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A Wearable High-Resolution Facial 
Electromyography for Long Term 
Recordings in Freely Behaving 
Humans
Lilah Inzelberg1,3, David Rand1, Stanislav Steinberg2, Moshe David-Pur1 & Yael Hanein   1,2,3

Human facial expressions are a complex capacity, carrying important psychological and neurological 
information. Facial expressions typically involve the co-activation of several muscles; they vary 
between individuals, between voluntary versus spontaneous expressions, and depend strongly on 
personal interpretation. Accordingly, while high-resolution recording of muscle activation in a non-
laboratory setting offers exciting opportunities, it remains a major challenge. This paper describes a 
wearable and non-invasive method for objective mapping of facial muscle activation and demonstrates 
its application in a natural setting. We focus on muscle activation associated with “enjoyment”, “social” 
and “masked” smiles; three categories with distinct social meanings. We use an innovative, dry, soft 
electrode array designed specifically for facial surface electromyography recording, a customized 
independent component analysis algorithm, and a short training procedure to achieve the desired 
mapping. First, identification of the orbicularis oculi and the levator labii superioris was demonstrated 
from voluntary expressions. Second, the zygomaticus major was identified from voluntary and 
spontaneous Duchenne and non-Duchenne smiles. Finally, using a wireless device in an unmodified 
work environment revealed expressions of diverse emotions in face-to-face interaction. Our high-
resolution and crosstalk-free mapping, along with excellent user-convenience, opens new opportunities 
in gaming, virtual-reality, bio-feedback and objective psychological and neurological assessment.

Human facial expressions fascinate and elude scientists despite decades of extensive investigations1–3. New 
insights continue to emerge, supporting universality on one hand, with astounding complexity on the other 
hand4. Smiling, as a special case, is among the most complex facial expressions, involving no fewer than 7 differ-
ent unilateral muscles5,6. Smiling holds great importance in human development and communication, and it is 
one of the first expressions to appear in developmental stages. Despite their ubiquitous nature, smiles remain an 
elusive and debated topic. Commonly associated with happiness, smiles have very diverse meanings including 
appeasement and greeting. It is widely accepted that smiles of felt joy or enjoyment (true smiles) are distinct from 
non-felt joy or social smiles (false/fake smiles). A social smile is a phony smile reflecting an attempt to appear 
positive7,8. Both smiles apply the contraction of the zygomaticus major muscle (pulls the lip corners up), but the 
activation of the orbicularis oculi muscle (surrounding the eye), is long considered to be a unique hallmark of 
spontaneous enjoyment9. Ekman and Friesen posited that smiles reflecting enjoyment can be identified by special 
markers such as synchronization between the zygomaticus major and the orbicularis oculi, symmetrical activa-
tion of both zygomaticus major muscles, and activation duration9,10. Recent investigations demonstrated that 
Duchanne smile can be produced voluntarily, evidenced by co- activating the orbicularis oculi and zygomaticus 
major11,12. Challengingly, smiles may mask anger, disgust and other negative emotions. One such masked smile 
is a sneer expression, representing contempt or disgust (activation of the ‘Nose Wrinkler’, namely the levator labii 
superioris), concealed by the zygomaticus major activation5,6,13. Masked smiles have received relatively little atten-
tion, yet they may in fact have important diagnostic value14.

The unavailability of a reliable and non-interfering experimental tool to characterize facial muscle activation 
remains an unmet challenge. Most notably, the need to reach single muscle specificity without tampering with 
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the emotional-state of the tested subject has proved difficult to achieve. While visual analysis has gained huge 
acceptance in recent years7,9, and has been enriched by automated facial analysis methods15, it does not capture 
fundamental muscle activation. In fact, many facial movements affect nearby regions and screen the precise mus-
cle source and timing, especially under strong muscle activation conditions. Surface electromyography (sEMG) is 
an important alternative, owing to its ability to directly detect the electrical activity of muscles16.

The main strength of facial sEMG is in its potential ability to provide precise physiological information by 
identifying specific muscle activation, while also negating the need for a constant visual path to the subject’s face. 
Yet, sEMG usefulness depends on the ability to overcome crosstalk and to achieve high resolution and specific-
ity17,18, along with subject comfort. So far, high-resolution facial sEMG relied on gelled electrodes and lengthy 
placement procedures, and was therefore restricted to artificial laboratory settings.

