the cardiac cycle. This type of formulation embeds the coupling 
and decoupling of heart and aorta.

The goal of the IF model (2.1) is to extract a fit, called Intrinsic Mode Function (IMF), that carries most of the 
energy (information) from an observed pressure waveform f(t) in one period. The latter is done by solving the 
following optimization problem13:
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Here, 2 is the L2-norm. The first linear condition in this optimization enforces the continuity of the extracted 
IMF at the dicrotic notch. The second one imposes the periodicity. The mathematical convergence and accuracy 
of the IF algorithm have been explained in a previous work13. In the next sections, we explore the foundation of 
the IF algorithm and propose a faster IF algorithm.
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Approximate Derivation of the IF Model
As mentioned earlier, in a previous work12, we tried to express a systems approach to the IF formulation qualita-
tively. However, in this article, we show this connection from a quantitative perspective. This section is devoted 
to this purpose.

Here we use a simplified model to address our approach. However, for a more general modeling, analysis and 
estimation of the blood flow and pressure estimation one could see25,26.

In this paper, we assume that the Left Ventricle (LV), the aortic valve, aorta and the arterial system can be 
represented by a simplified model as shown in Fig. 1. Here, the LV and the aortic valve are assumed to be the 
boundary condition at the entrance of the aortic tube and the arterial system is the terminal boundary condition 
of the aortic tube. The boundary condition at the entrance of the aortic tube changes from an LV boundary con-
dition to a closed valve boundary condition, at the dicrotic notch time T0 during a cardiac cycle [0, T]. We further 
assume that blood is a Newtonian incompressible fluid, the aorta is a straight and sufficiently long elastic tube 
with a constant circular cross section and there is no external force causing flow rotation. These assumptions are 
not all satisfied in a real cardiovascular system. However, they are useful in estimating the general behavior of 
blood in aorta.

Combining the Navier-Stokes equations and continuity with the elasticity equation, we can drive a model for 
the flow Q(x, t) and the pressure P(x, t) along the length x of an aorta as follow

−
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The step by step derivation of these equations is presented in the supplementary material. Parameters L, R, and 
C represent inductance, resistance, and compliance of the blood in aorta. Here, 0 ≤ x ≤ h, where h represents the 
aortic length. This model has also been discussed and simulated numerically in27 with a complex set of boundary 
conditions. Here, our main concentration will be on the aortic tube oscillatory waveform solutions. Next, we will 
show that we can derive (2.1) from (3.1) and (3.2).

Since the input to the IF model (2.1) is a pressure waveform, we need to extract an equation for the pressure 
P(x, t) from Equations (3.1) and (3.2) by eliminating the flow. Combining Equations (3.1) and (3.2) results in
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A similar expression could also be found for the flow field Q(x, t). Taking = +P x t t p x t p( , ) ( ) ( , ) , with p  
as the the mean pressure, we can write equation (3.3) as
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Here, we have used the dot notation to represent the time derivative. We can simplify the term in front of ∂
∂

x t( , )p
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, 
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reduces Equation (3.4) into
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The solution of Equation (3.5) can be expressed in terms of eigenfunctions. In other words, using the method of 
separation of the variables, one can express the solution of Equation (3.5) as
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Figure 1. Simplified cardiovascular system model schematic.
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and some constants αn, βn, ζn and ηn. As a result, the solution of (3.3) can be expressed as
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The variables ωn can be expressed based on the boundary conditions of the aortic tube. We need to emphasize 
that for a period of the cardiac cycle [0, T), the boundary conditions change before and after the dicrotic notch T0. 
Hence, for ∈t T[0, ), Equation (3.9) can be written as
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Here, the superscripts indicated with “1” belong to the form of the solution before the closure of the aortic valve, 
and the superscripts indicated with “2” belong to the form of the solution after the closure of the aortic valve. 
Constants K1, αn

1, βn
1, ζn

1, ηn
1 and ωn

1 are found from the boundary and initial conditions at systole. Similarly, con-
stants K2, αn

2, βn
2, ζn

2, ηn
2 and ωn

2 are found from the boundary and initial conditions at diastole.
Equation (3.10) is explicitly showing the coupling and decoupling of heart and aorta before and after the 

dicrotic notch. As the boundary conditions change during a cardiac cycle, the frequencies of oscillation also 
change from ωn

