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Quantitative 3-D morphometric 
analysis of individual dendritic 
spines
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Ewa Baczynska3, Nirmal Das1, Dariusz Plewczynski4 & Jakub Wlodarczyk3

The observation and analysis of dendritic spines morphological changes poses a major challenge 
in neuroscience studies. The alterations of their density and/or morphology are indicators of the 
cellular processes involved in neural plasticity underlying learning and memory, and are symptomatic 
in neuropsychiatric disorders. Despite ongoing intense investigations in imaging approaches, the 
relationship between changes in spine morphology and synaptic function is still unknown. The existing 
quantitative analyses are difficult to perform and require extensive user intervention. Here, we propose 
a new method for (1) the three-dimensional (3-D) segmentation of dendritic spines using a multi-scale 
opening approach and (2) define 3-D morphological attributes of individual spines for the effective 
assessment of their structural plasticity. The method was validated using confocal light microscopy 
images of dendritic spines from dissociated hippocampal cultures and brain slices (1) to evaluate 
accuracy relative to manually labeled ground-truth annotations and relative to the state-of-the-art 
Imaris tool, (2) to analyze reproducibility of user-independence of the segmentation method, and (3) to 
quantitatively analyze morphological changes in individual spines before and after chemically induced 
long-term potentiation. The method was monitored and used to precisely describe the morphology of 
individual spines in real-time using consecutive images of the same dendritic fragment.

Dendritic spines are small membranous extensions on neuronal dendrites that form the postsynaptic site of most 
of excitatory synapses in the central nervous system. Dendritic spines have distinct structural features and are a 
heterogeneous group in terms of size and shape1. Morphologically, dendritic spines consist of a spine head, where 
the excitatory synapse is located, which is separated from the parent dendrite by a thin neck that isolates the spine 
cytoplasm from the dendrite (Harris and Kater, 1994). Such a specific shape allows electrical and biochemical 
compartmentalization2–5. Dendritic spines are essential for the accurate activity and signal transmission of neural 
circuits, but their exact function is still elusive and remains under intensive investigation6–8.

The shape of dendritic spines may undergo activity- and experience-dependent modifications that are believed 
to associate synaptic plasticity4,9–12 with biological phenomena that are critical for synaptic function13,14. Although 
the functional consequences of these morphological changes are not fully understood, the structural and func-
tional plasticity of dendritic spines is widely believed to accompany learning and memory8 and many pathological 
processes e.g. Alzheimer’s disease15, Parkinson’s disease16. Presently, it is believed that the structural plasticity of 
dendritic spines is indeed related to synaptic function, since time-dependent morphological dynamics of spines 
accompany the learning processes17. Recent works propose the structural models of synaptic plasticity, linking 
long-term potentiation with spine enlargement, as opposite to long-term depression, where the synaptic strength 
weakening is associated with spine shrinkage18,19.

Many aspects of the tight structure-function relationship that exists in dendritic spines remain unknown, 
mainly because of their complex morphology. Whether and the degree to which synaptic strength is modified by 
structural changes remain unclear20. Dendritic spines are unstable structures, and their dynamic nature contrib-
utes to existing analytical problems21. The limited optical resolution of images obtained using popular confocal 
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microscopy technique, difficulties in dendritic spine segmentation from dendrites, and the identification of true 
spine boundaries22–24 pose challenges to the accurate quantitative analysis of spines in contemporary neurobiol-
ogy. Progress in imaging technologies allowed the researchers to acquire information about dendritic spines from 
images obtained both in 2-D and 3-D. Thus, it is possible to examine the complete biological context including 
interactions with neighboring cells, connectivity, and chemical and protein composition of dendritic spines. The 
final piece needed to complete the puzzle is a robust and unbiased image analysis tool for quantitative assessment 
of the information stored in dendritic spines morphology25,26.

There are predominantly two kinds of approaches when dealing with the analysis of dendritic spines changes. 
Some methods utilize 2-D MIP (Maximum Intensity Projection) images of dendritic spines providing structural 
details of individual spines. However, accurate analysis of dendritic spines based on 2-D MIP images is nearly 
impossible. Therefore, in the present work, we focused on analyzing dendritic spine images based on 3-D volume 
that were generated from the confocal image stack (see Fig. 1).

