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Social Observation Increases 
Functional Segregation between 
MPFC Subregions Predicting 
Prosocial Consumer Decisions
Daehyun Jung1,2, Sunhae Sul4, Minwoo Lee1,3,5 & Hackjin Kim1,3

Although it is now well documented that observation by others can be a powerful elicitor of prosocial 
behaviour, the underlying neural mechanism is yet to be explored. In the present fMRI study, we 
replicated the previously reported observer effect in ethical consumption, in that participants were 
more likely to purchase social products that are sold to support people in need than non-social products 
when being observed by others. fMRI data revealed that the anterior cingulate cortex (ACC) and the 
dorsomedial prefrontal cortex (dmPFC) encoded subject-specific value parameters of purchase decisions 
for social and non-social products, respectively, under social observation. The ACC showed strong 
functional coupling with the amygdala and the anterior insula when participants in the observation 
condition were making purchases of social versus non-social products. Finally, ventromedial prefrontal 
cortex (vmPFC) activity predicted faster reaction time and increased prosocial behavior during decisions 
to purchase social versus non-social products, regardless of social observation. The present findings 
suggest that subregions of the mPFC, namely the dmPFC, ACC, and vmPFC, are hierarchically organized 
to encode different levels of decision values from the value of context-sensitive reputation to that of 
internalized prosociality.

People often pay extra money to purchase environment-friendly goods or fair-trade products. This phenomenon, 
often referred to as “ethical consumption”1, is puzzling when viewed from a purely economic standpoint: Why 
would people invest their economic resources into seemingly extraneous values such as prosociality?

One plausible explanation comes from the “costly signaling theory,” which views altruistic behavior as a signal 
of willingness and ability to help others2,3. Here, a concern for one’s reputation is the key motivation for altruistic 
behavior, since positive social standing, once established, will ultimately pay off in repeated social interactions4,5.

Consistent with the notion of altruism as a signalling strategy, abundant evidence has shown that people 
tend to demonstrate increased prosocial tendency when their reputation concern is made salient either by social 
observation or by subtle surveillance cues6. For example, consumers are more likely to favor ethical products over 
more luxurious alternatives when their decisions are made in public versus in a personal context7,8. The presence 
of others is also known to promote generosity in economic games9 and charitable giving10,11, as well as positive 
self-appraisal12.

Despite the close entanglement between reputation concern and prosocial behavior, however, a specific neural 
mechanism mediating this relationship remains to be identified. One potentially important brain structure that 
underlies the interaction between reputation concern and prosocial behaviors is the medial prefrontal cortex 
(MPFC), which comprises multiple functionally dissociable subregions13. The anterior cingulate cortex (ACC), 
for example, becomes particularly active in the presence of observers14,15, potentially guiding one’s reputation 
promotion in the face of evaluative others16,17.

A developing body of evidence also suggests functionally distinct contributions of the ventromedial (vmPFC) 
and the dorsomedial prefrontal cortex (dmPFC) to social behaviors. Previous studies have postulated that vmPFC 
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activity reflects automatic/intuitive processes related to “first-person” information18–20, whereas the dmPFC 
is more involved in a deliberative/controlled, “third-person” mode of decisions21–28. Several studies have also 
shown that vmPFC activity can be commonly involved in decisions for both self and others, particularly when 
applying self-simulation to estimate a stranger’s preferences29 and when people are fully familiarized with other’s 
preferences through practices30. Similarly, in the specific context of prosociality, the vmPFC seems to encode 
decision values for highly internalized forms of altruistic behaviors (i.e., internalized prosocial valuation) as in 
harm-aversion in social dilemma and moral emotions31–38, whereas the dmPFC is involved in decisions that are 
strategically beneficial22,39,40.

These findings altogether suggest that the impact of reputation concern on prosocial behaviors could be sub-
served by systematic patterns of neural activation across differential subregions in the MPFC. In the present study, 
we adopted a novel “ethical consumption task,” where participants were instructed to make a series of binary 
purchase decisions on food items at given prices (Fig. 1), and manipulated the level of reputation concern to 
investigate the neural mechanisms of prosocial behavior in public versus in private.

Prior to the experiment, participants were informed about the definition of ethical consumption: we explained 
to participants various forms of consumption behavior that promote social value, based on the examples of social 
enterprise products such as environment-friendly and fair trade products. Then, participants were instructed to 
make purchasing decisions on social or non-social products at various price levels, and were told that social prod-
ucts were manufactured by social enterprises, whereas non-social products were manufactured by general com-
panies that pursue profit-maximization. Participants in the OBS group were told that two experimenters outside 
the scanner room would monitor and manually record their responses due to some technical issues12,14. Those in 
the CON group, on the contrary, were assured that their responses would remain undisclosed. In each trial, either 
social or non-social products were presented at one of seven different price levels: 25%, 50%, 75%, 100%, 125%, 
150%, or 175% of the optimal price determined in the BDM experiment (see the Methods for details).

