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Serum Metabolomics of Activity 
Energy Expenditure and its 
Relation to Metabolic Syndrome 
and Obesity
Marie S. A. Palmnäs1,2, Karen A. Kopciuk3,4, Rustem A. Shaykhutdinov2, Paula J. Robson5, 
Diane Mignault6,7, Rémi Rabasa-Lhoret6,7, Hans J. Vogel1,2 & Ilona Csizmadi3,8

Modifiable lifestyle factors, including exercise and activity energy expenditure (AEE), may attenuate 
the unfavorable health effects of obesity, such as risk factors of metabolic syndrome (MetS). However, 
the underlying mechanisms are not clear. In this study we sought to investigate whether the metabolite 
profiles of MetS and adiposity assessed by body mass index (BMI) and central obesity are inversely 
correlated with AEE and physical activity. We studied 35 men and 47 women, aged 30–60 years, using 
doubly labeled water to derive AEE and the Sedentary Time and Activity Reporting Questionnaire 
(STAR-Q) to determine the time spent in moderate and vigorous physical activity. Proton nuclear 
magnetic resonance spectroscopy was used for serum metabolomics analysis. Serine and glycine 
were found in lower concentrations in participants with more MetS risk factors and greater adiposity. 
However, serine and glycine concentrations were higher with increasing activity measures. Metabolic 
pathway analysis and recent literature suggests that the lower serine and glycine concentrations in 
the overweight/obese state could be a consequence of serine entering de novo sphingolipid synthesis. 
Taken together, higher levels of AEE and physical activity may play a crucial part in improving metabolic 
health in men and women with and without MetS risk factors.

Obesity is a risk factor for the four most common chronic diseases worldwide: diabetes1, cardiovascular disease2, 
cancer3 and chronic respiratory disease such as asthma4. Together they contribute to substantial patient suffering, 
a serious economic cost to health care5 and lead to 30 million deaths annually6. Central (abdominal) obesity is 
of particular interest as it leads to the pathophysiology that results in metabolic syndrome (MetS)7,8, a cluster of 
risk factors (central obesity, hypertension, elevated fasting glucose and dyslipidemia) that, if untreated can lead 
to overt diabetes, cardiovascular disease and over the long-term to some cancers. The pathological development 
of MetS is characterized by an aberrant metabolism, in part consisting of a dysregulation in whole-body glucose 
and lipid metabolism, intra-organ lipid storage and systemic inflammation.

Since circulating metabolites are representative of systemic metabolism, they can reflect the metabolic health 
of an individual. Thus, metabolomics, the systematic study of a comprehensive set of metabolites in a biological 
compartment, has the potential to provide insight into the biological mechanisms underlying health and disease. 
To better understand the metabolic impact of obesity and its etiologic role in the development of diabetes and 
subsequent chronic diseases, attempts have been made to identify biomarkers using various ‘omics’ technologies, 
including metabolomics. Concentrations of branched chain amino acids (BCAA: leucine, isoleucine and valine) 
are the most extensively studied metabolic signatures of obesity and insulin signaling9,10 and increased plasma 
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BCAA levels have been reported to be predictive of diabetes incidence years prior to diagnosis11,12. However, 
other metabolites may also play roles in the relation between obesity and obesity-related disorders.

The beneficial effects of physical activity as part of disease management and prevention have been clearly 
established for conditions such as type 2 diabetes, cardiovascular disease and certain types of cancer13. Yet, it is 
unclear through which mechanisms exercise and activity energy expenditure (AEE) attenuate the unfavorable 
effects of obesity, independent of weight reduction14. In this study we aimed to describe the metabolite profile 
associated with MetS and adiposity in relation to AEE and physical activity in weight stable men and women 
with and without MetS risk factors. Doubly labeled water (DLW), the gold standard methodology for assessing 
total energy expenditure15,16, was used to objectively assess AEE (AEEDLW) and physical activity level (PALDLW). 
In addition, the Sedentary Time and Activity Reporting Questionnaire (STAR-Q) was used to determine the 
time spent in moderate and vigorous physical activity. We hypothesized that increased adiposity and the pres-
ence of MetS risk factors would lead to gender-specific metabolic signatures17,18. We further hypothesized that 
some of these metabolites would be inversely associated with AEEDLW, AEE/kgDLW, PALDLW, moderate and/or 
vigorous physical activity, as exercise has previously been shown to influence the concentrations of circulating 
metabolites19–21.