In the present work, we demonstrate a powerful new facial sEMG system and show its unique performances 
in capturing three muscles involved in different smiles. First, novel electrodes were realized to achieve optimized 
user experience. The electrodes are extremely soft and flexible and have a compact electrical interface, thus min-
imizing user discomfort or distraction by the measurement setup. Wireless setup further supports the use of the 
technology in a natural setting. Second, an independent component analysis (ICA) algorithm was adapted to con-
struct muscular activation maps of specific muscles. Third, a simple and short training and validation procedure 
was developed and applied. Finally, an application of the technology in a completely natural work environment 
demonstrated the capacity to identify the activation of the orbicularis oculi, the zygomaticus major, and the levator 
labii superioris muscles in face-to-face interactions.

Results
To identify the orbicularis oculi, the zygomaticus major, and the levator labii superioris muscles (the principle 
muscles in “enjoyment”, “social” and “masked” smiles respectively), we used specifically designed dry electrode 
arrays as was previously described19 (see Methods and Fig. 1a). For convenience, the initial stage of the investi-
gation was performed with a wired system allowing easy triggering and on-line data evaluation. Two electrode 
arrays were connected to two amplifier units, (Intan Technologies amplifier evaluation board, RHD2000) using 
a costume-made printed circuit board (PCB) connector. The arrays were adhered to the left and right cheeks 
of healthy volunteers after a mild skin cleaning and exfoliation. For electrode placement, subjects were asked 
to smile and close their eyes to locate the zygomaticus major (electrodes 2–5) and orbicularis oculi (electrodes 
6–7) muscles area, respectively. The rough direction of the zygomaticus major was identified along the direction 

Figure 1.  Three facial voluntary activations and their corresponding differential sEMG (filtered) data from 5 
electrode pairs (a) Electrode array placement (electrodes 0 to 7). (b) Three facial tasks: (bI) Closing the eyes; 
(bII) Wrinkling the nose; (bIII) Smiling voluntarily. (c) Differential sEMG (voltage versus time) of electrode pairs 
1–3, 1–4, 1–7, 2–6 and 3–7 during three repetitions (shaded areas indicate task onset times) of: (cI) Closing the 
eyes; (cII) Nose-wrinkling; (cIII) Smiling voluntarily (expected to activate the zygomaticus major muscle region). 
Smiling is typified by a very large amplitude activation in almost all electrodes (note the difference in voltage 
scale).
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of the pulled lips during smiling and that of the orbicularis oculi by the contracted region surrounding the eyes 
(Fig. 1a). The same electrode array design was used with all volunteers and did not account for anatomical facial 
differences. A commercial ground plate electrode (Natus) was placed at the back of the neck. The placement pro-
cedure took about a minute and the recording started immediately after placement and continued for an hour. 
Overall, sEMG recording was performed on 18 healthy volunteers (age: 31.58 ± 3.41 years, 13 females). Subjects 
sat in a relaxed upright position and were instructed to imitate photographs of facial expressions presented on a 
computer monitor (from Schumann et al., 201020). The volunteers were allowed to move their head freely during 
the recording and their facial expressions were simultaneously video-recorded for later evaluation.

The volunteers were first instructed to imitate the following three static facial expressions: closing the eyes 
forcefully, wrinkling the nose and smiling voluntarily while holding each expression for 3 s with a 3 s gap of 
calm, neutral expression in between (Fig. 1bI–bIII). Each facial expression was presented 9 times. Photographs 
were shown in a random order. Single-ended data signal-to-noise ratios (SNR) varied between tasks and indi-
viduals. SNR (in all subjects) of wrinkling the nose was 1.57 ± 0.43 (differential SNR = 4.66 ± 2.18); of closing 
the eyes was 1.97 ± 0.65 (differential SNR = 10.86 ± 7.44) and of smiling voluntarily was 4.06 ± 2.59 (differential 
SNR = 7.73 ± 4.64). Baseline noise root mean square (RMS) was 39.82 ± 6.58 μV for the single-ended data and 
13.78 ± 4.90 μV for the differential data, over all subjects and electrodes (Supplementary Fig. S1).