We specifically aimed to reveal functionally unique contributions of the MPFC subregions to prosocial behav-
ior under social observation. We hypothesized that the subject-specific value-related activity in the ACC would 
increase under social observation, promoting context-dependent prosocial behavior. In addition, we predicted 
that the vmPFC would be involved in computing internalized values of prosocial choices that are independent 
of observational context, whereas the dmPFC would be engaged in context-dependent strategic and deliberative 
decision processes.

Results
Behavioral results.  Purchase decision.  Based on previous findings, we expected that the participants in 
the observation (OBS) group would purchase social versus non-social products more than the participants in 
the control (CON) group. To test this hypothesis, we performed a three-way mixed ANOVA with product type 
(social and non-social product) and price level (25–175%, seven levels altogether) as within-subject factors and 
group (OBS and CON group) as between-subject factor. Confirming our prediction, this analysis yielded a signif-
icant three-way interaction effect on purchase rates (F(6,192) = 3.69, p < 0.05). We also found the main effects for 
product type (F(1,32) = 25.52, p < 0.05) and price level (F(6,192) = 189.73, p < 0.05), but not for group (F(1,32) = 0.14, 
p = 0.71). Post-hoc analyses revealed that the three-way interaction effect was mainly driven by the OBS group 
showing higher purchase rates for social than non-social products at the 100% price level compared to the CON 
group (F(1,32) = 9.70, p < 0.05, Fig. 2A). The reason why the group difference was significant only at one price level 
(100%) may be because the value curve for the social product moved to the right as a whole, shifting the indiffer-
ence point of the curve. This then makes the point at which the gap between the two value curves is widest found 
at the midpoint.

A repeated-measures two-way ANOVA for the OBS group revealed a significant interaction between product 
type and price level (F(6,102) = 10.06, p < 0.05), and main effects for product type (F(1,17) = 30.75, p < 0.05) 
and price level (F(6,102) = 149.40, p < 0.05), showing higher probability of purchasing social than non-social 

Figure 1.  Virtual shopping task. An example of a single trial in the virtual shopping task. Non-social 
product image (muffin: https://cdn.pixabay.com/photo/2017/04/04/16/34/cake-2201816_960_720.jpg) 
and brand logo of non-social product image (cogwheel: https://cdn.pixabay.com/photo/2013/07/12/12/30/
cogwheel-145804_960_720.png) by Pixabay is licensed under CC0 Creative Commons (https://
creativecommons.org/publicdomain/zero/1.0/legalcode).

https://cdn.pixabay.com/photo/2017/04/04/16/34/cake-2201816_960_720.jpg
https://cdn.pixabay.com/photo/2013/07/12/12/30/cogwheel-145804_960_720.png
https://cdn.pixabay.com/photo/2013/07/12/12/30/cogwheel-145804_960_720.png
https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://creativecommons.org/publicdomain/zero/1.0/legalcode
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products and increasing probability of purchasing as price level decreased (Fig. 2B). A repeated-measures 
two-way ANOVA for the CON group did not show a significant interaction between product type and price 
level (F(6,90) = 1.89, p < 0.13), although main effects for product type (F(1,15) = 4.69, p < 0.05) and price level 
(F(6,90) = 62.72, p < 0.05, Fig. 2C) were significant. In the CON group, there was a significant difference between 
the social product and non-social product conditions only at the 75% price level (p < 0.05), whereas, in the OBS 
group, the purchasing rates of the social vs. non-social products were significantly greater at all the price levels 
(all ps < 0.05).

Reaction time.  We predicted faster response times (RT) for purchasing social products especially at low price 
levels in the OBS group, due to prosocial valuation facilitated by social observation. In terms of RT data, we 
found a marginally significant three-way interaction effect (F(6,192) = 2.63, p = 0.057), along with significant 
main effects for price level (F(6,192) = 5.66, p < 0.05), but not for group (F(1,32) = 0.002 p = 0.96) and product type 
(F(1,32) = 0.02, p = 0.89). Post-hoc analyses revealed that this interaction effect was mainly driven by faster deci-
sions made by the OBS group than the CON group at the lower price level (25%) for social versus non-social 
products (F(1,32) = 6.41, p < 0.05, Fig. 2D). It is noteworthy that decisions were faster (or slower) for social ver-
sus non-social products at lower (or higher) price levels, especially in the OBS group, since this indicates that 
observation by others may facilitate the purchase of social products at lower price levels. Supporting this idea, 
a significantly increasing linear trend was found in the OBS group (t(17) = 4.56, p < 0.05), but not in the CON 
group (t(15) = −0.23, p = 0.824, Fig. 2E).

Neuroimaging results.  Parametric modulation analysis using the value parameters.  First, we searched the 
MPFC for any regions engaged in encoding values of purchase decisions regardless of product types (GLM#1). 
We performed a group analysis of one-sample t-test on the parametric maps of all subjects (N = 34) obtained 
from the parametric modulation analysis using value parameters. In the subsequent analyses, we focused on these 
ROIs to examine the group and conditional differences as well as their interactions, all of which are orthogonal to 
the contrasts used to identify functional ROIs (i.e., value parameters).