A few previous studies addressed the issue of individual spine morphometry. Imaris software27 is a commer-
cially available tool for the four-dimensional (4-D) analysis of dendritic spines. Although Imaris software is good 
for analyzing the overall spine population, it fails to accurately model the three-dimensional (3-D) morphology 
of individual spines. Swanger et al.28 also reported an automated method for the 4-D analysis of dendritic spine 
morphology. However, they used the same Imaris pipeline to develop the automated tool. Both methods generally 
fail to assess individual spine plasticity.

Among the existing 3-D approaches dealing with morphological analysis of the structure of dendritic spines, 
Janoos et al. proposed a 3-D reconstruction based on skeletonization. In this approach, first the center of the 
neuron is extracted, then the longest line is considered as the backbone of the dendrite and the shorter lines are 
considered as the centerlines of dendritic spines29. Such a method is time consuming to get the centerlines from 
the 3-D volume with complex shapes. Additionally, even when images are at the limits of confocal laser scanning 
microscopy resolution the precision of segmentation is limited due to skeletonization method and by the quan-
tization errors30.

A 3-D neuron analysis approach was also proposed by Rodriguez et al.31. A 3-D reconstruction algorithm uses 
the Rayburst diameter31,32, where Rayburst is defined as casting a multidirectional core of rays from an interior 
point to the surface of a solid, allowing quantification of anisotropic and irregularly shaped 3D structures. The 
Rayburst diameter in each layer of a spine is calculated and the head and neck of each spine is defined according 
to the distribution of the diameters. The aforementioned method detects and classifies the spines in an efficient 
way, however it may be not accurate in segmentation of very complex structures. The spine shape is defined only 
by the head to neck ratio and a global threshold of this parameter is not adaptive when performing an analysis of 
different kind of images30.

The latest morphological analysis algorithm for dendritic spines was introduced by Shi et al.30 and it is based 
on a semi-supervised learning (SSL) approach. In this framework, first the dendrite backbone is tracked on a 2-D 
plane then all the dendrites’ surface with meshes is reconstructed in a 3-D. Next, dendritic spines segmentation 
based on wavelet transform is performed. The segmenting positions are located where the wavelet response on 
a spine section quickly changes. Features of spines such as the head and neck diameter, spine length, volume, 
etc. are extracted after the spines segmentation. In the last part of analysis, a small portion of detected spines are 
selected by a neurobiology expert, and chosen as the training set for classification. The labels of the rest of the 
spines can be calculated after the training process and all the detected spines can be classified by the learning 
framework30. However the accuracy and performance of the above methods strongly depend on the size of the 
training dataset and the features included in training vectors.

Figure 1.  Confocal light microscopy image of hippocampal dendrite covered with dendritic spines.  
(A) Maximum intensity projection (MIP) of the z-stack with an outlined region-of-interest (ROI). (B) Cropped 
and enlarged MIP image of the selected ROI. (C) 3-D rendering of the selected ROI from the confocal z-stack 
with enhanced morphological details of individual spines. (D) 3-D segmentation result of the selected ROI with 
the extracted spines marked in red.
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Here, we propose the fast and accurate methodology which allows studying the morphology of individual 
spines. Since our method is not based on machine learning approach it does not require the training data set 
selected by a neurobiologist. We used basic mathematical notations to define different key spine compartments 
(e.g., spine head and spine neck) and experimentally verified that the quantitative analysis of the newly defined 
spine attributes accurately modeled spine plasticity. The approach that we developed allows the user to mark spe-
cific dendritic spines, segment the spines as 3-D volumes, and extract relevant morphometric features with high 
accuracy and minimal user intervention.