Results
Data overview and characteristics of measured variables.  Gender-stratification of the data was 
supported by the pronounced difference in the serum metabolome of men and women (R2 = 0.73, Q2 = 0.61) 
(Supplementary Fig. S1). Moreover, men had higher BMI, waist circumference, waist-to-hip ratio and body fat 
percentage compared to women (Supplementary Table S1) and presented with higher serum concentrations of 
BCAA and lower serum concentrations of serine and glycine, among other metabolites. No differences were seen 
for AEEDLW, AEE/kgDLW, PALDLW, moderate or vigorous physical activity. Information regarding all quantified 
metabolites can also be found in Supplementary Table S2.

The serum metabolite profiles of MetS and correlations with measures of adiposity.  Men and 
women were dichotomized into categories representing presence of 1–3 MetS risk factors (MetSany) and absence 
of MetS risk factors (MetSzero). Participants with MetSany had significantly higher body measurements compared 
to their counterparts, and MetSany men were more likely to be overweight (BMI > 25) whereas MetSzero men were 
of normal weight (BMI 18.5–24.9) (Table 1). This is consistent with the known pathophysiology of MetS and its 
relation to adiposity22. There were no differences between groups in physical activity or DLW-derived measures 
of AEE.

The metabolite profiles of MetS were unique for both genders, with the exception of serine and creatinine, 
which were lower in both MetSany men (R2 = 0.31, Q2 = 0.12) and MetSany women (R2 = 0.42, Q2 = 0.30) compared 
with the respective MetSzero groups (Fig. 1).

MetSany men had higher serum metabolite concentrations of methyl succinate, creatine, myo-inositol 
and urea and lower concentrations of glutamine, ornithine, glycine, serine, creatinine, lactate, carnitine and 
3-hydroxybutyrate compared with the MetSzero group. Glycine and serine were also inversely correlated with all 
measures of adiposity, except that glycine was not associated with BMI class (VIP > 1, Supplementary Table S3). 
The observed negative correlation between glycine and the waist-to-hip ratio, a measure thought to best represent 
male adiposity and fat distribution, reached bivariate statistical significance (r = −0.47, p < 0.01) in addition to 
the positive correlation found between glycine and vigorous physical activity (r = 0.48, p < 0.01). Other trends 
included higher concentrations of arginine, creatine, methyl succinate, pyruvate and tyrosine with increasing 
body measures in men (Table 2).

MetSany women had higher levels of histidine and lysine and lower levels of serine, creatinine, myo-inositol, 
arginine, acetoacetate and betaine compared with MetSzero women. The lower serine concentrations in MetSany 

Variables

Women Men

MetSany
Mean (SD)

MetSzero
Mean (SD) p-value

MetSany
Mean (SD)

MetSzero
Mean (SD) p-value

BMI (kg/m2) 24.6 (2.8) 21.6 (2.0) <0.001 27.4 (2.5) 23.4 (1.9) <0.0001

Body fat percentage (%) 33.3 (5.8) 25.2 (5.1) <0.0001 24.8 (4.3) 15.6 (3.7) <0.0001

Waist circumference (cm) 86.9 (6.8) 75.1 (4.5) <0.0001 98.8 (8.1) 84.7 (5.2) <0.001

Hip circumference (cm) 103.2 (6.0) 94.5 (5.4) <0.0001 105.3 (4.3) 97.7 (3.7) <0.001

Waist:hip ratio 0.84 (0.04) 0.79 (0.03) <0.001 0.94 (0.06) 0.87 (0.04) <0.001

AEEDLW (Kcal) 1021.3 (460.0) 948.5 (438.5) 0.59 1163.0 (469.2) 1419.8 (772.8) 0.23

AEE/kgDLW (Kcal/kg) 15.1 (6.8) 16.9 (7.6) 0.42 13.4 (5.6) 19.9 (10.7) 0.024

PALDLW (Kcal) 1.9 (0.4) 1.9 (0.4) 0.99 1.8 (0.3) 2.0 (0.5) 0.080

Moderate physical activity 
(hours/day) 1.5 (1.3) 1.6 (2.1) 0.81 2.2 (2.1) 0.9 (0.5) 0.065

Vigorous physical activity 
(hours/day) 0.54 (0.6) 0.55 (0.5) 0.96 0.45 (0.5) 0.82 (0.6) 0.061

Table 1.  Evaluation of differences in variables for MetSany compared to MetSzero for women and men separately. 
Significance was determined by two-tailed t-test, where the Benjamini and Hochberg corrected significance 
level was p < 0.028. Abbreviations are as follows in alphabetical order: AEEDLW, activity energy expenditure; 
BMI, body mass index; MetS, metabolic syndrome; PALDLW, physical activity level: SD, standard deviation.
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Figure 1.  Supervised OPLS-DA score scatter plots and loadings plots showing the separation between MetSany 
(circles) and MetSzero (dots) for (A)women and (B) men. Every dot/circle represents one participant. The score 
scatter plot (left) and loading plot (right) are superimposable and indicate which (VIP > 1) metabolites associate 
with which MetS group in women (R2 = 0.42, Q2 = 0.30) and in men (R2 = 0.31, Q2 = 0.12), respectively.