1 to ωn
2. Generally, Equation (3.9) can represent pressure waveform for a Newtonian incompressible 

fluid in a straight and sufficiently long elastic tube with constant circular cross section.
If the pressure is recorded at a specific point x0 on aorta, the terms containing the spacial variable x would be 

fixed. In other words, Equation (3.10) would reduce to
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Now, considering that the cardiac cycle length would be around 1.5 sec, at most, and taking into account that 
R is smaller than L27, one can use the approximation −

e 1tR
L2 . Hence, Equation (3.11) would become
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Further, if most of the information, or energy, is carried out by the first terms in the series of the solution, we 
can further write the approximated solution (3.12) as
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we can approximate the IF model (2.1). The continuity and periodicity conditions (2.3) can also be approximated 
if we hold the assumption that most of the energy is carried out by the first terms in the series of the solution 
(3.12).

In short, in this section, we have presented an approximate quantitative justification on the origins of the IF 
method. In the next section, we move on with the analysis of the optimization problem (2.2) subject to (2.3).

Analysis of The IF Algorithm
Practically, one must solve the discrete version of (2.2). We assume that the pressure waveform f(t) is sampled 
uniformly. Also, we can simplify (2.2) by the fact that any sinusoid can be assumed to start from time t = 0 with 
a compensation coming from a phase shift. In other words, any sinusoid can be expressed as A cos ωt + B sin ωt, 
irrespective of whether the initial time is t = 0 or t = T0. Hence, the discrete format of (2.2) can be expressed as
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The constraints, in (4.1), can be written as
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If we can solve for two, out of four, unknowns in (4.5), we would make (4.1) an unconstrained optimization. 
However, it is important to check whether the matrix in (4.5) is of full rank or not. In fact, the rows of this matrix 
are linearly independent except when
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This will lead into two cases:
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Equations (4.7) and (4.8) would then simplify (4.3) into
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Using Equations (4.9–4.11), and dropping the dependencies in notation, simplifies (4.1) into
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This simplification has helped to eliminate the constraints in the optimization problem (4.1).
The minimization problem (4.12) is non-convex and non-linear in its parameters. So, in order to be able to 

solve the problem, we can use the fact that the minimum of a function can first be found over some variables and 
then over the remaining ones28. In other words, the optimization problem in (4.12) can be written as
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We call the inner optimization in (4.13) as P(ω1, ω2). Solving for P(ω1, ω2) is a classical least squares problem. 
The solution existence and uniqueness of this optimization is mentioned in our previous work13. To find the exact 
solution we simplify the objective function as
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Substituting for Q = b1v1 + b2v2, we convert (4.14) into
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Since, in this part of the optimization, the values of ω1 and ω2 are fixed, we can find the optimal values of b1, b2, 
and p  by setting the partial derivatives of (4.15) equal to zero. In other words, we set =

∂ + −

∂
0
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. Doing this, we find the optimal solution for b1, b2, and p , by
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1 2

1
1
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Here, we have fulfilled the optimization part by solving a linear system. This could potentially accelerate the IF 
algorithm. Finally, we only have to solve a minimization on

ω ω ω ω ω ω ω ω ω ω= + − .
⁎ ⁎ ⁎P b b pQ t 1 f( , ) ( , , ( , ), ( , ); ) ( , ) , (4 17)1 2 1 2 1 1 2 2 1 2 1 2 2

2

which is

ω ω .
.ω ω

minimize P ( , )
(4 18),

1 2
1 2

We note that a property of the function P(ω1, ω2) is its differentiability, away from its singularities. In fact, by 
definition, the function + −pQ 1 f 2

2 is directionally differentiable with respect to all its variables. Hence, using 
the results in29,30, we can deduce that

ω ω = + −
.

 P minimize pQ 1 f( , )
(4 19)b b p

1 2
, ,

2
2

1 2

is directionally differentiable with respect to ω1 and ω2. This property can be exploited if one tries to solve (4.18) 
using a gradient based optimization method31.