The one-sample t-test on the parametric maps of all subjects revealed that the pACC (pregenual anterior cin-
gulate cortex: x = −4, y = 44, z = 8, Z = 3.47; all findings are reported at p < 0.05 small volume-corrected (SVC) 
unless otherwise stated) and the dmPFC (x = −6, y = 36, z = 40, Z = 3.64) showed increasing activity as the prob-
ability of purchase decision increased across both product types (Fig. 3A, See the Method section for more details 
about the selection of ROIs).

Considering that social and non-social products should elicit different levels of prosocial motivation, we also 
expected that distinctive subregions within the MPFC would engage in encoding values of purchase decisions for 
social and non-social products. To test this hypothesis, we next examined value-encoding clusters in the MPFC 
separately for social and non-social products (GLM#2). The results showed that the ventral clusters including 
the sACC (subgenual anterior cingulate cortex: x = −4, y = 42, z = −8, Z = 4.32) and the pACC (x = −4, y = 44, 

Figure 2.  Behavioral Results. (A) Differential purchase probability between social (S) and non-social (NS) 
product conditions as a function of price level in the observation (OBS) and the control (CON) group. 
Probability of purchasing for social and non-social products in the (B) OBS and the (C) CON group. (D) 
Differential response time (RT) between social and non-social product conditions as a function of price level in 
the OBS and the CON group. (E) Mean slope of linear regression line best fitted to the differential RT between 
social and non-social product conditions as a function of price level in the OBS and the CON group. All the 
error bars in the present manuscript indicate standard errors.
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z = 8, Z = 3.53) encoded the values of social products (Fig. 4A), whereas the dorsal clusters (x = −2, y = 38, z = 38, 
Z = 3.28; x = −4, y = 22, z = 50, Z = 4.34) encoded the values of non-social products (Fig. 4B), suggesting func-
tional segregation between the ventral and dorsal subregions of the MPFC, as we hypothesized.

Stronger MPFC functional segregation induced by observation.  We hypothesized that the ACC 
would be involved in context-dependent prosocial valuation and the dmPFC in strategic calculation, weigh-
ing cost and benefit of purchasing social versus non-social products. Therefore, we predicted that, in the OBS 
condition, where purchasing non-social products may threaten the reputation of the participant, the functional 
segregation between the MPFC subregions in computing values of purchasing social and non-social products 
would increase.

First, we examined the MPFC ROIs obtained from GLM#1, which encoded the value parameters regard-
less of product type, to verify the pattern of functional engagement of the MPFC subregions separately for each 
group. Importantly, the three-way interaction of group, product type, and region was significant (F(1,32) = 5.16, 
p < 0.05). Supporting our hypothesis, post-hoc analyses on the three-way interaction effect showed that the 
two-way interaction effect between product type and region was significant only in the OBS group (F(1,17) = 9.47, 
p < 0.01), but not in the CON group (F(1,17) = 0.71, p = 0.41,Fig. 3B,C). Next, we tested the same hypothesis 
using the ventral and dorsal clusters in the MPFC obtained from GLM#2, which were responsive to social and 
non-social product valuation, respectively. This analysis also revealed a significant interaction effect between 
product type and region in the OBS group (F(1,17) = 15.16, p < 0.005, Fig. 4C), showing greater value-related 
activity for social versus non-social trials in the ventral subregions and the opposite pattern in the dorsal subre-
gions. No significant interaction effect was found in the CON group (F(1,15) = 2.82, p = 0.35, Fig. 4D).

Functional connectivity of MPFC subregions.  Based on previous findings of the intimate functional 
coupling between the ACC and subcortical structures such as the amygdala41 and the insula42, we next searched 
for the brain structures functionally coupled with the MPFC clusters encoding decision values. This analysis 
revealed that the pACC (x = −4, y = 44, z = 8) showed increased functional coupling with the left anterior amyg-
dala (x = −24, y = 0, z = −30, Z = 4.54) and the right anterior insula (x = 40, y = 2, z = 4; z = 4.25, Z = 4.26) when 
participants purchased social versus non-social products in the OBS compared to the CON group (Fig. 5). No 
other seed regions showed significant PPI connectivity with other brain areas (See the Supplementary table for 
the list of brain regions).

vmPFC activity associated with ethical consumption tendency in both groups.  Given that the 
functional segregation within the MPFC predicted individual differences in ethical consumption (EC) in the 
OBS group, we further investigated the sources of such individual differences, with a special interest in revealing 
brain regions predicting prosocial tendencies regardless of social observation. In search of neural substrates pre-
dicting individual differences in prosocial tendencies, we regressed individual contrast maps of social products 
[purchase - non-purchase] versus non-social products [purchase - non-purchase] at the price/decision events 
against individuals’ EC and the categorical variable of group. This revealed activity in the vmPFC (x = 2, y = 56, 
z = −14, Z = 3.79, Fig. 6A) showing a significant positive correlation with the regressor of EC (r = 0.59, p < 0.001). 