Theory and Definitions
Basic Definitions and Notations.  A 3-D cubic grid, or simply a cubic grid, is represented by |Z Z3 , the set 
of integers. A grid point, often referred to as a point or voxel, is an element of Z3 and represented by a triplet of 
integer coordinates. Standard 26-adjacency33 is used here, and two adjacent voxels are often referred to as neigh-
bors of each other. The set of 26-neighbors of a voxel p, excluding itself, is denoted by N(p).

An object  is a fuzzy subset µ | ∈p p p Z{( , ( )) }3  of Z3, where µ →Z: [0, 1]3  is the membership function. 
The support O of an object  is the set of all voxels with non-zero membership (i.e., µ= | ∈ ≠O p p Z p{ and ( ) 0}3 ;  

= −O Z O3  is the background). We use a calibrated capital letter to denote a fuzzy subset, whereas a regular 
capital letter is used to denote its support, which is a binary set. Images are always acquired with a finite field of 
view. Thus, we will assume that an object always has a bounded support.

Let S denote a set of voxels. A path π in S from ∈p S to ∈q S is a sequence 〈 = =p p p p q, , , l1 2 〉 of voxels 
in S such that every two successive voxels are adjacent. A link is a path 〈p, q〉 of exactly two adjacent voxels. The 
length of a path π = 〈 〉p p p, , , l1 2  in a fuzzy object , denoted as πП ( ) , is the sum of lengths of all links along 
the path:

  П µ µ  ∑π = + −
=

−

+ +( )p p p p( ) 1
2

( ) ( ) ,
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l
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where −p q  is the Euclidean distance between p, q. The fuzzy distance34,35 between two voxels ∈p q Z, 3 in an 
object , denoted by ω p q( , ), is the length of one of the shortest paths from p to q:

O
P

Oω π=
π∈

Пp q( , ) min ( ),
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where p q( , )  is the set of all paths from p to q. The fuzzy distance transform (FDT) of an object  is an image 
Ω | ∈p p p Z{( , ( )) }3
 , where Ω → |+ +R RZ: 3

  is the set of positive real numbers, including zero, that is the 
fuzzy distance from the background:

 Ω ω= .
∈

p p q( ) min ( , )
(3)q O

With regard to spine morphology, the challenges are (1) separating the fuzzy objects Spine from Dendrite, 
which are fused at various unknown locations and scales, and (2) morphologically defining spine compartments 
in the segmented fuzzy objects Spine.

The first challenge is addressed using the MSO algorithm36 in two sequential steps. Step 1: segmentation of the 
combined region  ∪Spine Dendrite from the background: Step 2: separation of Spine and Dendrite. The first step 
may be trivially achieved using simple thresholding37 and connectivity analysis38. Let  be the fuzzy segmentation 
of the combined region that is obtained in Step 1. All subsequent analyses will be confined to the support O of , 
which will be the “effective image space.” Let →I O I I: [ , ]min max  be the image intensity function over O.

In the second step, segmentation is modeled as the opening of two fuzzy objects that are mutually fused at 
different unknown regions and scales in the shared intensity space, I. Here, the main challenge is to determine the 
local size of the suitable morphological operator that can separate multiple small mutually disconnected struc-
tures (e.g., spines) from a large connected structure (e.g., dendrite). The developed MSO algorithm combines 
FDT39 and fuzzy connectivity40 to iteratively open the two objects in I.

Multi-scale Opening Algorithm.  The basic idea of the MSO algorithm36 is to gradually erode the assembly 
of two fused objects until those two objects become mutually disconnected, thus creating two separate objects. 
The first iteration starts with two sets of seed voxels, SSpine and SDendrite, and a set of common separators, SS. The 
initial FDT map ΩSpine,0 for the first object is computed from O, except that the voxels in ∪S SSDendrite  are added 
to the background. The FDT map ΩDendrite,0 for the other object is computed similarly. It is reasonable to assume 
that the sets SSpine, SDendrite, and SS are mutually exclusive.