Degenerate Case (cos ω1T0 cos ω2(T − T0) = 1). The solution of (4.6) can be expressed as nodes of a lat-
tice   in ω1ω2 plane. To be more specific, we have

 ∪= Γ Γ ., (4 20)1 2

where

 Γ ω ω ω π ω π= | = + − = + ∈ ∈ .T k T T k k k{( , ) (2 1) , ( ) (2 1) , , }, (4 21)1 1 2 1 0 1 2 0 2 1 2

and

 Γ ω ω ω π ω π= | = − = ∈ ∈ . .T k T T k k k{( , ) 2 , ( ) 2 , , } (4 22)2 1 2 1 0 1 2 0 2 1 2

If (ω1, ω2) ∈ Γ1, from (4.5) we have a1 = −a2. On the other hand, if (ω1, ω2) ∈ Γ2, from (4.5) we have a1 = a2. In 
both of these cases, we can express (4.3) as

ω ω ω ω= + .a b b p a b b pS t Q t 1( , , , , , ; ) ( , , , , ; ) , (4 23)1 1 1 1 2 1 1 1 1 2

where ω ω a b bQ t( , , , , ; )1 1 1 1 2   =  ω ω ω ω ω ω+ +Γa b bw t w t w t( , ; ) ( , ; ) ( , ; )1 0 1 2 1 1 1 2 2 2 1 2
i , for i = 1, 2. If (ω1, ω2) ∈ Γ1,
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Similarly, if (ω1, ω2) ∈ Γ2, we have
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In both of the cases, we have
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Here, 01 and 02 are zero vectors in  ×m 1 and  ×n 1, respectively. It is clear, from (4.26) and (4.27), that 
′ ′= =w w w w 01 2 2 1 . Using (4.23), and a similar approach we employed in (4.15) and (4.16), we find the optimal 

solution for a1, b1, b2, and p , by
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for i = 1, 2. Hence, similar to (4.17), for (ω1, ω2) ∈ Γ1 or (ω1, ω2) ∈ Γ2, we only have to solve a minimization on

ω ω ω ω ω ω ω ω ω ω ω ω= + − . .
⁎ ⁎ ⁎ ⁎P a b b pQ t 1 f( , ) ( , , ( , ), ( , ), ( , ); ) ( , ) (4 29)i i i i1 2 1 1 1, 1 2 1, 1 2 2, 1 2 1 2 2

2

Note that, from a machine learning perspective, the nodes specified in (4.20) do not have important informa-
tion physiologically as they could be inferred from the systolic and diastolic parts of a waveform alone. In other 
words, even if these points present a global minima, they are not informative as we already know the systolic and 
diastolic inverses, 

T
1

0
 and 

−T T
1

0
 respectively, as possible inputs to any machine learning algorithm. Hence, these 

points could possibly be ignored in a search for an optimum point of (4.1).

Fast IF Algorithms
In this section, we present a fast IF algorithm which is based on the results presented in the previous section and 
the topology of the solution space for P(ω1, ω2). In order to keep the fluency of this section, we mention the orig-
inal IF algorithm (see Algorithm 1) as presented in13.

Algorithm 1 has three major steps. In the first step, the (ω1,ω2) domain

 ω ω ω ω= | < ≤ < ≤ .C C{( , ) 0 , 0 } (5 1)fr 1 2 1 2

is made discrete, namely fr . The second step is a minimization to find P(ω1, ω2), see (4.18). The final step is a 
brute-force search on fr  to find the minimum of P(ω1, ω2).

All three steps can be optimized to make the IF algorithm faster. Regarding the domain of optimization fr, 
defined in (5.1), we know from our previous work in14 that the average IF solution, for a physiological pulse wave-
form recording, is confined to a smaller domain  expressed as

ω ω= | . . . . .
ω

π
ω

π
−⩽ ⩽ ⩽ ⩽{ }( , ) 0 5 1 5, 0 5 3 (5 2)

T T T
1 2

( )1 0 2 0

This will make the first step search area more well-defined and optimized. In the previous section, we have 
been able to find some analytic solutions (see (4.16)) for the inner optimization part of problem (4.13). This 
will help us to substitute an analytic solution instead of an iterative32 or QR decomposition33 solution for (5.3). 
Finally, the brute-force part can be substituted with an appropriate direct search algorithm34, e.g. pattern search 
algorithm35. It can even be substituted with an appropriate gradient based algorithm28,31, e.g. gradient descent, as 
we know the differentiability of P(ω1, ω2).