Figure 3.  Subregions of the MPFC encoding the value parameters. (A) The parametric modulation analyses 
using individual-specific value parameters revealed value-encoding regions in the MPFC including pACC 
(x = −4, y = 44, z = 8) and dmPFC (x = −6, y = 36, z = 40) across all the trials in all participants. The interaction 
effect between brain regions and product type was found significant only in the (B) OBS group but not in the 
(C) CON group.
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Figure 4.  Distinctive MPFC subregions encoding the values of social versus non-social products. The 
parametric modulation analysis using subject-specific value parameters revealed (A) ventral clusters (ACC: 
x = −4, y = 42, z = −8, Z = 4.32; x = −4, y = 44, z = 8, Z = 3.53) for the social product condition, and (B) 
dorsal clusters (dmPFC: x = −2, y = 38, z = 38, Z = 3.28; x = −4, y = 22, z = 50, Z = 4.34) for the non-social 
product condition. (C) Greater value-related activity was observed for social (S) versus non-social (NS) product 
conditions in the ventral clusters and the opposite pattern in the dorsal subregions in the OBS group. (D) No 
such spatial segregation between the ventral and the dorsal MPFC subregions was found in the CON group.

Figure 5.  pACC functionally coupled with amygdala and anterior insula under observation. The pACC 
(x = −4, y = 44, z = 8) activity encoding decision values of social products was functionally coupled with (A) 
the left anterior amygdala (x = −24, y = 0, z = −30) and (B) and the right anterior insula (x = 40, y = 2, z = 4; 
z = 4.25) when participants purchased (vs. non-purchased) social versus non-social products in the OBS group 
compared to the CON group.
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Post-hoc analyses revealed that vmPFC activity predicted individual differences in EC in both the OBS (vmPFC: 
r = 0.64, p < 0.01, Fig. 6C) and the CON (vmPFC: r = 0.59, p < 0.05, Fig. 6D) group.

Social products could activate internalized prosocial values in both groups. Such internalized prosocial val-
ues could facilitate decisions to purchase social products at a low price but slow down decisions not to purchase 
social products at a high price due to the increasing conflict with economic value maximizing motivation. Thus, 
an increase in reaction time as a function of price level for social products should correlate with the strength of 
internalized prosocial values, that is, the degree to which vmPFC activity correlates with the value parameters 
of the social product. To test this hypothesis, we computed subject-specific RT gradient scores, which show the 
linear trend of changes in RT differences between social and non-social products as a function of price level. We 
excluded one participant’s RT slope data as an outlier exceeding three standard deviations, based on the average 
RT slope. Confirming our hypothesis, we found a significant positive correlation between the RT gradient scores 
and vmPFC activity (r = 0.54, p < 0.005), which remained significant when tested separately in the OBS (r = 0.51, 
p < 0.05) and the CON (r = 0.63, p < 0.05) group (Fig. 6B). Taken together, these findings suggest that the vmPFC 
may be involved in internalized (or dispositional, subject-specific) valuation of prosocial choices, regardless of 
price information and the presence of observers.

Neural responses to social versus non-social products at the time of decision.  We also exam-
ined differential neural responses to social versus non-social products, regardless of value encoding (GLM#3). A 
simple contrast of social versus non-social product condition at the time of decision event revealed the bilateral 
amygdala (x = −20, y = −4, z = −18, Z = 4.04; x = 16, y = −2, z = −16, Z = 4.03). In addition, we searched for 
brain regions showing group differences in their responses to social versus non-social products at the time of 
decision (see Table S1).

Neural responses to the brand logos of social versus non-social products.  A simple contrast of 
social versus non-social product condition at the time of brand logo presentation (GLM#3) revealed the left 
nucleus accumbens (x = −16, y = 10, z = 0, Z = 4.34), right caudate nucleus (x = 12, y = 10, z = 8, Z = 3.65).

Effect of choice difficulty.  Given a recent finding that choice difficulty can be negatively associated with 
vmPFC and positively associated with dmPFC activity43 we also examined the effect of choice difficulty by modulat-
ing the regressor of the decision event with the parameter of reaction time on a trial-by-trial basis. All MPFC clusters 
encoding values of social and non-social products remained unchanged even after controlling for choice difficulty 
(Fig. S1). These results further support the selective involvement of the MPFC in encoding decision values.

Figure 6.  vmPFC activity encoding internalized prosocial valuation. (A) The vmPFC (x = 2, y = 56, z = −14) 
activity encoding ethical decision bias (i.e., social products [purchase (Y) − non-purchase (N)] versus non-
social products [purchase (Y) − non-purchase (N)]) showed a significant positive correlation with individual 
differences in ethical consumption (EC) tendency in both the (C) OBS and the (D) CON group. (B) The vmPFC 
activity predicted the degree to which the RT difference between social and non-social product condition trials 
varied with price range, which was significant in both the OBS and the CON group.
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Discussion
The present study investigated the neural mechanism of observer effects on prosocial decision-making, using 
a consumer decision task. Consistent with previous studies8,12,44, participants in the OBS group, compared 
to the CON group, showed significantly higher purchase rates at the medium price level and faster decision 
times for social than non-social products at lower price levels. Most importantly, fMRI results revealed spa-
tially segregated activation patterns between the ventral (i.e., ACC) and dorsal (i.e., dmPFC) subregions within 
the MPFC, encoding values of decision for social and non-social products, respectively, only in the OBS group. 
This observation-induced functional segregation between the ACC and the dmPFC also predicted individual 
differences in prosocial behavior only in the OBS group, but not in the CON group. In addition, the pACC 
showed strong functional coupling with the amygdala and the anterior insula during decisions to purchase social 
versus non-social products. Finally, replicating previous findings on its involvement in prosocial valuation, an 
increase in vmPFC activity was associated with greater biases toward ethical consumer decisions and predicted 
price-related increases in reaction times in both the OBS and the CON group. Taken together, the present findings 
suggest that anatomically segregated subregions along the axis of the ventral-to-dorsal MPFC may be differen-
tially involved in computing values of prosocial decisions under observation by others.