Let us now consider the coupling of two objects, where a dendritic segment (green) and the spines (red), with 
significant intensity overlap (illustrated in Fig. 2), are fused with each other at different unknown locations and 
scales. Let μDendrite and μSpine denote the dendrite and spine membership functions, defined as the following:
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where →I O I I: [ , ]min max  is the image intensity function over O. ISpine, and IDendrite is the representative spine and 
dendrite intensities that define the respective transition between pure and shared intensity bands (see Fig. 2). Let 

⊂P ODendrite  and ⊂P OSpine  be the set of voxels that fall inside the pure intensity band for dendrite and spine 
respectively. Thus, the set of voxels that fall within the shared intensity band is = − −O O P PShared Dendrite Spine. A 
fuzzy representation of the composite object may be obtained by taking the fuzzy union of the two membership 
functions that are shown in Equations 4 and 5. The iterative approach of the multi-scale opening of two structures 
takes several iterations to grow the path-continuity of an object, starting from its seed voxels (commonly added 
in large-scale regions), to a peripheral location with fine-scale details.

Note that after the iterative propagation of the MSO algorithm, the dendrite region is segmented as a single 
connected component. OSpine represents one or more disjointed spine regions (Ri), such that ∪= =O Ri

K
iSpine 1 , 

where K  is the total number of disjointed spine segments in OSpine, and each such segmented spine region Ri 
contains at least one spine seed ∈p SSpine.

Morphological definitions for the spine regions.  Once the spines are segmented from the dendrite, the 
challenge is to assess the morphological attributes accurately. The morphology of the dendritic spines is complex 
and difficult to quantify. In most cases, they are described by simple parameters, such as length and head width41, 
in 2-D MIP images of the z-stacks that are acquired from the confocal images of dissociated hippocampal cul-
tures. Previously, we developed a convolution kernel-based approach for the segmentation of spines from 2-D 
MIP images42. However, high-resolution confocal microscopy and effective 3-D rendering allow the visualization 
of complex structures in greater detail.

In the present study, we defined several key morphological features of 3-D dendritic spines for plasticity anal-
ysis. Specifically, we defined four key spine features that are related to the base and head of a spine using standard 
notations of digital topology and geometry43,44.

Definition 1. For a given spine ⊂R Oi Spine, the base of the spine is defined as the set of points ⊂B Oi Dendrite such 
that ∀ ∈p Bi, ∃ ∈q Ri is adjacent to p.

Definition 2. For a given spine ⊂R Oi Spine, the central base point CBPi is the centroid of the base of the spine Ri 
(i.e., = ∑∀ ∈CBP pi B p B

1

i i
, where ⋅  is the cardinality of a set).

The head and tip of a spine are defined using the FDT map43,44 Ωi of Ri. A locally deepest point in a spine Ri is 
a point ∈p Ri such that ∀ ∈q p( )l  Ω ≤ Ωq p( ) ( )i i , where p( )l  is the +l(2 1)3 neighborhood of p. Here, =l 2 is 
used to avoid noisy local maxima.

Definition 3. The center of the head CHi of a spine Ri is the locally deepest point in the spine. In a situation where 
multiple locally deepest points satisfy the farthest distance criterion, their centroid is used.

Definition 4. The tip of a spine Ti of a spine Ri is a point ∈T Ri i that is farthest from its central base point CBPi. In a 
situation where multiple points of Ri satisfy the farthest distance criterion, their centroid is used.

Note that CBPi, CHi, and Ti play key roles in estimating spine attributes, such as length of the spine, neck-length, 
neck-width, head-width, etc., for each individual spine Ri. To estimate these features, we further extended the 

Figure 2.  Intensity distribution between the dendrite and spine segments in a sample confocal light microscopy 
image. (Top) Color-coded regions in a dendritic segment. (Bottom) Intensity histogram of the dendritic 
segment that represents the overlap of the pure dendrite region and shared space between the dendrite and 
spines.
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above definitions to find the geodesic path from base to head BHi of the spine Ri by joining the two central points 
CBPi and CHi such that ∑ Ω∀ ∈ p( )p BH ii

 is minimized. Likewise, we computed the central path from head to spine-tip 
HTi of the spine Ri by joining CHi and Ti, such that ∑ Ω∀ ∈ p( )p HT ii

 is minimized. Figure 3 shows an illustration of 
these key spine attributes with respect to a segmented spine.