Figure 1 shows differential sEMG data from electrode pairs: 1–3, 1–4, 1–7, 2–6 and 3–7 recorded from the 
same subject. Closing the eyes was recorded in electrodes 6 and 7, at close proximity to the orbicularis oculi mus-
cle region. Nose-wrinkling was picked primarily by electrode 6, close to the levator labii superioris muscle region. 
Smiling voluntarily activated the zygomaticus major muscle region, in agreement with the results reported by 
Schumann et al. (Fig. 1cI–cIII)20 (see also Supplementary Fig. S2). It is important to note the significantly stronger 
amplitude of the smile task compared to the two other tasks.

While the data in Fig. 1 clearly reveals discrimination between different tasks, associating the recorded signals 
with specific muscles is not straightforward. Primarily, crosstalk from different muscles, especially those with 
high activation intensity, such as the zygomaticus major during smiling, is readily apparent. Moreover, since elec-
trode layout was fixed, electrode placement relative to specific muscles varied slightly for different subjects. These 
challenges were overcome using independent component analysis (ICA), a specific blind source separation (BSS) 
algorithm used in sEMG analysis21–23, to extract and validate activation maps.

We applied the fastICA algorithm using the methodology of Hyvärinen et al.24. The algorithm output were 
adapted to facial mapping using the MATLAB fastICA 2.5 package. For each facial task repetition, we applied 
the fastICA algorithm separately. We calculated the mixing and un-mixing matrices from the original 8 sEMG 
single-ended data. This process revealed several independent components (ICs, see Fig. 2a), corresponding to 
sources (depending on task, repetition and individual), and their weight in each electrode. We used electrode 
location, derived from lateral photographs (during neutral facial expression), to interpolate the absolute values of 
the inverse unmixing matrix on the image surface. These projections revealed the IC maps for each facial expres-
sion in each repetition separately (see Fig. 2b).

Figure 2a shows the amplitude of 5 ICs (out of 8) versus time, derived from 8 single-ended data channels of a 
single subject (for a single repetition) performing the closing the eyes task. Two ICs have clear sEMG signals (IC 
#3 and 6), while the others represent noise components. The output of the algorithm yields IC numbers that do 
not have a consistent meaning from one repetition to the next. This challenge was resolved by grouping IC maps 
from consecutive repartitions based on visual similarities and later by angle calculations. The interpolated color 
maps were defined as a JKLMN pentagon, such that the vertex closest to the eye is J. The grouping criteria was 
based on the location of the red area (maximal muscle activation): closest to J or K (corresponding to the two ICs 
of closing the eyes task: ICcEyes

I  and ICcEyes
II ).

The IC maps of the first three consecutive repetitions (out of 9) are shown in Fig. 2b (red denotes the highest 
activation area). As expected, in all repetitions a consistent activation is observed close to the eye (Fig. 2bI). A 
second component is located close to the nose region (Fig. 2bII).

We defined for each IC and for each repetition the angles θi to facilitate a simple comparison between repeti-
tions (Fig. 2c). θi was defined as the angle between →ri  (the vector from the origin, O, to the muscle maximal acti-
vation point), and AO (O the origin is at the corner of the mouth, A at the ear tragus and B at the eye corner). In 
Fig. 2d we plotted θ cEyes

I  and θ cEyes
II  (corresponding to ICcEyes

I  and ICcEyes
II , respectively) for 9 consecutive repetitions 

of the closing the eyes task. The first IC of the closing-the-eyes task, ICcEyes
I , represents a consistent source that can 

be readily associated with the orbicularis oculi muscle at θ = . ° ± . °42 40 0 22cEyes
I  The second component, ICcEyes

II , 
stabilized after the second activation (Fig. 2d) at θ = . ° ± . °52 49 0 19cEyes

II  (excluding the outlying first repetition 
by Grubb’s test).

The robustness of the primary orbicularis oculi component, ICcEyes
I , over consecutive repetitions was consistent 

between different subjects (Fig. 3a-top). The first IC map for the nose-wrinkling task, ICwNose
I , was also consistent 

among subjects (Fig. 3b-top). The consistent activation, ICwNose
I , (over repetitions and individuals) can therefore 

be associated with the levator labii superioris muscle. It is important to note the similarity between ICwNose
I  

(Fig. 3b-top) and ICcEyes
II  (Fig. 3a-bottom and 2bII).