Body fat percentage r p BMI value r p

Women

Serine −0.45 0.0015 Serine −0.36 0.012

Creatine 0.31 0.034

Hip circumference r p Waist circumference r p Waist:Hip ratio r p

Serine −0.40 0.0049 Serine −0.49 <0.001 Serine −0.38 0.0090

Pyruvate 0.30 0.043 Myo-Inositol −0.36 0.012 Myo-Inositol −0.31 0.032

AEEDLW Strenuous PA r p

Myo-Inositol −0.34 0.021 Glutamine −0.37 0.011

Acetoacetate 0.31 0.036 Creatine −0.32 0.030

Phenylalanine −0.32 0.030

Carnitine −0.29 0.045

Men

Pyruvate 0.41 0.015 Tyrosine 0.48 0.013

Creatine 0.37 0.026 Carnitine 0.37 0.028

Arginine 0.36 0.036 3-Hydroxybutyrate −0.36 0.032

Waist circumference r p Waist:Hip ratio r p

Methyl succinate 0.40 0.017 Glycine −0.47 0.0049

Pyruvate 0.37 0.031 Arginine 0.46 0.0059

Arginine 0.34 0.042 Pyruvate 0.36 0.033

AEEDLW Moderate PA r p Strenuous PA r p

Carnitine 0.42 0.011 Carnitine 0.41 0.013 Glycine 0.48 0.024

Lactate 0.42 0.012 Lactate 0.37 0.017 Taurine −0.35 0.043

Lysine 0.40 0.018 Methionine 0.32 0.048 Acetate 0.35 0.048

Table 2.  Pearson correlation coefficients (r) and p-values (p) for significant (p < 0.05, VIP > 1) metabolites for 
each variable for women and men. Abbreviations are as follows in alphabetical order: AEEDLW, activity energy 
expenditure; BMI, body mass index; PA, physical activity.
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women were also significant with univariate analysis (p < 0.001). Serine was furthermore found to be lower 
with increasing values of all body measurements in women and as the number of MetS risk factors increased 
(Supplementary Table S4). Of note, overweight and increasing MetS risk factors were associated with lower gly-
cine concentrations in women (VIP > 1, Supplementary Table S4).

MetS-associated metabolites are inversely associated with measures of AEEDLW and physical 
activity in men and women.  Next, we were interested in examining whether MetS-associated metabolites 
were inversely related with AEEDLW, AEE/kgDLW, PALDLW, moderate or vigorous physical activity in comparison 
to MetS using multivariate analysis. The highest 50% (high groups) and lowest 50% (low groups) of each activity 
measurement were compared within the respective MetSany and MetSzero groups of men and women. The super-
vised analysis showed MetSany men to have higher concentrations of glycine and lactate with the higher levels of 
PALDLW (R2 = 0.86, Q2 = 0.46) and AEE/kgDLW (R2 = 0.34, Q2 = 0.24) compared with the low PALDLW and AEE/
kgDLW groups (Fig. 2). Lactate was furthermore positively correlated with AEEDLW (R2 = 0.67, Q2 = 0.36) and 
moderate physical activity (R2 = 0.38, Q2 = 0.21) in MetSany men and with moderate (R2 = 0.62, Q2 = 0.51) and 
vigorous physical activity (R2 = 0.57, Q2 = 0.25) in MetSzero men. Of note, none of these variables were correlated 
with body measures in MetSany or MetSzero men as assessed by bivariate Pearson correlation on the continuous 
values.

For MetSzero women, serine and arginine were found to be higher with high levels of AEE/kgDLW (R2 = 0.32, 
Q2 = 0.21) and PALDLW (R2 = 0.40, Q2 = 0.33) compared with low levels in MetSzero women (Fig. 3). Arginine 
and betaine were also higher with AEEDLW (R2 = 0.43, Q2 = 0.37). For MetSany women, AEEDLW, AEE/kgDLW and 
PALDLW were positively correlated with several metabolites that had been found to be lower in the presence of 
MetS risk factors (Fig. 3). For example, higher levels of AEE and AEE/kg were associated with higher serum 
concentrations of acetoacetate and arginine as well as creatinine, myo-inositol and serine, respectably, compared 
with lower levels (Fig. 3). The high PALDLW group had higher concentrations of acetoacetate, creatinine and serine 
compared to the low PALDLW group. Notably, women in the MetSzero and MetSany groups of higher levels of phys-
ical activity, AEEDLW, AEE/kgDLW and PALDLW had lower body measures overall (Supplementary Table S4). Thus, 
the impact of the higher activity measurements on the serum metabolome cannot be defined as independent of 
the lower body measures. Yet, these patterns are consistent with known correlations of lower body weight with 
higher AEE and physical activity23,24.