We now estimate the neck length NLi of Ri as = − ΩNL BH CH( )i i i i . Minimum neck-width MNWi  of Ri is 
estimated as = Ω .∀ ∈MNW pmin ( ( ))i p BH ii

 Average head-width AHWi  of the spine Ri is estimated as =AHWi  
Ω∀ ∈ pavg ( ( ))p HP ii

 such that HPi is the set of all locally deepest points in Ri. Finally, the length of the spine Li is esti-
mated as = +L BH HTi i i .

Using these morphological definitions, we classify the spine shapes into one of the four categories: Stubby, 
Mushroom, Filopodia and Spine-head Protrusion. Formal morphological definitions for these spine categories 
are discussed by Basu et al.42. The basic classification logic relies on the accurate estimation of the neck length 
NL( )i  of a spine. If the neck length is zero, we classify a spine as Stubby. Otherwise, we check the locally deepest 

points CH( )i  in each spine. In case of a thin Filopodia, the locally deepest points are usually spread along the 
length L( )i  of the spine. This is not common in Mushroom or Spine-head Protrusions, where the locally deepest 

Figure 3.  Illustration of a segmented spine structure with automatic quantitative assessment of different spine 
attributes.

Figure 4.  Examples of the segmented spines of different categories that were obtained by the currently 
developed method. (A) stubby, (B) filopodia, (C) mushroom, and (D) spine-head protrusions, (E) branched 
spines.
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points are usually concentrated around the spine-head regions. We utilize this attribute to identify the Filopodia 
type of spines. Then, to classify the Mushroom type spines we estimate the base-to-head distance BH( )i  of a spine. 
We have observed that the Mushroom spines have short base-to-head distance in comparison to the overall length 
of spine. Finally, the ratio BH L/i i decisively classifies the Mushroom spines from the Spine-head Protrusions. 
Spine classification results on different dendritic segments are shown in Fig. 4. Apart from the four spine catego-
ries we have also observed some branched or bifurcated spines (see Fig. 4E), which could not be decisively classi-
fied into any of the four classes. Although they are few in numbers, we have placed them in a separate category for 
future analysis.

Experimental Results
The methodology that we developed is useful in a variety of applications that involve the accurate volumetric 
assessment of spine plasticity. Two specific challenges are involved in this process: (1) accurate 3-D segmentation 
of individual spines from the dendritic segment and (2) quantitative analysis of individual spine morphology for 
the effective assessment of structural changes in dendritic spines. Specifically, we analyzed spine plasticity using 
the 3-D morphological features that are presented in the previous section. The confocal light microscopy images 
of dendritic spines from dissociated hippocampal cultures were used for (1) the analysis of accuracy relative to 
ground-truth annotations that were generated by experimental biologists and the available state-of-the-art Imaris 
tool, 2) the analysis of reproducibility of user-independence of the segmentation results, and (3) the quantitative 
analysis of morphological changes in spines. In the following section, we describe the image acquisition protocol 
and image sets that were used for experimental validation. We then present the accuracy analysis of the currently 
developed method relative to ground-truth annotations and comparisons with the state-of-the-art Imaris tool. 
We also present the reproducibility analysis using three mutually blinded experts. Finally, we discuss structural 
changes in spines.

