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Identification of molecular 
pathways and candidate genes 
associated with cocks’ comb 
size trait by genome-wide 
transcriptome analysis
Yifan Liu, Yunjie Tu, Ming Zhang, Gaige Ji, Kun Wang, Yanju Shan, Xiaojun Ju, Di Zhang, 
Jingting Shu & Jianmin Zou

The comb of the male is an important secondary sexual characteristic. Although quantitative trait 
loci (QTLs) related to comb size have been identified, molecular mechanisms underlying this trait 
remain mostly unknown. In this study, RNA sequencing (RNA-seq) was employed to compare whole 
transcriptomic differences between two groups of Partridge Shank chickens that are divergent in comb 
sizes. A total of 563 differentially expressed genes (DEGs) were identified, including 277 up-regulated 
and 286 down-regulated DEGs. According to the animal QTL database, eight DEGs including BMP2 
and CHADL matching the reported QTLs were associated with the comb size. Functional annotation 
analysis revealed that DEGs were involved in cell communication and calcium signaling. Protein-protein 
interaction network analysis showed that STK32A, PIK3R1, EDN1, HSPA5, and HSPA8 have an impact 
on comb growth. Moreover, potential alternative splicing events and single nucleotide polymorphisms 
were also identified. Our data provide a source for identifying genes and pathways with functions 
critical to comb size and accelerate studies involving molecular mechanisms of this sexual ornament.

Ornamental traits including the comb, and color of the feather and skin are important in capturing first impres-
sions by customers in making purchase decisions. As the only observable ornamental trait in both live and slaugh-
tered chickens, the comb is the more widely used ornamental indicator for selection1. The comb is a secondary 
sexual characteristic, and its link with the sexual maturity has been well studied2,3. Also, the comb influences 
mating decisions4, social ranking5, body temperature regulation6 and is associated with reproductive performance 
and bone mass7.

Comb size is a complex trait affected by many factors, including hormone concentration8,9 and light sched-
ule10,11. Capons with significantly reduced testosterone levels have small combs12. High heritability of comb size 
(0.76) implies that this trait is not only affected by management, but is also influenced by an underlying genetic 
factor13. Discovering biomarkers including candidate genes and quantitative trait loci (QTLs) for marker-assisted 
selection (MAS) would accelerate genetic improvement of this trait.

To date, 530 chicken QTLs associated with comb size have been documented in the animal QTL database14. 
In the fine mapping work of comb QTLs conducted by Johnsson et al., candidate genes HAO1 and BMP2 had a 
potential role in comb growth and bone mass15. Several candidate genes, such as VPS36, AR, and WNT11B, have 
been identified as associated with comb traits16. However, knowledge of the genetic factors underlying comb size 
variations remains limited.

RNA-sequencing (RNA-seq) has been widely used in discovering transcriptomic differences in a variety of tis-
sues related to economic traits of chickens17–19. To identify candidate genes and key pathways that influence comb 
growth in chickens, we performed a comparative analysis on the whole transcriptomes from the comb tissues of 
Partridge Shank roosters with distinct comb sizes using the RNA-seq technology. Our findings provided further 
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understanding of the underlying mechanisms implicated in comb growth and would contribute to more efficient 
chickens breeding.

Results
Summary of RNA-sequencing data.  In this study, six cDNA libraries were constructed using total comb 
RNA from three roosters with relatively bigger comb sizes (BC) and three with smaller comb sizes (SC). After 
quality control of the raw reads, high-quality sequence data of 43.2 gigabases (Gb) were obtained. When the data 
were mapped to the reference genome (Galgal 5.0), the ratio of the mapped reads was greater than 85.6% for each 
library. Detailed information on data quality and mapping statistics are presented in Supplementary Table S1.

Identification of novel transcripts and refinement of gene structures.  In total, 3,169 novel tran-
scripts were predicted for six cDNA sequencing libraries using the Cufflinks software20 (Supplementary Table S2). 
After the protein coding potential of novel transcripts was predicted by the CPC method21, we found that 1,204 
were protein-coding and 1,965 were non-coding. To optimize the gene annotation information in the current 
database, the 5′ and 3′ boundaries of known genes were refined by aligning known transcripts with the recon-
structed transcripts obtained from the sequencing data. A total of 1,163 genes were refined in this manner, includ-
ing 1,050 at the 5′ region and 113 at the 3′ region. The detailed annotation information regarding the structurally 
refined genes is provided in Supplementary Table S3.