Algorithm 1. Intrinsic Frequency.
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Before moving on, we show the topology of the P(ω1, ω2) function and also its minima locations in ω1 and ω2 
space. These will provide useful insights on where to set the initialization point(s) of a possible fast IF algorithm. 
The data description is provided in the next section. In Figs 2 and 3, we have presented two different dog aortic 
pressure cycles with the IMF extracted by the means of the brute-force IF Algorithm 1. Figures 2 and 3, top right, 
show the heat-map plots of ω

π
ω

π
−( )P ,T T T( )1 0 2 0 . The complex nature of P(ω1, ω2) can be seen in these figures. We 

purposefully plotted P in the dimensionless coordinates ω
π
T1 0  and ω

π
−T T( )2 0  to show the behavior of this function 

with respect to the lattice node locations   defined in (4.20–4.22). To have a better view and understanding of 
the P(ω1,ω2) topology, a contour of ω

π
ω

π
−( )P ,T T T( )1 0 2 0  is shown in those figures. The general topology of 

ω
π

ω
π
−( )P ,T T T( )1 0 2 0 , for all aortic or carotid pulse waveforms, is similar to the ones presented in Figs 2 and 3. 

However, the location of the minimizer is not similar.
Our investigations show that the locations of the minimizers of all P functions construct two different areas 

in the dimensionless coordinates ω
π
T1 0  and ω

π
−T T( )2 0 . We call these areas as the upper lobe and lower lobe. The 

upper lobe is an area, in , confined above the line =ω
π
− 1T T( )2 0 . The lower lobe is an area, in , confined below 

the line =ω
π
− 1T T( )2 0 . This is also the case for human subject data14. This type of topology suggests two critical 

initial guess areas for any non-brute-force algorithm solving (4.1): one set of points in the upper lobe, the other 
in the lower. In the remaining part of this section, we introduce a fast IF algorithm based on the pattern search 
method34.

Pattern Search IF. The pattern search algorithm (or sometimes called the compass search algorithm) is 
explained in detail in34. For completeness, we have summarized the pattern search algorithm in Algorithm 2. The 
convergence analysis of this method is expressed in34.

Figure 2. Up-Left: A dog aortic pressure cycle (in blue), its dicrotic notch (black circle with dotted center), and 
the IMF (in red). Up-Right: heat-map plot of ω

π
ω

π
−( )P ,T T T( )1 0 2 0  for the cycle in left with the location of the 

solution marked with red dot. Down-Left: Contour plot of ω
π

ω
π
−( )P ,T T T( )1 0 2 0 . The location of the minimizer of P 

is shown by a red dot. Down-Right: Contour plot of ω
π

ω
π
−( )P ,T T T( )1 0 2 0  and the location of the minimizer of P 

tracked by the pattern search. The beginning of the pattern search is marked with a triangle and its end with a 
circle. The true optimum point is marked with a red dot. The upper pattern search set (in black) has converged 
towards the correct optimum. The lower pattern search set (in magenta) has converged to a local minima near 
the node.
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Figure 3. Up-Left: A dog aortic pressure cycle (in blue), its dicrotic notch (black circle with dotted center), and 
the IMF (in red). Up-Right: heat-map plot of ω

π
ω

π
−( )P ,T T T( )1 0 2 0  for the cycle in left with the location of the 

solution marked with red dot. Down-Left: Contour plot of ω
π

ω
π
−( )P ,T T T( )1 0 2 0 . The location of the minimizer of P 

is shown by a red dot. Down-Right: Contour plot of ω
π

ω
π
−( )P ,T T T( )1 0 2 0  and the location of the minimizer of P 

tracked by the pattern search. The beginning of the pattern search is marked with a triangle and its end with a 
circle. The true optimum point is marked with a red dot. The lower pattern search set (in black) has converged 
towards the correct optimum. The upper pattern search set (in magenta) has converged to a local minima near 
the node.