Figure 5.  Accuracy analysis of the developed method relative to the manually segmented ground-truth 
annotations. (A) Two standard features (i.e., volume and length) were considered for the analysis of agreement of 
the estimated feature values over the sample spine population. (B) Cropped image (MIP and 3-D segmentation 
result) of dendritic segment with numbered spines corresponding to the selected ROI at the graph.  
(C) Difference plots between the estimated by current method and ground-truth values for the spine volume 
(left) and spine length (right) features (Bland-Altman plots).
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Description of the datasets.  This study was carried out in accordance with the Ethical Committee on 
Animal Research of the Nencki Institute, based on the Polish Act on Animal Welfare and other national laws 
that are in full agreement with EU directive on animal experimentation. All effort was made to minimize animal 
suffering. Dissociated hippocampal cultures from postnatal day 0 Wistar rats were prepared as described in Basu 
et al.42. Cultured hippocampal neurons were transfected 14 days in vitro (DIV) with Syn-GFP plasmid to visualize 
neuronal morphology. Live-cell imaging was performed on 20–22 DIV. Dendritic segments that were decorated 
with dendritic spines were imaged at time 0, before stimulation, and then cLTP was induced by bath application 
of a mixture of 50 μM forskolin, 50 μM picrotoxin, and 0.1 μM rolipram (each dissolved in dimethylsulfoxide 
[DMSO]) in maintenance media. Dendritic segments were imaged 10 min and 40 min after cLTP induction. 
Images were acquired using a Carl Zeiss LSM780 confocal microscope with a C-Apochromat 40×/1.2 NA water 
immersion objective using a 488 nm wavelength argon laser at 3% transmission and 70 nm/pixel resolution. A 
series of z-stacks were acquired at 0.2 μm steps.

In the first dataset, three different neurons from rat dissociated hippocampal cultures were imaged using 
a confocal light microscope, before and after cLTP induction. All of the images were captured three times: at 
baseline (before cLTP) and 10 and 40 min after cLTP induction. In the second dataset, three different neurons 
from rat dissociated hippocampal cultures were similarly imaged at baseline and 10 and 40 min after mock cLTP 
induction (i.e., only the solvent, DMSO, was used). During image pre-processing, we took the confocal z-stack 
and performed Gaussian de-noising on the 3-D image stack. The pre-processed images at time 0 are labeled as T0, 
and the images that were captured at 10 and 40 min are labeled as T10 and T40, respectively.

The preparation of the brain slices was based on Magnowska et al.45. For the visualization of changes in the 
shape of dendritic spines, of 1,1′-Dioctadecyl-3,3,3′,3′-Tetramethylindocarbocyanine Perchlorate (DiI) staining 
in stressed and control mice were performed. The mice were anesthetized and the transcardinal perfusion with 
1,5% paraformaldehyde was performed. Then the brains were dissected and sliced using vibratome. Slices (140 
μm thick) that contained the different brain structures recovered for at least 1.5 h at RT. Random dendrite labeling 
was performed using 1.6 μm tungsten particles (Bio-Rad, Hercules, CA, USA) coated with propelled lipophilic 
fluorescent dye (DiI; Invitrogen) that were delivered to the cells by gene gun (Bio-Rad) bombardment. Images of 
dendrites were acquired under 561 nm fluorescent illumination using a confocal microscope (63×objective, 1.4 
NA) at a pixel resolution of 1024 × 1024 with a 3.43 zoom, resulting in a 0.07 μm pixel size. A series of z-stacks 
were acquired at 0.2 μm steps.

Accuracy Analysis.  For accuracy analysis, we first generated ground-truth spine segmentation results for 
all of the neuronal images by manually labeling ideal spine regions of a sample spine population with the help of 
experimental biologists using the open-source image processing software Fiji46 and ITKSnap47. Although both Fiji 
and ITKSnap are general-purpose image analysis tools, neither of them are capable of extracting morphological 
attributes that are specific to a dendritic spine.

For the quantitative analysis of spine segmentation accuracy, we considered the most generic features, such as 
the volume and length of a spine. Comparative assessment was performed with regard to the ground-truth anno-
tations that were performed by experts in this domain. The agreement in the estimated feature values and error 
difference over a sample spine population are illustrated in Fig. 5A. We calculated Pearson’s correlation coeffi-
cients to assess the mean agreement of the estimated feature values between the currently developed method and 
the ground-truth annotations. The respective Pearson’s correlation coefficients for volume and length, estimated 
over a sample spine population with manually annotated ground-truth results, were 0.89 and 0.82, respectively. 
Bland-Altman plots (difference plots) between the estimated values and ground-truth annotations for the two 

Figure 6.  Comparative analysis of the 3-D segmentation results relative to the state-of-the-art Imaris tool27 on 
three sample dendritic segments taken from three different cell images at baseline condition. (A) Sample 2-D 
MIP image with a highlighted ROI segment, (B) 2-D MIP image of the selected dendritic segment; (C) 3-D  
segmentation result of image b using the Imaris tool (D) 3-D segmentation result of image b using the 
developed segmentation methodology.
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features are shown in Fig. 5C. This is a method of data plotting that is used to analyze agreement between two 
different data series. Most of the data samples fell within the µ σ± .1 5  range, representing a significant correla-
tion among the segmented results and ground-truth annotations.