Finally, since serine and arginine had correlated with DLW measurements in both MetSany and MetSzero 
women, we compared the serum concentrations for the 4 groups of high and low activity measurements of 

Figure 2.  Supervised OPLS-DA score scatter plots and loadings plots for men, showing AEEDLW and physical 
activity variables stratified for MetSany (A–D) and MetSzero (E–F). Every dot/circle represents one participant, 
with circles indicating participants with the highest 50% (circles) and the lowest 50% (dots) of each variable. 
The score scatter plots (left) and loading plots (right) are superimposable and show (VIP > 1) metabolites. Only 
variables that resulted in models are shown. (A) AEEDLW (R2 = 0.67, Q2 = 0.36), (B) AEE/kgDLW (R2 = 0.34, 
Q2 = 0.24), (C) PALDLW (R2 = 0.86, Q2 = 0.46), (D) moderate physical activity (R2 = 0.38, Q2 = 0.21) for 
MetSany and (E) moderate physical activity (R2 = 0.62, Q2 = 0.51) and (F) vigorous physical activity (R2 = 0.57, 
Q2 = 0.25) for MetSzero.
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MetSany and MetSzero women, respectively (Fig. 4). For serine there were 3 main findings; 1) MetSzero women with 
high PALDLW and AEE/kgDLW had the highest concentration of serine 2) for MetSany women, higher PALDLW, but 
not AEE/kgDLW, was associated with higher serine concentrations and 3) MetSany women with high PALDLW and 
AEE/kgDLW have comparable serine concentrations to the MetSzero women with low PALDLW and AEE/kgDLW. 
Arginine concentrations were significantly higher in MetSzero women with high AEEDLW compared to both the 
MetSany and the MetSzero women with low AEEDLW (p < 0.01).

Sphingolipid metabolism potential pathway for MetS.  To gain further insight into the biological 
mechanisms underlying the reported metabolite findings, pathway analysis was performed on all analyzed metab-
olites. Two pathways were significant when comparing MetSany to MetSzero women, both involving serine; ‘sphin-
golipid metabolism’ (serine, p < 0.001) and ‘methane metabolism’ (serine and glycine, p < 0.05) (Supplementary 
Table S6).

Figure 3.  Supervised OPLS-DA score scatter plots and loadings plots for women, showing AEEDLW and 
physical activity variables stratified for MetSany (A–D) and MetSzero (E–I). Every dot/circle represents one 
participant, with circles indicating participants with the highest 50% (circles) and the lowest 50% (dots) of 
each variable. The score scatter plots (left) and loading plots (right) are superimposable and show VIP > 1 
metabolites. Only variables that resulted in models could be shown. The variables presented include (A) 
AEEDLW (R2 = 0.45, Q2 = 0.27), (B) AEE/kgDLW (R2 = 0.33, Q2 = 0.11), (C) PALDLW (R2 = 0.44, Q2 = 0.26), (D) 
vigorous physical activity (R2 = 0.43, Q2 = 0.22), for MetSany and (E) AEEDLW (R2 = 0.43, Q2 = 0.37), (F) AEE/
kgDLW (R2 = 0.32, Q2 = 0.21), (G) PALDLW (R2 = 0.40, Q2 = 0.33), (H) moderate physical activity (R2 = 0.28, 
Q2 = 0.14) and (I) vigorous physical activity (R2 = 0.28, Q2 = 0.16) for MetSzero.
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No statistically significant pathways could be identified for MetS for men or for BMI, waist circumference, 
AEEDLW, PALDLW or physical activity measurements in either gender after correcting for false discovery rate. 
However, there were pathways that had significant unadjusted p-values. For example, waist circumference associ-
ated with multiple pathways involving serine and/or glycine in men, including sphingolipid metabolism, glycine, 
serine and threonine metabolism, methane metabolism, sulfur metabolism, cysteine and methionine metabolism 
and cyanoamino metabolism (punadjusted < 0.05, data not shown).

Discussion
Although much is known about the physiological impact of exercise on immediate fuel utilization, body coordi-
nation, cognitive function and cardiorespiratory fitness, there is a large gap in the understanding of how these and 
other changes are linked to long-term disease prevention and amelioration14. Metabolomics and other “omics” 
approaches can potentially provide insight to the mechanisms linking exercise and health.