Alternative splicing analysis and SNP identification.  From the same gene, alternative splicing (AS) 
could generate multiple transcripts, some of which might perform contrasting functions. We used the ASprofile 
software22 to analyze AS events in each library. Among all the 12 detected types of AS events, alternative first 
exons (TSS) and last exons (TTS) were the most common, accounting for more than 44% and 47%, respectively 
(Fig. 1 and Supplementary Table S4).

A total of 124,315 putative SNPs were found in all six libraries using the GATK software23 (Supplementary 
Table S5). Among them, 77.28% were located in the non-coding region, while 22.72% were in the coding region. 
As shown in Fig. 2, the frequencies of G/A, C/T, T/C, and A/G were by far the most.

Figure 1.  Distribution of 12 types of alternative splicing (AS) events in six samples. The six bars of different 
colors indicate the numbers of AS events identified in the big comb size (BC) and small comb size (SC) libraries.

Figure 2.  Distribution of SNPs identified in six samples. The lengths of the bars indicate the numbers of SNPs 
identified in the big comb size (BC) and small comb size (SC) libraries.
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Gene expression analysis and identification of differentially expressed genes.  Expression levels 
of all genes were calculated using the HTSeq software24 and described by the reads per kilobase per million reads 
(RPKM). A total of 19,087 genes were detected in the six cDNA libraries, and the number of expressed genes was 
similar in each library (14,689~15,112). Most of the identified genes (11,381, 59.6%) had the expression levels of 
RPKM 1~100, whereas only a few (119, 0.6%) had expression levels of RPKM greater than 500.

The edgeR R package25 was used to screen for differentially expressed genes (DEGs) between BC and SC chick-
ens. By taking a P-value < 0.05 and |foldchange| > 1.5 as the cutoff, a total of 563 DEGs were identified (Fig. 3 and 
Supplementary Table S6). Among these DEGs, 286 genes were down-regulated and 277 were up-regulated in the 
BC group. Moreover, eight DEGs identified were also located in the reported comb size QTL regions, which were 
BMP2, CHADL, EDA2R, EMP1, TLR5, FBLN1, PLP1, and HAL.

Quantitative real-time PCR validation.  To validate the RNA-seq results, 10 DEGs including CYP2W1, 
CYP1A4, CHADL, EDA2R, TPPP3, HSD17B2, BMP2, VIPR1, TLR5, and HAL were randomly selected for quan-
titative real-time PCR (qPCR). As shown in Fig. 4A, all selected DEGs showed concordant expression patterns 
between the RNA-seq and qPCR results. There was a high positive correlation (R2 = 0.9024) between the compu-
tational and experimental fold changes (Fig. 4B).

Figure 3.  Hierarchical clustering of the differentially expressed genes between the big comb size (BC) and small 
comb size (SC) groups. Each column represents a sample, and each row represents a gene. The red and blue 
gradients indicate an increase and a decrease in gene expression abundance, respectively.

Figure 4.  Illustrating of the qPCR confirmation results for the 10 selected differentially expressed genes. (A) 
The X-axis represents the selected 10 genes and the Y-axis represents the log2(foldchange) values derived from 
RNA-seq and qPCR. (B) Regression analysis of the log2(foldchange) values between RNA-seq and qPCR.
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Function enrichment of differentially expressed genes.  To further elucidate the functional roles 
of DEGs on comb size, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis for the DEGs using DAVID online tool26. As shown in Fig. 5, there were 
respectively 25, 9, and 4 GO terms significantly enriched (P-value < 0.05) in the biological process, cellular com-
ponents and molecular function. Of these enriched GO terms, four terms related to calcium ions, and multiple 
terms associated with the development, cell communication, and potassium channel activity were identified.

The KEGG pathway analysis revealed 10 overrepresented pathways (P-value < 0.05), including neuroactive 
ligand-receptor interaction, cytokine-cytokine receptor interaction, Jak-STAT signaling, and calcium signal-
ing pathway (Fig. 6). Detailed information about the enriched GO terms and KEGG pathways is provided in 
Supplementary Table S7.