For qualitative comparisons of the 3-D segmentation results, we considered the state-of-the-art Imaris tool27 that 
was applied over the same set of images that were considered in this study. Figure 6 shows the qualitative compari-
sons of our segmentation results with Imaris. Note that Imaris is a model-based segmentation and feature-extraction 
tool (outside in) that can lead to the corruption of data. Our proposed method utilizes segmentation-based mod-
eling and feature extraction methodology (inside out). Therefore, the segmentation results and features that are 
derived are more accurate and robust when considering user variations. Moreover, the spines that are segmented 
using the currently developed software can be automatically segmented into one of four categories: stubby, filopodia, 
mushroom, spine head protrusions (Fig. 4) which represent morphological categorization scheme used in EM liter-
ature48–50. However, the proposed algorithm do not classify the spines as thin because this is an intermediate form of 
spine51 and the mathematical definition of such spine topology does not exist.

Notably, unlike other approaches, our method distinctively identifies spine-head protrusions (Fig. 4D). 
Moreover, there is another type of spines that we have noted during the segmentation process, namely branched 
spines (see Fig. 4E). This type of spines are rare and therefore we do not classify them automatically using our 
present approach, but propose to include in our future work.

Reproducibility Analysis.  In this section, we present multi-user reproducibility of the currently developed 
method to assess the reliability and robustness of the segmentation methodology. The reproducibility analysis was 
performed on a sample spine population with three mutually blinded, independent experimental biologists. 

Figure 7.  Reproducibility analysis of the currently developed method over a sample spine population with 
three blinded, independent experts. (A) Quantitative analysis of dendritic spine Volume, Length and Head 
Width performed by three independent users together with (B) corresponding 3-D reconstruction results.
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Figure 7 shows the quantitative and qualitative analysis of volume, length and head width estimations over the 
sample spine population using three mutually blinded users. The percent standard deviations relative to the mean 
feature estimation for the three independent users were ± ±11%, 17% and ±6% for volume, length and 
head-width respectively.

Analysis of Spine Plasticity.  For detailed qualitative and quantitative analyses of dendritic spines, we 
assessed the segmentation results of the currently developed methodology over the same dendritic segments that 
were obtained from different sets of the T0, T10, and T40 images. Figure 8 shows the qualitative assessment of 
spine plasticity over a sample dendritic segment at the three time points. We present detailed 3-D morphological 
changes in dendritic spines over time (i.e., before and after cLTP). To investigate the relative changes in morphol-
ogy of the segmented spines one important feature was considered from the overall experiment. Figure 9A shows 
the average quantitative changes in dendritic spine volume 10 and 40 min after cLTP induction.

We also show a three-class (stubby, filopodia and mushroom) spine plasticity analysis over three time points 
(see Fig. 9B). It shows that the 4% the of stubby spines changes to filopodia and 2% changes to mushroom, 8% of 
the filopodia changes to stubby and 4% changes to mushroom, and 12% of the mushroom changes to stubby from 
T0 to T10 after cLTP induction. Within the time span of T10 to T40, 3% of the stubby spine changes to filopodia 
and 9% changes to mushroom, 4% of the filopodia changes to stubby, 10% of the mushroom changes to stubby 
and 2% changes to filopodia.

We also investigated the changes in dendritic spines volume from brain slices (Fig. 9C) Sample segmentation 
results on the images acquired from brain slices are shown in Fig. 10.

We do not provide statistics since our aim is not to assess any particular biological problem, but we aim to 
show that our method is able to detect differences in spine structure between certain experimental conditions.