In this study we describe the serum metabolite signatures associated with adiposity in relation to AEEDLW, 
AEE/kgDLW, PALDLW and moderate and vigorous physical activity in men and women with or without MetS risk 
factors. The most consistent metabolomics trend consisted of the lower serum concentrations of serine in the 
presence of MetS risk factors and greater adiposity in both men and women. Glycine was also found at lower 
concentrations with a higher number of MetS risk factors in both genders and with higher adiposity in men. In 
contrast, DLW-assessed measurements i.e. AEE/kgDLW and PALDLW, but not self-reported moderate or vigorous 
physical activity, were associated with higher concentration of serine in MetSany women and glycine in MetSany 
men. Interestingly, higher PALDLW levels in MetSany women were associated with serine levels comparable to the 
less active MetSzero women. This correlation was partly dependent on the positive correlation between BMI and 
PALDLW in the high PALDLW MetSany group. We speculated that this may be an indication of leanness since 1) the 
BMI was lower in the high PALDLW group compared to the low group, with most women in the high PAL group 
having a BMI within the normal range and since 2) BMI was inversely correlated with serine levels in women in 
the low PALDLW and AEE/kgDLW groups, yet without statistical significance. The highest serine concentrations 
were seen for MetSzero women with the highest PALDLW, attesting to the importance of engaging in physical activ-
ity even for normal weight and healthy women. Our results also suggest that high PAL may mitigate the impact 
of adiposity and MetS risk factors on the serum metabolome in women. Of note, exercise has also been shown 
by others to influence the human serum and plasma metabolite profiles19–21. This is supported in animal models, 
showing exercise to mitigate the metabolite profile associating with diet-induced obesity25 and diabetes26.

Similar to our findings, others have found decreasing serine and glycine concentrations with obesity, 
insulin resistance, diabetes and MetS risk factors27–36. For example, glycine concentrations have previously 
been shown to be linked with whole body glucose uptake and thus insulin responsiveness, as assessed by 
hyperinsulinemic-euglycemic glucose clamps29. Moreover, lower serine and glycine levels were reported to be 
instrumental in differentiating between insulin sensitive, insulin resistant and diabetic adults29. Serine and gly-
cine have also been reported to positively correlate with insulin action, as assessed by repeated glucose tolerance 
tests in overweight and obese sedentary men and women32. In addition, serine has been shown to be correlated 
with impairments in fasting glycemia in type 2 diabetic adults, while fasting concentrations of glycine have been 
reported to be lower in diabetic compared to normoglycemic adults31. A metabolic signature consisting of glycine 
in combination with phenylalanine, hexose, sphingomyelin 16:1 and phosphatidylcholines has furthermore been 
able to predict diabetes with high accuracy 7 years prior to clinical manifestation36. Finally, Batch et al. reported 
that the combination of reduced serine, glycine and ornithine concentrations had the potential to distinguish 

Figure 4.  Serum serine and arginine concentrations for MetSany (black bars) and MetSzero women (white bars) 
with high (H) or low (L) levels of AEE/kgDLW and PALDLW, and AEEDLW respectively. Significant difference 
compared to MetSzero-H (**p < 0.01 ***p < 0.001), MetSzero-L (†p < 0.05) and MetSany-H (‡p < 0.05) is 
indicated. Serum concentrations were normalized to the total sum for each sample to assure normal distribution 
and comparability across samples.
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between metabolically well and unwell (>2 MetS risk factors) adults, after adjusting for BMI30. Importantly, 
none of these studies assessed physical activity or objective measures of AEE to determine their relation to these 
metabolites.

The pathway analysis suggested sphingolipid metabolism as a potential underlying mechanism to the detected 
inverse correlations between serine and MetS risk factors. This finding is supported by recent reports indicating 
that obesity, insulin resistance and metabolic syndrome are associated with lower concentrations of serine28,29,32,37 
and glycine27,29–31,38 (substrates) and higher concentrations of sphingolipid species39–64 (products) in humans. 
Interestingly, the opposite trend was seen for physical activity65–74, with some studies reporting conflicting 
results28,45,67. Dubé et al. also showed that exercise, but not dietary restriction, reduced ceramide and sphingosine 
levels, while both approaches improved on insulin sensitivity65. It is thus possible that serine is used as a precursor 
for sphingolipids in the obese state, leading to the accumulation of the bioactive lipid ceramide in insulin sensitive 
tissues, such as muscle and liver, where it can contribute to the development of insulin resistance75. In contrast, 
serine may be spared with physical activity, perhaps by the downregulation of serine palmitoyltransferase76, the 
enzyme that catalyzes the first step of de novo sphingolipid synthesis utilizing serine and palmitoyl-CoA to pro-
duce 3-ketosphinganine. An exercise intervention study for participants with and without MetS investigating de 
novo sphingolipid metabolism with isotope labeled precursors and liquid chromatography mass spectrometry 
metabolomics could complement the present work. However, it is also possible for circulating serine concentra-
tions to be dependent on other factors including diet, protein and phospholipid degradation or synthesis from 
3-phosphoglycerate77.