To compare IC locations of different subjects, we calculated the relative angles, θ θ θ=ˆ /i i . θ for each subject is 
defined as the angle between OA and OB (Fig. 2c). Histograms of the relative angles, θ̂i, of ICcEyes

I , ICcEyes
II , and 

ICwNose
I  show consistent activation between subjects and also similarity between ICcEyes

II  and ICwNose
I . The relative 

angles of ICcEyes
I  and ICcEyes

II  were θ = . ± .ˆ 0 94 0 09
cEyes

I  (95% confidence interval of the mean (95%CI) = [0.88–
1.00]) and θ = . ± .ˆ 1 14 0 12

cEyes
II  (95%CI = [1.06–1.21]; Fig. 3a-bottom), respectively. Linear mixed effect regres-

sion predicting θ̂i was performed to test the random Subject effect and fixed IC effect. The effect of IC was highly 
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Figure 2.  ICA of closing the eyes task. (a) IC amplitude versus time (second repetition). ICs #3 and 6 
correspond to sEMG signal while the others (ICs #1, 2, 4, 5, 7 and 8) are noise components (Shaded areas 
indicate task onset time). (b) IC maps during three consecutive repetitions of closing the eyes. Red color 
indicates highest muscle activation. (c) Subject geometrical sector was defined by two principle vectors, namely 
OA and OB; such that O, A and B were located at the subject’s mouth corner, ear tragus and eye corner, 
respectively. θ is defined as the sector angle. (d) IC angles (θ cEyes

I  and θ cEyes
II , corresponding to ICcEyes

I  and ICcEyes
II  

respectively) at 9 consecutive repetitions of the closing the eyes task. The first 3 repetitions are shown in (b).

Figure 3.  ICA comparison between different individuals. (a,b) IC maps for closing the eyes and nose-wrinkling 
tasks. Red color indicates highest muscle activation. Top and bottom rows in (a) and top row in (b) were 
organized according to visual similarities. (c) Histograms of relative activation angles (θ θ θ=ˆ / )i i for the two 
tasks. In all subjects ICcEyes

I  and ICcEyes
II  is associated with the orbicularis oculi and the levator labii suprioris 

muscles, respectively (first and second rows). In the nose-wrinkling task, ICwNose
I  is the levator labii suprioris 

while ICwNose
II  varied among subjects (third and fourth rows, respectively).
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significant (χ = . < . −p e(1) 284 36, 1 12 15), indicating that θ̂
cEyes

I  and θ̂
cEyes

II  are two separable angles correspond-
ing to two different sources. The relative angle, θ̂i, of ICwNose

I  was θ = . ± .ˆ 1 15 0 12
wNose

I  (95%CI = [1.07–1.23]; 
Fig. 3b-top). Another linear mixed effect regression model was performed to predict θ̂i with an additional fixed 
Task effect (closing the eyes/wrinkling the nose) and the interaction of IC and Task. Task did not influence the 
relative angle, θ̂i (χ = . = .p(1) 0 0023, 0 9622 ). Moreover, the IC effect did not benefit from the interaction of IC 
and Task (χ = . = .p(1) 0 0188, 0 89092 ). Thus, we conclude that the relative angles θ̂

cEyes
II  and θ̂

wNose
I  are indistin-

guishable. Therefore, we identify the activation of the levator labii superioris as the second component in the 
closing the eyes task. In summary, for all subjects, the fastICA algorithm revealed at least two components, in the 
closing the eyes task, which we associate with the orbicularis oculi and levator labii superioris muscles (Fig. 3a,c 
top two panels).

Closing the eyes and wrinkling the nose are relatively simple tasks in the sense that they: (1) have a clear pri-
mary muscle activation (the orbicularis oculi and the levator labii superioris, respectively), and (2) activate few ICs 
(2–4 muscles). Both voluntary and spontaneous smiling is associated with a large number of activated muscles 
and inter-subject variability. Voluntary smiles in particular varied dramatically between subjects, showing 3 to 6 
ICs. To identify the primary smiling muscle, zygomaticus major, we used facial sEMG data recorded when volun-
teers watched a funny video (a skateboarding cat25) that evokes spontaneous positive responses. The volunteers 
were instructed to watch the movie while avoiding talking. Each recording begun with a synchronizing trigger 
between the sEMG recordings and the video. Although video stimuli were not validated or standardized, all vol-
unteers presented positive facial emotional expressions ranging from smiling to bursts of laughter at least two 
well-identified time frames. IC of the data of these time episodes (duration of 1–3 s) revealed a clear activation of 
the orbicularis oculi, ICsSmile