The ACC preferentially encoded the values of social versus non-social products, showing a significant func-
tional coupling with the anterior ventral amygdala and the anterior insula during the choice of social versus 
non-social products (i.e., the pACC) and predicting individual differences in prosocial behavior (i.e., the sACC), 
only in the OBS group. The ACC, which is known to be implicated in self-referential processing45,46, has been 
proven particularly sensitive to social observation or evaluation by others14,15. This region has also been associated 
with increased prosocial decisions in the presence of peers17, consistent with its role in the observer effect and rep-
utation management16, and has been recently shown to compute social values in a context-dependent manner47. 
In addition, similar to those under social pressure due to observation by others, people who were explicitly asked 
to make donation decisions using money endowed by the experimenter showed increased pACC activity and 
prosocial behavior48. Our findings confirm and further elaborate this idea by showing that this region contributes 
to reputation management by computing values of context-dependent socially desirable behavior.

The ACC is also known to play a key role in regulating emotional conflict detected by the amygdala49, possibly 
via its intimate functional connectivity with the amygdala41 as well as the anterior insula42. The present findings 
suggest that the purchasing action of social versus non-social products promoted by the ACC may be an active 
process of regulating the signals arising from the ventral amygdala and the anterior insula, which may reflect 
emotional/motivational conflicts caused by increased reputational concerns under observation by others.

Replicating previous findings, we found that vmPFC activity predicted individual differences in prosocial ten-
dencies especially when deciding to purchase social versus non-social products. This effect was identified in both 
groups of participants, highlighting the role of the vmPFC region in internalized prosocial valuation. Revealing its 
internalized nature of valuation, vmPFC activity also predicted individual differences in the degree to which RT 
differences between social and non-social products changed linearly as a function of price level in both groups; 
this might be a behavioral indicator of internalized prosocial valuation in conflict with increasing price level of 
social products with respect to non-social products. The present findings suggest that the increased vmPFC activ-
ity may elicit dominant response repertoires, which are likely to be socially desirable or prosocial choices in social 
situations. It should be noted, however, that vmPFC is not exclusively involved in intuitive/automatic valuation 
process, and the distinction of intuitive vs. controlled processes is a matter of degree.

The vmPFC activity predicting individual differences in ethical consumption tendency, regardless of obser-
vation manipulation, is incompatible with some previous studies reporting context-modulated valuation pro-
cess encoded by vmPFC activity. For example, value-related activity of vmPFC was shown to be modulated by 
emotional priming for judgment50 and instructional cues for food choice51, craving regulation52, or financial 
decision53. One possible way of resolving this conflict would be to assume that the valuation process of vmPFC 
may be differentially modulated by specific context. That is, vmPFC valuation process can be context-dependent 
when the context intuitively biases the direction of decision without causing explicit conflict. In contrast, in this 
experiment, the observation context may have indiscriminately promoted competition between incompatible val-
ues that could be detected and regulated by pACC, rather than vmPFC. Future studies should investigate specific 
decision context that differentially modulate the valuation processes subserved by distinctive mPFC subregions.

Several studies have shown that vmPFC activity is commonly involved in decisions made for both self and 
others. For example, when participants were asked to estimate a stranger’s preference for movies with little prior 
knowledge of him/her, the common vmPFC activity for both self and others was found29. A post-hoc analysis 
revealed that such a common vmPFC activity reflected a mixture of self- and other-simulation processes, con-
sistent with a recent report that vmPFC activity increased with egocentric bias in the estimation of others’ pref-
erences25. In another study reporting common vmPFC activity for both self and other, participants were asked to 
estimate the temporal preferences (i.e., smaller-sooner vs. larger-later rewards) of others after being fully famil-
iarized with the preferences of their partners through repeated practice trials. These findings, therefore, indicate 
that vmPFC can be involved in computing the value of choices for others, only when such valuation process is 
internally driven via familiarization with others’ preferences or through self-simulations.