Although serine and glycine were prominent features of this study, other metabolites may also play a crucial 
part in adiposity and MetS. Among the key findings were the lower levels of arginine with MetS risk factors in 
women and the higher levels with AEE/kgDLW and PALDLW in both MetSany and MetSzero women. Arginine has 
multiple functions related to glucose and insulin concentrations; it is a gluconeogenic amino acid and has the 
ability to activate AMPK and mTOR, resulting in higher insulin secretion and glucose uptake77. However, argi-
nine levels were positively correlated with body measures in men. Furthermore, creatinine was found to be lower 
in MetSany men and women and to be positively correlated to AEE/kgDLW, PALDLW and moderate physical activity 
in MetSany women as well as vigorous physical activity in MetSzero women. Creatinine is a breakdown product of 
muscular creatine phosphate, and may thus reflect the higher levels of physical activity in these subjects. Finally, 
lactate concentrations were lower in the presence of MetS risk factors in men and higher with PALDLW, AEEDLW 
and moderate physical activity in MetSany men and with moderate and vigorous physical activity in MetSzero 
men. Concentrations of lactate are best known to increase during physical activity and to return to normal after 
approximately 30 minutes of active or passive recovery78. Lactate levels are also commonly found to be higher as a 
consequence of cancer and critical illness, however none of the participants in the present study had any chronic 
or acute illnesses. Interestingly, BCAA did not contribute significantly to the metabolite profiles of MetS or adi-
posity in our work, with the exception that BCAA concentrations were higher in men (who had significantly 
higher BMI, waist circumference and waist-to-hip ratio) compared to women. These results may reflect the natu-
ral variation between populations and habits in free-living humans, as BCAA concentrations have been reported 
to be influenced by factors such as BMI, diabetes and diet (proportion of fat and carbohydrates)12,29.

The limitations of the study need to be addressed. The relatively small sample size and lower proportion of 
male participants restricted statistical analyses and while creating subgroups increased the homogeneity of the 
groups it also decreased the power to detect true associations. For this reason, our findings need to be validated 
in larger well-controlled studies that investigate other possible metabolic pathways of interest. Studies containing 
25–30 participants per group should suffice to detect key metabolites with modest differences in abundance levels 
between groups79,80. Another limitation included the reliance on an estimation of RMR (resting metabolic rate) 
using an equation based on gender, age and anthropometric measures, rather than an actual measure using indi-
rect calorimetry, which may have resulted in reducing the precision of the AEEDLW estimation (see Equation 1). 
As well, moderate and vigorous physical activity levels were estimated from self-report, known to be associated 
with measurement error. We have previously shown, however, that there is substantial agreement between vigor-
ous physical activity estimated from the STAR-Q and prospectively collected 7-day activity diaries indicating that 
the estimate may be informative for the ranking of subjects according to vigorous physical activity levels81. On 
the other hand, a major strength of our study includes the use of DLW, the gold standard for TEE measurement, 
which allowed for objective estimations of AEEDLW, AEE/kgDLW and PALDLW. To our knowledge this is the first 
study to examine the relation between DLW-derived AEEDLW and PALDLW estimates and metabolites in subjects 
with and without risk factors of MetS. This study also included anthropometric measures that were assessed by 
trained staff rather than having to rely on participant self-report. The multiple measures allowed for the inves-
tigation of the effect of site-specific adiposity with respect to certain metabolite profiles. Notably, AEEDLW and 
BMI in men were positively correlated reaching statistical significance, potentially as a consequence of the higher 
‘energy cost’ of movement with excess body mass82 as the men in the present study were overweight on average. 
Standardizing AEEDLW to bodyweight partly reduced this association and AEE/kgDLW was negatively correlated 
to waist circumference.

In conclusion, we observed for the first time that higher levels of DLW- derived PAL and AEE measures were 
inversely correlated with MetS and adiposity-associated metabolites. While not conclusive, our findings provide 
evidence to support the promising potential effects of physical activity and overall energy expenditure in mitigat-
ing the negative effects of obesity on metabolism. We suggest that serine and glycine, through the involvement in 
de novo synthesis of sphingolipids such as ceramides may play an important part in the development of metabolic 
disease from obesity. To the best of our knowledge, this is the first study to examine metabolite profiles associated 
with DLW-derived AEE and PAL in humans.
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Methods
Study design and ethical approval.  This study was comprised of a convenience sample of volunteer 
participants who were recruited to a validation study designed to examine the measurement properties of the 
STAR-Q83. The study design, recruitment and data collection procedures, excluding the metabolomics proce-
dures, have previously been described81.