Algorithm 2. Pattern Search34.
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The fast IF algorithm, without considering the nodes (4.20), is expressed in Algorithm 3. As mentioned before, 
what makes Algorithm 3 fast is embedded in three different objects:

 (1) The initial guess set up in the initialization part of the algorithm.
 (2) The fast analytic solution at each point iteration defined by (4.16) and (4.17).
 (3) The pattern search part which is a substitute for the brute force algorithm.

Figure 2, bottom right, shows the results of Algorithm 3. In this figure, when using Algorithm 3, we have used 
two initial guesses = =ω

π
ω

π
−( )1, 2T T T( )1 0 2 0  and = = .ω

π
ω

π
−( )1, 0 9T T T( )1 0 2 0 . As depicted on the figure, the initial 

guess located in the upper lobe has converged towards the true minimizer in . On a PC having 8 threads, Intel® 
Core™ i7-4700MQ CPU @ 2.40 GHz × 8, running a Matlab implementation of the brute-force Algorithm 1 in 
parallel takes roughly 85 seconds. On the other hand, achieving the same minimizer, using a sequential version of 
the fast Algorithm 3, takes approximately 0.5 seconds. Comparing the brute-force and pattern search algorithms, 
the absolute error in estimating ω1 is ~0.02 (an absolute error of ~0.002 in ω

π
T1 0 ) and the relative error is 0.17%. The 

absolute error in estimating ω2 is ~0.08 (an absolute error of ~0.008 in ω
π
−T T( )2 0 ) and the relative error is 0.74%.

The same test was done for another aortic cycle presented in Fig. 3. We used the same initial guesses as before. 
This time, on the same PC, using the same implementations, the brute-force Algorithm 1 took roughly 80 seconds 
and the fast Algorithm 3 took approximately 0.5 seconds. These two examples show a speed up of almost 160 
times. In the next section we present more about the statistical accuracy of Algorithm 3 and its physiological 
capabilities. Comparing the brute-force and pattern search algorithms, the absolute error in estimating ω1 is ~0.02 
(an absolute error of ~0.001 in ω

π
T1 0) and the relative error is 0.11%. The absolute error in estimating ω2 is ~0.05 (an 

absolute error of ~0.006 in ω
π
−T T( )2 0 ) and the relative error is 0.83%.

Figure 4. Drug effects on ω1 and ω2. First Panel: The measured aortic pressure waveform recorded in time. 
Second Panel: Dosage of dobutamine (in red), phenylephrine (in purple), and nitroglycerin (in green) during 
the aortic pressure measurement. Third Panel: Changes of ω1 in units of bit per minute (bpm) over the 
measurement time. Each drug effect is projected with its corresponding color, for the fast IF algorithm. No drug 
areas are in blue, for the fast IF algorithm. The brute-force algorithm results are shown in dashed black line. 
Fourth Panel: Changes of ω2 in units of bpm over the measurement time. Each drug effect is projected with its 
corresponding color, for the fast IF algorithm. No drug areas are in blue, for the fast IF algorithm. The brute-
force algorithm results are shown in dashed black line.
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Real Data Example
Data Description. The real dog data used in this manuscript is well described in36. Briefly, six normal adult 
beagle dogs had undergone the data collection experiment. One dog was involved in a sterile surgical proce-
dure for implanting chronic recording transducers. All the dogs had undergone general anesthesia with propofol 
and maintained it with inhaled isoflorane. For the aortic pressure waveform measurements, a micro-manome-
ter-tipped catheter was inserted into a femoral artery and guided into the descending thoracic aorta. The trans-
ducer outputs were transfered to a personal computer through an A/D conversion system. The measurements 
were collected over a period of 50– 170 minutes. Some pharmacological influences and total intra-vascular vol-
ume changes were imposed on the dogs: dobutamine, esmolol, verapamil, phenylephrine, nitroprusside, saline 
and progressive hemorrhage. For a detailed description, see36.

Since, at the time of the the data retrieval, the data was downloaded with different sampling rates, we 
re-sampled all six dog data at 500 Hz. We used a modified version of the automatic cycle selection introduced 
in37 to pick cycles. Dicrotic notch locations were then found from the picked cycles38. We totally extracted 59384 
acceptable aortic cycles form those six dogs.