In the present study, the dmPFC encoded subject-specific parameters of decision values for non-social, rather 
than social, products under social observation. The dmPFC has been implicated in encoding predictive infor-
mation about future rewards54–56 as well as in mentalization or perspective-taking21. Combining these lines of 
research, it has recently been shown that the dmPFC computes values of decisions for others24,25,38 and responds to 
outcomes received by others26–28. Although dmPFC activity has often been associated with prosocial behavior26,57, 
the present study once again supports the idea that dmPFC activity does not necessarily contribute to prosocial 
valuation38, because the decisions to purchase social and non-social products require value computation for oth-
ers and self, respectively. This conflicting role of the dmPFC in prosociality should be more carefully addressed by 



www.nature.com/scientificreports/

8SCiENtifiC REPOrtS |  (2018) 8:3368  | DOI:10.1038/s41598-018-21449-z

considering differences in experimental contexts across studies. For example, dmPFC activity may predict proso-
cial behavior only when the experimental task automatically triggers selfish behavioral responses while prosocial 
behavior is strategically more beneficial. Conversely, the same region may be engaged when the experimental 
context automatically triggers prosocial motivation while economic value maximization is strategically more 
beneficial. Given that observation not just increased the tendency of purchasing social products but also reduced 
the tendency to purchase non-social products, participants were likely to think that buying non-social products 
would lower their reputation under social observation. Therefore, it is likely that the increased dmPFC activity 
when buying non-social products in the observational group reflects an increased cognitive cost due to a conflict 
between economic value maximization and observation-induced motivation for impression management.

There are several alternative non-social account of dmPFC function, such as foraging decisions58,59, 
model-based valuation processing60,61, and the attentional control62, associated with switching between auto-
matic and controlled processing63. In fact, the dmPFC cluster that encodes the values of purchasing non-social 
products is located closer to the cluster linked to action monitoring16,64 than to the area linked to mentaliza-
tion16,21. This region has been shown to code for both positive and negative subject values65, which may be inter-
preted as reflecting arousal, saliency, and/or attentional shift. Importantly, all MPFC clusters remained significant 
even after controlling for reaction time as a covariate. This result demonstrates that the value-related activity in 
the MPFC subregions does not simply reflect choice difficulty43. According to the alternative interpretation, the 
dmPFC is engaged when there’s a need to disengage intuitive/familiar valuation system and shifting attention 
from familiar/internal bodily states to novel/external environment. In a similar vein, increased dmPFC activity 
for non-social products may elicit a switch from the ventral MPFC system, which is more internally focused and 
rather narrowly tuned in a socially desirable direction, to deliberate and strategic value maximization22,40, often 
associated with selfish/dishonest behavior38,66 in social settings.

A possible alternative account of the functional segregation between the MPFC subregions reported in the 
present study may come from recent literature on the internal versus external mode of valuation23. According 
to this view, the vmPFC encodes internal valuation sensitive to bodily signals like hunger and satiety67,68 being 
particularly sensitive to outcome devaluation69,70. Importantly, several studies have shown that vmPFC activity 
covaries with heart rate variability71,72, which is also predictive of individual differences in decision value encod-
ing72. Consistent with these findings, the present study suggests that vmPFC activity may indicate the degree to 
which one’s value computation for prosocial behavior is internalized and therefore immune to reputational chal-
lenge elicited by social observation. In contrast to the vmPFC, the dmPFC has been shown to be driven mostly 
by sensory attributes of external incoming environmental stimuli73,74. Therefore, it can be inferred that social 
observation would increase a conflict between two competing values: one for seeking reputation and the other 
for economic value maximization for non-social products. This could lead to a switch from internal to external 
valuation mode, which would then serve to sample additional external sensory information such as visual prop-
erties and price information of products to search for a more appropriate choice option. In addition, increased 
value-related dmPFC activity for non-social products under observation may be particularly prominent when 
one is alternatively switching between choices for social and non-social products within the same task, because, 
only in such situation, one needs to disengage the internal valuation system (subserved by vmPFC) for social 
products and switch attention to the external valuation system (subserved by dmPFC) for non-social products.

One of the limitations in our study is that individual differences in ethical consumption behaviors may be 
confounded with one’s ability to pay attention to social vs. non-social product logos during the purchase task in 
the present study. In order to rule out this possibility, a future study may need to measure one’s baseline attention 
to social vs. non-social products (e.g., via eye-tracking device) unaffected by social observation.

In conclusion, present study found that social observation during a consumer decision task recruits ana-
tomically and functionally segregated neural valuation systems differentially involved in prosocial decisions. 
Specifically, the vmPFC and dmPFC contribute to internalized prosocial value computation and strategic value 
maximization, respectively, while the ACC promotes reputation via context-dependent prosocial behavior. The 
present findings provide important insights into our understanding of the organizing principles of distinctive 
neural valuation systems, which can interact with each other to maximize one’s capacity for adjusting to challeng-
ing social contexts.

Materials and Methods
Participants.  Forty-two participants were randomly assigned to either the observation (OBS) or the control 
(CON) group and performed a virtual shopping task in the scanner. We excluded data obtained from six partic-
ipants who had responded to less than half of the total number of trials (possibly due to falling asleep during the 
task). Additionally, one male participant from the CON group was also removed due to excessive head motion 
(over 3 mm), and one female participant from the CON group was excluded due to abnormal behavioral data (i.e., 
increasing probability of purchase as the price level increased for the same product). A total of 34 participants 
(18 in the OBS group: 11 males and 7 females; mean age = 23.83, SD = 2.28; 16 in the CON group: 11 males and 5 
females; mean age = 24.62, SD = 4.62) were included in the final fMRI analyses. All experiments were performed 
in accordance with the relevant guidelines and regulations. The Institutional Review Board of Korea University 
approved the experimental procedures and all participants provided informed written consent prior to the task. 
All participants were paid a total of KRW 30,000 (USD 30) (KRW 26,000 for participation, plus KRW 4,000 for 
purchasing the products during the task).