Of 102 participants in the STAR-Q validation study81, 82 (35 men and 47 women) provided overnight fasting 
blood samples from which quantitative metabolomics data (see below) were generated. Recruitment to the orig-
inal study was based on the following inclusion criteria: 1) 30–60 years of age; 2) living in the Calgary, Alberta, 
Canada area; 3) weight stability (≤2.5 kilogram weight change for at least 3 months) and; 4) body mass index 
(BMI) ≤35. Pregnant or breastfeeding women, participants with metabolic disorders (e.g., diabetes and thy-
roid dysfunction) or individuals taking medications affecting water balance were not eligible for the study. All 
participants provided informed consent as well as detailed reports of their medical history. Ethical approval for 
the study was obtained from the Alberta Cancer Research Ethics Committee of Alberta Health Services and the 
Conjoint Health Research Ethics Board of the University of Calgary, Calgary, Alberta, Canada. All methods were 
performed in accordance with relevant guidelines and regulations.

AEEDLW, PALDLW and physical activity measures.  Doubly labeled water (DLW: deuterium and 
oxygen-18 (18O)) was used to derive total energy expenditure (TEEDLW). In brief, saliva and urine samples were 
obtained after an overnight fast for the determination of the background isotope levels (day 0). Participants were 
then orally administered 0.18 g 99 atom percent deuterium and 2.5 g 10 atom percent 18O per kilogram of esti-
mated total body water. Post-dose saliva samples were collected at 3 and 4 hours and second-void urine samples 
were collected on days 1, 8 and 14. The samples were batch-analyzed in duplicate using an Isoprime Stable Isotope 
Ratio Mass Spectrometer (Isoprime Ltd., Cheadle Hulme, United Kingdom) to measure the decline in isotope 
enrichment. TEEDLW was calculated according to the method of Racette et al.84 using a modified Wier equation 
and an assumed respiratory quotient of 0.85. AEEDLW (and in extension AEEDLW/kg) was estimated from TEEDLW 
using Equation 1 below where resting metabolic rate (RMR) was estimated using the Schofield equation85 and 
hours of sleep as reported in the STAR-Q:

AEEDLW = 0.9TEEDLW – ((RMR/24) × (24 - hrs of sleep)) + (0.9(RMR/24) × hrs of sleep).  Activities 
were self-reported for the previous month using the self-administered STAR-Q completed on day 14 of the DLW 
protocol. All activities were assigned activity codes and values for metabolic equivalents of task were obtained 
from the Compendium of Physical Activities86,87. Estimates of time spent in moderate (3.0–6.0 metabolic equiv-
alents of task) and vigorous intensity physical activity (>6.0 metabolic equivalents of task) were then derived81. 
The physical activity level (PALDLW) was estimated as the ratio of TEEDLW to RMR.

MetS risk factors and anthropometric measurements.  MetS is defined as a cluster of risk fac-
tors comprising high blood pressure (systolic ≥ 130 mm Hg, diastolic ≥ 85 mm Hg), abdominal obesity 
(men ≥ 102 cm, women ≥ 88 cm)88,89, raised fasting glucose (≥ 5.6 mmol/l) and dyslipidemia, defined as low HDL 
(men < 1.0 mmol/l, women < 1.3 mmol/l) and high triglycerides (≥ 1.7 mmol/l) or alternatively, medication for 
any of the mentioned conditions7. Prescription drug use was ascertained at the study center visit at which time 
participants were requested to bring in medication containers. Triglycerides, HDL cholesterol, total cholesterol 
and fasting glucose were determined at the Calgary Laboratory Services using established protocols and fasting 
whole blood.

Anthropometric measures and blood pressure were determined at the study center by a certified exercise phys-
iologist. Waist circumference was measured midway between the iliac crest and the lowest rib, as per Canadian 
guidelines90. Both waist and hip circumference were recorded to the nearest 0.5 cm. Weight and height were meas-
ured to nearest 0.1 kg and 0.1 cm, respectively, for BMI calculations (kg/m2). BMI was analyzed as a continuous 
and a binary variable that was dichotomized to represent healthy body weight (BMI < 24.9 kg/m2) and overweight 
and obese categories (BMI ≥ 25.0 kg/m2). Body fat percentage was determined using the TBF-310 Tanita Body 
Composition Analyzer and Scale (Tanita Corporation of America, Preston, USA). Blood pressure was assessed 
following the recommendations by the Canadian Hypertension Educational Program91.