I  (primary IC of the spontaneous smile), as identified from the closing the eyes task, 
ICcEyes

I : θ = . ± .ˆ 0 88 0 20
sSmile

I  (Fig. 4a-top). Linear mixed effect regression predicting θ̂i, of a random Subject effect 
and a fixed IC effect did not benefit from the interaction of IC and Task (smiling voluntarily/closing the eyes) 
(χ = . = .p(1) 0 11, 0 742 ), indicating that θ̂

sSmile
I  and θ̂

cEyes
I  are the same. A second robust component, ICsSmile

II , we 
associate with the zygomaticus major muscle (θ = . ± .ˆ 0 43 0 22

sSmile
II ) (Fig. 4a-middle). All subjects had 1 to 4 

additional ICs. We used the relative angle, θ̂i, to follow these principle ICs over 9 repetitions during voluntary 
smiles (Fig. 4b). To verify that θ̂

vSmile
I  and θ̂

vSmile
II  are two separable angles corresponding to two different muscles 

we performed an additional regression model with a random Subject effect and a fixed IC effect. Indeed, the IC 
effect was highly significant (χ = . < . −p e(1) 253 94, 1 12 15). Voluntary smiling yielded muscle activation patterns 
similar to the one exhibited in spontaneous smiles. It is interesting to note that some subjects activated the orbicu-
laris oculi muscle together with the zygomaticus major muscle during voluntary smiling, in agreement with pre-
vious reports11,12. The histogram of the relative angle, θ̂i, of the zygomaticus major muscle over 15 subjects is 
shown in Fig. 4c (θ = . ± .ˆ 0 43 0 21

vSmile
II , 95%CI = [0.32–0.55]). Compared with the orbicularis oculi and levator 

labii superioris histograms (Fig. 3c), the zygomaticus major distribution is scattered (Fig. 4c).
Having established the mapping of the orbicularis oculi, the zygomaticus major, and the levator labii superioris 

muscles, we can now turn to demonstrate the activation of these muscles in a natural setting. Our purpose was 
to show that a wireless version of the recording system could provide results similar to those detailed above. We 
used the reception desk at Tel Aviv University Center for Nanoscience and Nanotechnology (without introducing 

Figure 4.  Spontaneous and voluntary smiling. (a) IC maps. Red color indicates highest muscle activation. 
Spontaneous smiling shows clear orbicularis oculi (ICsSmile

I , top) and zygomaticus major (ICsSmile
II , middle) 

activations along with additional, subject specific (unknown) muscle activations (ICsSmile
III , bottom). (b) Relative 

angles θ θ θ=ˆ( / )i i  in 9 consecutive repetitions of the zygomaticus major and orbicularis oculi muscles in a single 
subject. Additional ICs (unknown) are activated, varying along the task. (c) θ̂i histogram of the zygomaticus 
major muscle for 15 subjects in the smiling voluntarily task.
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any modifications) as an experimental setup. The receptionist agreed to wear an electrode array with a wireless 
amplifier for several hours (7:00 a.m. to 1:00 p.m.) (Fig. 5a). We used a wireless amplifier system based on Intan 
RHD2000 amplifiers and Bluetooth Low Energy (BLE) V4.2 protocol for continuous data transfer to an Android 
smartphone26.

Data were recorded while the receptionist performed her regular duties, including answering the phone, pro-
cessing purchase orders, and interacting with personnel and visitors. A surveillance camera (used routinely) 
recorded the activity (Fig. 5a). At first, the receptionist was asked to perform the three training tasks: closing the 
eyes, wrinkling the nose and smiling voluntarily. Each task was performed 5 times with 3 s neutral expression in 
between. The fastICA algorithm was applied to each repetition separately for the three tasks. Using the method-
ology described above, we identified the primary θ̂i due to consistency in muscle activation over all consecutive 
repetitions of the three training tasks: θ = . ± .ˆ 0 89 0 01

cEyes
I  was identified as the orbicularis oculi; 