Stimuli.  We created an image pool of four different types of food items (i.e., cookies, chocolate, bread, and 
Korean traditional rice cake). Food items were selected based on their popularity and affordability among col-
lege students. We prepared 20 food items whose shape, colour, and quantity were matched and further divided 
each set into two subsets containing 10 items each. Individual items in each subset were comparable in terms of 
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ethical value, likability, perceived quality, and familiarity, verified by ratings obtained from a separate group of 
participants in a pilot study (N = 11). The Becker-Degroot-Marschak (BDM) method75–77 was used to estimate 
the optimal price of each item, where participants in the same pilot study reported their willingness to pay for 
each product while bidding against a computer agent.

We did not collect idiosyncratic preferences of the items without the logos and prices prior to the main task 
in the fMRI study, because, in such a case, participants may choose to maintain consistency with the previously 
reported preferences, and such a motivation for decision consistency may then lead to diminished ethical con-
sumption biases during the main task.

Each set was labelled as either social- or non-social products, which was in turn indicated by unique logo 
images presented at the logo/item display events on the upper left-hand corner of the food item picture (Fig. 1). 
The paring between the stimuli sets and product type was counterbalanced across participants. We informed 
participants that the social versus non-social products were produced by social versus conventional enterprises, 
which differ in their degree to which social impact was valued over purely commercial profit. Because we focused 
on the difference in social values between products of social and conventional enterprises, we referred to these 
items as social and non-social products, respectively, throughout the study.

Task and procedures.  In a novel “ethical consumption task”, participants were instructed to make a series of 
binary decisions on whether or not to buy each food item at a given price. All participants in this study received 
detailed information about social enterprises before starting the experiment such that all of them experienced 
social pressure toward ethical consumption, which was a necessary manipulation for the purpose of the study. 
However, unlike previous studies using a within-subjects design in which each participant was exposed to both 
observation and control conditions, we manipulated observation across participants to minimize the risk of 
demand characteristics and/or carry-over effects, while exposing participants to both reputation-sensitive (i.e., 
decision to purchase social products) and control (i.e., decision to purchase non-social products) conditions. 
Each participant viewed each food items 7 times across 7 price levels (25%, 50%, 75%, 100%, 125%, 150%, 175%) 
in a single functional scan run, which included 70 social and 70 non-social product condition trials (140 trials 
in total). A single trial consisted of a fixation period (1–3 s), a logo/item event where an image of a food item 
and a company brand logo were shown to indicate the product type as either social or non-social (2–4 s), and a 
price/decision event where a price was presented and participants were prompted to make a decision. The order 
of the items, product types, and price levels was determined in a pseudo-random manner such that social and 
non-social product trials alternated throughout each run and any large difference in price level between two 
consecutive trials was avoided.

In the present behavioral task, we used a binary choice task (i.e., yes/no) rather than a 4-point preference 
rating task (i.e., “strong no”, “strong no”, “strong no”, and “strong no”), as used in previous food evaluation task51, 
in order to create a behavioral task that is as similar as possible to the actual purchase situation in real life. To 
establish credibility of the experimental task, participants were told prior to the experiment that they would be 
asked to actually purchase one of the food items they decide to buy during the task. Upon completing the task, 
each participant received one of the products they decided to purchase during the task. The specific type of food 
item and its corresponding price were randomly drawn from the participants’ actual decisions. All participants 
were presented with an open question asking about the purpose of the overall experiment after the experiment, 
and none of the participants successfully reported the real experimental purpose in this open question.

Neuroimaging procedures.  FMRI data acquisition.  We acquired the entire neuroimaging data using a 
Siemens Magnetom Trio, a 3 T Trim system with a 12-channel head matrix coil located at the Korea University 
Brain Imaging Center. T2*-weighted functional images were obtained using gradient-echo echo-planar 
pulse sequences (TR = 2000 ms; TE = 30 ms; FA = 90°; FOV = 220 mm; 78 × 78 matrix; 36 slices; voxel 
size = 2.8 × 2.8 × 3.0 mm3). The stimuli were presented via an MR-compatible LCD monitor mounted on a 
head coil (refresh rate: 85 Hz; display resolution: 800 × 600 pixels; viewing angle: 30° horizontal, 23° vertical). 
Participants used two buttons of a four-button MR-compatible response grip during the experiment. Each func-
tional run lasted about 15 min.

Pre-processing procedures.  FMRI data were preprocessed and analysed using Statistical Parametric 
Mapping 8 (SPM8). All functional images were corrected for slice timing and head motion, normalized to the 
Montreal Neurological Institute (MNI) echo-planar imaging (EPI) template, resampled at a voxel resolution of 
2 × 2 × 2 mm3, and spatially smoothed by using a Gaussian filter with 6-mm FWHM (Full-with-half-maximum).