Serum metabolomics analysis using proton nuclear magnetic resonance spectroscopy.  Whole 
blood was collected in Red Top vacutainers following a 10 hour fast, processed by centrifuge to yield serum 
and stored in aliquots of 0.5 mL cryovials in −80 °C until further analysis. At the time of analysis, samples were 
thawed on ice and larger molecules (e.g., proteins and lipid assemblies) were removed using 3-kDa Nanosep cen-
trifugal filters and analyzed as previously described92. In brief, the filtrate volume was brought up to 650 μL, using 
a DSS-containing sodium phosphate buffer (130 μL, 0.5 M), the antibacterial compound sodium azide (10 μL, 
1 M) and deuterium oxide. In addition, pH was adjusted to 7 ± 0.01 using sodium hydroxide and hydrochloride. 
Proton nuclear magnetic resonance spectroscopy (1H NMR) was used to acquire 1-dimensional spectra using a 
standard pulse program (prnoesy1d) on a Bruker Avance 600 spectrometer (600.22 MHz, 5 mm TXI Probe) at 
298 °K. All samples were analyzed in automatic mode using Bruker NMRCase sample changer after shimming the 
first sample of each batch. Each sample was then processed using Chenomx NMR Suite 7.5 software (Chenomx 
Inc., Edmonton, Canada), comprised of line broadening (0.5 Hz), baseline and phase correction, water region 
deletion, shimming and concentration calibration. Quantitative metabolic profiling was performed using the 
NMR Suite profiling module employing the Chenomx library assisted by the human metabolome database (www.
hmdb.ca) as well as 2-dimensional heteronuclear single quantum coherence spectroscopy (1H,13C HSQC) and 
total correlation spectroscopy (1H,1H TOCSY). All samples were coded with sample ID and prepared, analyzed 
and profiled in a randomized order.

http://www.hmdb.ca
http://www.hmdb.ca
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Statistical analysis.  Serum metabolites and study variables were analyzed by univariate (two-tailed t-test 
assuming unequal variance), bivariate (Pearson correlation analysis) and multivariate statistical analysis (as 
described below). Statistical significance was defined as a p-value < 0.05 for uni- and bivariate statistical analysis 
and a variable importance in the projection-value (VIP) > 1.0, for the multivariate statistical analysis. Univariate 
and bi-variate p-values were corrected for false discovery rate (FDR) according to Benjamini and Hochberg93.

The analysis of the metabolomics data is based on work by Goodacre et al.94, and their standards for analysis. 
In brief, sample normalization of the metabolomics data was performed to ensure Gaussian distribution. The 
measured concentration of each metabolite in each sample was divided with the total concentration sum of that 
sample. Glucose, glycerol and lactate, which consistently had the highest concentrations in the samples, were 
excluded from the total sum in order to not dominate the normalization procedure. The normalized 1H NMR 
data was then used for the uni- and bivariate (Pearson correlation) statistical analysis using Microsoft Excel and 
imported into the SIMCA-P + software (version 12.01, Umetrics AB, Umeå, Sweden) for multivariate statistical 
analysis. In brief, for the multivariate analysis, data were further mean centered and scaled using unit variance 
scaling and statistical models were created based on 7-fold cross-validation. Unsupervised principal component 
analysis (PCA) was conducted to identify possible groupings of the data and to identify outliers, defined as sam-
ples outside the default 95 percent confidence interval. Outliers were excluded when creating supervised models. 
Only the models that were based on the most influential metabolites (VIP > 1) are shown. Partial least squares 
regression analysis (PLS) was applied for continuous Y-variables whereas PLS discriminant analysis (PLS-DA) 
and orthogonal PLS-DA (OPLS-DA) were applied for qualitative Y-variables with more than three classes (e.g., 
the number of MetS risk factors, MetS0-3) and two classes (e.g., BMI class and MetSany vs Metszero), respectively. All 
models were evaluated based on R2 and Q2 values, representing the explained variance and the predictive ability 
of the models, respectively. Multivariate statistical models are generally believed to not be over-fit if the R2Y and 
the Q2 values are within <0.3 of each other80,95. Analyses were carried out separately in men and women, and 
further stratified by MetS when indicated i.e., MetSany (1–3 MetS risk factors) and MetSzero (0 MetS risk factors).

Metabolic pathway analysis.  Metaboanalyst (www.metaboanalyst.ca) was used for the pathway analy-
sis. The normalized data were imported and scaled and mean centered and the analysis specified for humans. 
Pathways were evaluated based on p-values corrected for false discovery rate93 with p < 0.05 indicating statistical 
significance.

Data availability.  The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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