θ = . ± .ˆ 1 12 0 01
wNose

I  as the levator labii superioris; and θ = . ± .ˆ 0 81 0 02
vSmile

II  as the zygomaticus major muscle 
(Fig. 5b). Figure 5d shows a 20 s differential sEMG data segment during a conversation with a salesman standing 
next to the reception desk (recorded at 10:22 a.m.) (Fig. 5aI). Segments I-VII in Fig. 5c,d, demonstrate clear facial 
sEMG activations varying from 1 to 3 s. The fastICA algorithm was applied to these segments separately. The 
real-life IC maps reveal complex facial expressions ranging from activation of the levator labii superioris alone 
(Figure cI), a Duchenne-smile (combining the zygomaticus major and orbicularis oculi muscles together) (Figure 
cII), a non-Duchenne smile (activating only the zygomaticus major muscle) (Figure cVII) and finally, a 
complex-masked smile activating the three muscles together (Figure cVIII) (this classification relies on previous 
studies differentiating between smile types5,6,9,13). The participating components were identified by the ICs relative 
angles, θ̂i.

The receptionist was first witnessed genuinely laughing and later smiling. When she was asked about her 
subjective impression of the encountered social interaction, she described it as “persistent” and “nagging”. This 
emotional description is in line with the observed IC maps suggesting the recognition of three different smile 
types5, in particular the “masked” smile. To the best of our knowledge, these are the first sEMG recordings of 
Duchenne (Fig. 5c,dII), non-Duchenne (Fig. 5c,dVII) and a complex-masked (Fig. 5c,dVIII) smiles in a natural 
face-to-face interaction.

Discussion
In this study, we describe a high resolution, non-invasive sEMG method for objective mapping of facial muscle 
activation in both a lab and natural environment. A major drawback of contemporary facial sEMG is the inter-
ference of the experimental setups with the subject’s attention. Once the electrodes are placed on the face (ideally 
in a surreptitious manner), the attention of the subject should not be interrupted by any part of the experimen-
tal setup8. The soft and dry electrode arrays demonstrated here were optimized to achieve such an interface, 

Figure 5.  Wireless facial sEMG recordings in a work environment. (aI) Surveillance camera recording. (aII) 
Reception desk and (aIII) electrode array position. (b) ICA maps. Red color indicates highest muscle activation. 
Wireless training of closing the eyes, wrinkling the nose and smiling voluntarily tasks revealed the three 
principle ICs: the orbicularis oculi, the levator labii superioris and the zygomaticus major muscles. (c,d) Real-
time recordings of a 20 s conversation with a salesman. IC maps were calculated for segments I (1.3 s), II (3 s), 
VII (1.8 s) and VIII (1 s) indicating complex facial expressions involving the muscles mentioned above.
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allowing a free and natural behavior without the need for visual monitoring of the face. A wireless version of 
the system in a real-life environment enabled the identification of specific muscles commonly associated with 
“enjoyment”, “social” and “masked” smiles in an un-staged interaction. We note that the experiment reported 
here did not systematically (N = 1) validate the emotional state of the subject to allow association between facial 
muscle activation and emotion expression. Such examination would require methodic psychological evaluation, 
which is beyond the scope of the current report. Although demonstrated in a single subject and relying on her 
self-reporting, we provide proof of concept of facial sEMG recordings and analysis in a daily life environment 
with an unmodified setting.

A second fundamental challenge we addressed in this work is resolution, and in particular specific mus-
cle (source) identification. Previous sEMG studies relied on exact electrode placement and provided statistical 
data20,27. Here we mapped the sources in a subject-specific manner, insensitive to electrode precise placement and 
anatomical diversity. Using a short training procedure and an ICA adapted methodology, we mapped the orbicu-
laris oculi, the levator labii superioris, and the zygomaticus major muscle regions. Moreover, the ICs relative angles 
enabled the comparison and identification of the corresponding muscles between individuals. Overcoming the 
placement challenge implies that sEMG can be used in an automated manner, which is critical for quick analysis 
and evaluation in real-life applications.

An additional main challenge we addressed in this investigation is the complex muscle activation and inter-
personal diversity patterns exhibited by different individuals. This challenge was resolved by noting that some 
activations are robust (over repetitions and individuals) and can be identified by the relative angle, a simple yet 
useful tool which we demonstrated above.