GLM#1: Model-based parametric modulation analysis with decision value parameters for 
all products.  We conducted a parametric modulation analysis to identify brain regions that encode 
trial-by-trial fluctuations of decision values for both types of products, similar to previous studies24,78. First, we 
fitted each individuals’ binary decision data for social or non-social products to a sigmoid function to estimate 
participant-specific probability curves of purchasing social or non-social products as a function of the seven 
inversely coded price levels. In Equation (1) shown below, the variable x denotes the price level of each product, 
f(xi) is the probability of purchasing the product in trial i, and parameter a and b indicate the slope of the sigmoid 
function and the offset criterion, respectively.

=
+−

f x
e

( ) 1
1 (1)i a b x( )i

To identify brain regions encoding value parameters regardless of the product type (social and non-social 
products), regressors of social and non-social product trials were combined. We modelled the events of the logo/



www.nature.com/scientificreports/

1 0SCiENtifiC REPOrtS |  (2018) 8:3368  | DOI:10.1038/s41598-018-21449-z

item and price/decision separately, and added subject-specific decision value parameters combined for both prod-
uct trials to the regressors of the price/decision event. All button-press events and six motion regressors were 
additionally modelled as covariates.

GLM#2: Model-based parametric modulation analysis with decision value parameters for 
social and non-social products.  GLM#2 was identical to GLM#1, except that the regressors of social and 
non-social product trials were separated and two decision value parameters were added to the regressor of the 
price/decision events for the corresponding product trials.

GLM#3: Basic GLM analysis.  Preprocessed data were analysed by using a general linear model (GLM), 
which included eight regressors of interest: the logo/item events and the price/decision events with different types 
of products (social or non-social) and choices (purchase or non-purchase). The button-press events were added 
to the GLM as a regressor to reduce any noise associated with pressing the button. Six additional covariates of 
the realignment parameters (x, y, and z translations and pitch, roll, and yaw rotations) were included as motion 
regressors in order to capture any movement-related artifacts. Contrast images of social versus non-social prod-
ucts and the interaction between product type and choice during the logo/item event or the price/decision event 
were generated for each participant. The individual contrast images were subjected to two-sample t-tests for 
group comparison.

Voxel-wise multiple regression analyses.  Each participant’s behavioral index of ethical consumption 
(EC) tendency was calculated by subtracting the probability of purchasing non-social (NSi) products from that 
of purchasing social (Si) products at the i-th price level and averaging across all seven price levels, as shown in 
Equation (2) below.

= ∑ −=EC
S NS( )

7 (2)
i i i1
7

Individual contrast maps of social products [purchase - non-purchase] versus non-social products [purchase - 
non-purchase] at the price/decision events were regressed against the interaction variable of the individuals’ EC 
and the categorical variable of group, by computing the following whole-brain second-level multiple regression 
model in Equation (3) below:

β β β ε= + + × +y x x x x( ) (3)N G G B B Int G B

where xB, xG, and yN indicate the individual participants’ EC scores, the group variable (i.e., OBS group = +1, 
CON group = −1), and the neural index (i.e., the individuals’ contrast maps of social products [purchase − 
non-purchase] versus non-social products [purchase − non-purchase]), respectively.

Examining the functional segregation between the MPFC subregions.  We quantitatively meas-
ured the degree to which distinctive clusters encoding value parameters within the MPFC are functionally seg-
regated. We calculated the mean of the ventral clusters (i.e., ACC) encoding the values of the social products and 
did the same for the dorsal clusters (i.e., dmPFC) encoding the values of the non-social products, which were 
obtained from the GLM#2, for a direct comparison between product types within and between the two regions.

Psychophysiological interaction (PPI) analysis.  To identify brain regions showing functional connec-
tivity with the MPFC subregions encoding values obtained from the GLM#1 and GLM#2, we performed psycho-
physiological interaction (PPI) analyses. We generated the PPI variables by extracting time series data from the 
seed regions in each participant and using the interaction contrast (social [purchase − non - purchase] versus 
non-social [purchase − non-purchase]). Two-sample t-tests for group comparison were performed on the result-
ing individual PPI parametric maps.

Statistical thresholds.  Given our a priori anatomical hypothesis, we applied small volume corrections 
(SVC) for multiple comparisons, and restricted the search volumes to three MPFC subregions (spheres with radii 
of 15 mm) of interests (x = 0, y = 56, z = 2; x = 8, y = 54, z = 8; x = 9, y = 38, z = 43) that have been implicated 
in other-regarding decision-making in previous studies38,79. We also added the bilateral striatum (left: x = −8, 
y = 6, z = 6; right: x = 10, y = 6, z = 14; 15-mm radius spheres), the amygdala (left: x = 18, y = 2, z = −16; 15-mm 
radius sphere), and the insula (left: x = 32, y = 20, z = −8; 20-mm radius sphere), which have been reported to be 
responsive to observation by others14, to the search volumes. The coordinates above were also mirrored for search 
volumes in the opposite hemispheres.

To avoid false negatives, we also report all clusters passing the threshold of p < 0.001 (uncorrected) with a 
cluster size of 10 voxels (Table S1). MNI coordinates were transformed to Talairach space using nonlinear trans-
formation80, to find the labels of corresponding brain regions.
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