Conclusion and Discussion
There are two critical features related to neuronal signal transmission – connectivity that is related to dendritic 
spine number and the synaptic strength expressed by dendritic spines structural changes. In the present study we 
focused on the accurate 3-D segmentation and quantitative assessment of dendritic spine structure. We do not 
provide the method for dendritic spine density assessment since achieving accurate spine density requires several 
thousands of spines analyzed, thus it is extremely time consuming to perform with the 3D approach. Analysis 

Figure 8.  Qualitative assessment of spine plasticity relative to the 3-D segmentation results for a dendritic 
segment at baseline, 10 minutes and 40 minutes after cLTP induction. (A) Comparisons of 3-D rendition results 
relative to the MIP images, (B) 3-D segmented results and morphological changes are observed on sample 
spines before and after cLTP induction.
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of dendritic spine number can be done manually or with the use of 2-D software (e.g. Cheng et al.52), and such 
approach is impossible when user wants to get both “real” 3-D spine shape and density.

The segmentation method that we developed was validated for individual spines using real-time experiments 
and consecutive images of the same dendritic fragment. Our results are consistent with other studies that reported 
spine head growth upon cLTP induction45,53. The plasticity analysis was performed 10 and 40 min after cLTP 
induction relative to baseline images. The currently developed method was also able to quantitatively assess 
changes in volume upon stimulation that were consistent with previous studies that reported spine head growth 
upon cLTP.

Accuracy was evaluated relative to manually labeled ground-truth annotations and relative to the state- 
of-the-art Imaris tool. We have shown, that the accuracy of the analysis done using Imaris is lower and does not 
reproduce the exact spine structure and it also fails to capture detailed morphology of individual spines. Imaris 
program fits only few standard shapes whereas their real multiplicity is much greater. In contrast our method 
allows to determine the real dendritic spine shape.

To assess the reproducibility of the segmentation results, three blinded experts separately assessed the efficacy 
of the methodology. The existence of experimental limitations (staining efficiency/quality, image resolution, and 
detection of fluorescence signal) impedes identification of true spine boundaries whereas our software provides 
the possibility to minimize user bias.

Figure 9.  Quantitative analysis of dendritic spine morphology by 3-D segmentation method. (A) Average 
relative changes (percentage) in spine morphology (volume) estimated by the currently developed method at 
two time points in primary neuronal culture were found to be: 0.94 ± 2.64 (DMSO), 43.25 ± 7.02 (cLTP) at 
ten minutes stimulation and 37.29 ± 2.43 (DMSO), 42 ± 5.34 (cLTP) at 40 minutes stimulation. (B) Changes 
in dendritic spine morphology (neuronal culture). Results of automatic spine classification where S, F, and 
M represent spine categories: Stubby, Filopodia and Mushroom respectively. The numbers represent relative 
transition (in % of total population) between different spine categories before and after 10 minutes and 
40 minutes of cLTP induction. (C) Average volume of dendritic spines from brain slices before 1.13 ± 0.09 µm3 
and after stimulation 1.53 ± 0.12 µm3. The results are expressed as mean ± SEM.
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Although this experiment exclusively used confocal light microscopy images of dendritic spines, the method 
may be extended in the future for use with other super- resolution imaging techniques, such as photo-activated 
localization microscopy. The present 3-D segmentation method may be used for different experimental proto-
cols that study the structural dynamics of dendritic spines in vitro and in vivo under various physiological and 
pathological conditions. Moreover, we believe that this will be a research tool that enables the detection of even 
subtle changes in the 3-D dendritic spine structure. Such methodological advances in spine morphological stud-
ies will allow more precise analyses and better interpretations of biological data regarding structural plasticity. The 
present method facilitates accurate, unbiased spine segmentation results and can significantly improve the way 
we study dendritic spine plasticity. However, it strictly depends on the user knowledge and experimental design 
which spines are going to be incorporated into the analysis.

Data Availability.  The datasets generated during and/or analyzed during the current study are available from 
the corresponding authors on reasonable request.
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