The ICA algorithm used and validated in this study achieved a clear separation between different facial mus-
cles for the three muscles studied in all subjects and tasks. Yet, it was limited when the sEMG RMS was similar to 
the baseline noise RMS (SNR ≈ 1) or when the number of muscles activated exceeded the electrode number. The 
ICA mapping was projected to the area of the electrode array, and accordingly did not account for muscle activa-
tion beyond the contour of the array. In the present study, interpolation alone was used, however extrapolation 
may be tested in future work to address the challenge of distant muscle recordings. The 8 electrode configuration 
used in this study was sufficient to discriminate between the 3 regions of interest. It is likely that muscle identifica-
tion can be further improved by increasing the electrode number, density, and targeting different areas of interest 
(such as the upper half of the face). A high density array positioned at the vicinity of diverse muscle regions, 
combining specific discriminating tasks, may allow better muscle distinction. Increasing the electrode number is 
straightforward engineering, involving the introduction of a higher density zero-insertion-force (ZIF) connector. 
An increased electrode number will also allow better muscle mapping, avoiding muscle identification at array 
edges, as well as the use of pattern recognition tools to identify IC similarity (beyond the simple relative angle 
comparison demonstrated here). For example, the histogram of the zygomaticus major muscle activation showed 
pronounced scattering compared with the other muscles. Better resolution and IC identification methodology 
may resolve this issue. Moreover, in this investigation, data analysis still relied on manual examination and will 
have to be further automized to render the system truly convenient for use.

In this investigation, we focused on muscles which had strong activation and were consistently activated in 
each facial expression in all subjects. The identification of these muscles is therefore robust. The origin of the 
additional components we observed is unclear and may be a result of poor SNR and a limitation of the fastICA 
algorithm. We cannot exclude that the unknown components resulted from the convergence of the algorithm. 
As the number of muscles activated in each facial expression is a-priori unknown, we did not limit the num-
ber of extracted output components in the fastICA. The convergence of each component was limited by 1000 
steps, where in practice, tens of steps were sufficient. The physiological significance of the unknown components 
remains vague, but could to be investigated by artificially restricting the number of output components.

Primary facial muscles employed in speech include mentalis, depressor anguli oris, masseter, digastricus, zygo-
maticus major, and orbicularis oris28,29. Thus, even though the electrode array was customized a priori for the 
detection of smiles, speech could have been detected in the natural setting. To answer this question, an additional 
side experiment was performed to record motion and speech artifacts with the wireless system (Supplementary 
Fig. S3). Typical single-ended sEMG associated with speech and motion artifacts had low SNR values and there-
fore posed limited interference factor to the experiments. Moreover, as movement artifacts in the tattoo-like 
electrodes are similar for all electrodes, differential (filtered) data was almost movement artifact free. Another 
drawback of the wireless system was the sampling rate, limited by the capability and performance of the hardware, 
to meet the Bluetooth connectivity specifications. Theoretically, this may have influenced the capability of the 
fastICA to identify the sources. However, the main energy of the EMG signal is found between tens of Hz to below 
200 Hz30,31, which is within the frequency spectrum of the recorded signals.

Facial expressions require the coordination of many muscles, activated synergistically, forming diverse actions 
in specific orders, both temporally and spatially32,33. Thus, the distinction of one facial expression versus another 
may involve not only the action of specific muscles, but also dynamic properties and their synergies. In this case, 
IC maps may correspond to a mixture of several muscles activated together rather than a single one. Beyond syn-
ergy of muscles, bilateral activation of the face may also be relevant. In the analysis above we used data from one 
cheek, although for most volunteers data from two cheeks are available. Analyzing the effects of asymmetry can 
further enhance our analysis and will be the scope of future investigation.

Finally, although our study focused on technical aspects, two interesting physiological results emerged. First, 
sEMG data during the closing the eyes task shows consistent activation synergy between the orbicularis oculi and 
the levator labii superioris muscles, which was revealed by identifying the primary ICs in both closing the eyes and 
wrinkling the nose tasks. This finding may be of relevance for research and treatment for pathological conditions 
of face muscles34. Second, in demonstrating the ability to measure “masked” smiles, our results suggest that sEMG 
of smiles may be an important tool to monitor human interaction in social real-life environments. Past sEMG 
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investigations focusing on differentiating between positive and negative emotions typically targeted the activation 
of the zygomaticus major and corrugator supercilii muscles (smiling and frowning, respectively)2,35. However, 
in real face-to-face interactions, masked expressions may be socially more appropriate than the expression of 
outright negative emotions and therefore of greater relevance. In the current investigation, we studied a small 
number of expressions. Future studies involving additional muscles of the face and a wider emotional repertoire 
can contribute to better characterization of facial expression. Furthermore, our methodology can be extended to 
both general and specific body sEMG investigations.