Statistical Accuracy. To check the statistical accuracy of the fast IF algorithm versus the brute-force IF algo-
rithm, we compared the results of these two algorithms on the extracted 59384 dog aortic cycles. The brute-force IF 
algorithm (Algorithm 1) was run over the sample set with a mesh size ω ω ω ω− = −

≠ ≠( )min( ) min( )
l m

l m

l m

l m
1 1 2 2  of 

0.02π. Algorithm 3 was run on the same sample set of 59384 aortic cycles with Δωtol = 0.001, and Δω0 = 0.1, com-
prising a mesh size of .0 1

26
. The brute-force algorithm has a larger mesh size due to heavy computational cost of this 

algorithm. The maximum average difference between the IFs found by these two algorithms was found to be less 
than 0.0475. This difference is smaller than both mesh sizes used for the brute-force and fast IF algorithms. This 
shows that, on average, the fast IF algorithm (Algorithm 3) reaches the same minima as the brute-force algorithm 
(Algorithm 1).

Physiological Observations. To evaluate the new fast IF algorithm (Algorithm 3), we applied the algo-
rithm on the measured aortic pressure signal from one dog experiencing various pharmacological interventions, 
see Fig. 4. During the experiment, the dog was under the following pharmacological influences: infusion of 
dobutamine (5–20 μg/kg/min), phenylephrine (2–8 μg/kg/min) and nitroglycerin (4 μg/kg/min) during different 
time intervals.

The second panel, in Fig. 4, shows the dosage and duration of each drug in the experiment. In the first phase of 
the experiment dobutamine has been injected at a low dosage followed by a fluctuation in the dosage of injection.

Algorithm 3. Fast IF.
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The third and fourth panels, in Fig. 4, show the trends of ω1 and ω2 for both the fast IF algorithm (Algorithm 
3 in blue, red, purple and green dots) and the brute-force algorithm (Algorithm 1 in dashed black line). Both 
algorithms follow the same trends showing the same precision. In other words, if the force-brute IF is used as a 
control, the fast IF is exactly duplicating the trend.

The effect of dobutamine on the cardiovascular system is to increase the strength and force of the heartbeat. 
Consequently, it forces more blood to circulate throughout the body. In previous works12,14, we hypothesized that 
ω1 would be a representative of heart functionality. We also hypothesized that ω1 and ω2 would try to keep a bal-
ance during changes. These hypotheses can be seen during the injection of dobutamine in this figure.

Next, phenylephrine has been injected at a low dosage and the dosage is then increased over time. 
Phenylephrine is a decongestant which affects the cardiovascular system by shrinking blood vessels. ω2 shows 
an almost monotone decrease during the infusion of phenylephrine. This is again in qualitative accord with what 
we presented in12.

Lastly, nitroglycerin has been injected at a constant dosage. Nitroglycerin helps to dilate the blood vessels. This 
dilation can be captured with ω2, as can be seen from the figure. Generally, based on this figure, IFs are able to 
capture changes in the dynamics of the system under the effects of different drugs.

Conclusion
In this paper, we provided a mathematical foundation for the IF model13. We showed how to derive an estimation 
of the IF model (2.1) by considering basic physics principles. More precisely, we showed that the IF model can be 
estimated from Navier-Stokes and elasticity equations.

We further analysed the IF model (4.1). This helped to introduce a fast algorithm for the IF method (Algorithm 
3). What made this algorithm fast was embedded in the proper set up of the initial guesses based on the topology 
of the problem, fast analytic solution at each point iteration, and substituting the brute force algorithm with a pat-
tern search method. These changes would convert an iterative and brute-force method (Algorithm 1) into an alge-
braic and iterative method (Algorithm 3). The presented fast algorithm, in this article, has a speed up of more than 
100 times compared to the brute-force algorithm provided in13. From a statistical perspective, we have also shown 
that the algorithm presented in this article complies well with the brute-force implementations of this method.

We also showed, on a real dataset, that the fast IF Algorithm 3 can depict correlations between its outputs and 
infusion of certain drugs. This part of our paper can be subject to further physiological and clinical investigations 
in a future work.

Data availability. All data generated or analysed during this study are included in the Supplementary 
Information files. The datasets generated during and analysed during the current study are also available from the 
corresponding author on reasonable request.

Research ethics. All experiments and procedures were reviewed and approved by the MSU All-University 
Committee on Animal Use and Care36.
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