To conclude, the technology outlined here established a novel perspective to sEMG that is user friendly and is 
indifferent to facial feature variance, user-expertise, and accurate electrode localization. As such, this facial sEMG 
system offers superior high-resolution performances with a crosstalk-free identification of specific muscles and 
excellent user convenience. This opens up new opportunities in gaming, virtual-reality, marketing, bio-feedback 
applications and objective psychological and neurological evaluation. Clearly, the methodology we presented 
above can be readily applied to many other muscle systems with numerous applications in diagnostics and 
rehabilitation.

Methods
Experimental setup and preprocessing.  Eighteen healthy volunteers participated in the described facial 
movements’ experiment. Fifteen agreed to be laterally photographed posing a natural expression (used for ICA 
analysis). Each subject performed three types of movements (closing the eyes forcefully, wrinkling the nose and 
voluntary smiles) with 9 repetitions each (subject YK8014 and DS8017 did not perform the nose-wrinkling task 
properly (as evaluated by video recordings), closing the eyes data of subject YK8015 was excluded due to electrical 
artifacts. All subjects were thoroughly informed about the sEMG examination and gave written consent to partic-
ipate in the study. The study was approved by the Tel Aviv University Ethics Committee (24/05).

A customized array of 8 electrodes (5 mm in diameter) was adhered to the subjects’ cheeks. The exact location 
of each electrode (relative to the origin (0,0) at electrode 0) is detailed in Supplementary Fig. S4. The electrode 
array design was attached to 5 different individuals prior to manufacturing the screen printing mask for propor-
tion adjustments. The electrodes were screen printed using a conductive carbon ink as was previously described 
in19. The skin was mildly cleaned and exfoliated (everi, Spesmedica) prior to electrode placement.

sEMG data was recorded with sampling rate of 3000 (for the wired) and 410 (wireless) Samples/s. Data was 
filtered using a notch filter at 50 Hz and a band-pass 4 order Butterworth filter in the frequency range of 5–500 Hz 
(Wired) and 5–204 Hz (Wireless). Baseline noise RMS levels were calculated during the muscle’s relaxation time 
(neutral expression). SNR was calculated by dividing sEMG signal RMS levels (calculated over a period of acti-
vation) by the baseline noise RMS (5000 samples ≈ 1.67 s and 1000 sample ≈ 2.44 s for the wired and wireless 
systems, respectively). In both systems, the amplifier was attached to the subject cheek with a medical tape (3M, 
Transpore) and a plastic hair clip to assure adhesion and increase electrode-skin contact. The wireless system 
specifications were: weight = 7.95 gr; width = 3.5 cm; length = 1.8 cm and depth = 0.9 cm.

FastICA algorithm.  The fastICA ‘pow3’ nonlinearity function was used to calculate the ICs from the sEMG 
data. The fastICA was not limited in number of extracted output components and always resulted in 8 compo-
nents. The convergence of each component was limited by 1000 steps. IC maps were interpolated to the lateral 
photographs resulting in 3264 × 2448 pixels resolution (1 pixel ≈ 0.08 mm). The JKLMN pentagon surface area 
was 869.75 mm2.

Statistical analysis.  Two linear mixed effect regression models were performed to predict the relative angle, 
θ̂i. The first with a random Subject effect and a fixed IC effect. The second with a random Subject effect, fixed IC 
and Task effects and their interaction. Bonferroni correction was used for the multiple comparison. The statistical 
analysis was performed using R software 3.4.0.

Experiments on Human Subjects.  All experiments on human skin were conducted on volunteers in 
accordance with relevant guidelines and regulations under approval from the Institutional Ethics Committee 
Review Board at Tel Aviv University. Informed consent was obtained from all subjects.

Data availability.  The data that support the findings of this study are available upon request from the corre-
sponding author (L.I.). The data are not publicly available due to ethical restrictions.
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