Protein-protein interaction analysis.  We used STRING database27 to predict protein-protein interac-
tions of the detected DEGs. As shown in Fig. 7, STK32A and PIK3R1 were associated with the most genes (21 
and 18, respectively) that they were in the center of the interaction network. Some genes with significant varia-
tion were also identified, such as up-regulated genes EDN1, HSPA5, and HSPA8 and down-regulated ones EGF, 
WNT2B, and BMP2. These genes were located in critical positions of the interaction network.

Discussion
Chicken comb size has received increasing attention over the past decades, particularly in the chicken-breeding 
field. Although several QTLs associated with comb size have been identified, exploration at the transcriptional 
level is required for further refining. The Partridge Shank chicken is a Chinese local breed that mature at a young 
age28. In this study, the comb sizes of 9-week-old roosters were vastly different since the largest bird had a comb 
size over 4 times greater than the smallest one, even though all were reared in similar conditions. To elucidate the 
genetic architecture underlying comb growth, we conducted transcriptome profiling based on six Partridge Shank 
chickens with extraordinary comb sizes.

In this work, the newly assembled chicken genome (Galgal 5.0) was used for read mapping. The percentages of 
the mapped reads obtained per individual chicken (85.63~87.43%) were higher than those in the previous comb 
transcriptome study29 using Galgal 4.0 (76~78%), indicating that our results were more effective.

The rapid development of high-throughput sequencing technologies helps us understand the expression pro-
filing of the whole genome at the transcriptional level. Compared to microarray methods, RNA-seq could provide 

Figure 5.  GO analysis of the differentially expressed genes between the big comb size (BC) and small comb size 
(SC) groups. Significantly enriched GO terms of three types are used (P-value ≤ 0.05). The lengths of the bars 
indicate the corresponding numbers of genes for each GO term.
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more valuable information such as AS events and SNPs. In the present study, we identified many AS events and 
potential SNPs for chicken comb tissues from the SC and BC libraries. AS events and SNPs that occurred in most 
tissues have significant impacts on economic traits in domestic animals30–32. These facts implied that the AS 

Figure 6.  KEGG pathway analysis of the differentially expressed genes (DEGs) between the big comb size (BC) 
and small comb size (SC) groups. Rich factor = Amount of DEGs enriched in the pathway/Amount of all genes 
in the background gene set. The size and color of each bubble represent the amount of DEGs enriched in the 
pathway and enrichment significance, respectively.

Figure 7.  Protein-protein interaction network for the differentially expressed genes (DEGs). Node represents protein, 
edge represents interaction between proteins. The size of a node is proportional to degree of this node (degree of 
the node defined as the amount of proteins that interact with this node), and the color of the node represents the 
expression regulation type of DEGs (Red means up-regulation and blue means down-regulation in the BC group).
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events and SNPs identified in the current study might play an important role in comb development, though they 
need further investigation.

Few studies have investigated how the comb transcriptome influences comb growth in chickens. In the cur-
rent research, a total of 563 DEGs and several significantly enriched pathways were identified, indicating their 
roles in comb size regulation. The RNA-seq results were validated by qPCR analysis, which showed a high cor-
rection rate with earlier methods. Compared to the RNA-seq results, DEGs selected for qPCR showed lower 
changes inexpression level, which may be explained by the different sensitivities of each method and size of 
test groups. Compared with the previously reported QTLs associated with comb traits, eight DEGs were high-
lighted, including BMP2, CHADL, EDA2R, EMP1, TLR5, FBLN1, PLP1, and HAL. Bone morphogenetic protein 
2 (BMP2) is known for its roles in bone physiology and deposition33,34. Cartilage is a precursor to all bone forma-
tion. Hyaluronan is the main content of a chicken comb35, which is significant in cartilage metabolism36. In the 
present study, the BMP2 expression level was down-regulated in comb tissues from the BC chickens, indicating its 
role in delaying comb growth by hindering cartilage metabolism. Previous works also suggest that comb growth 
is closely related to bone deposition, and the identified BMP2 influences both comb growth and bone deposition 
as a candidate gene15. Another gene chondroadherin-like (CHADL) is expressed in cartilage and can modulate 
chondrocyte differentiation37. The expression level of CHADL was higher in the BC than the SC group, suggesting 
that this gene has a positive role in comb growth by mitigating cartilage metabolism. These results were confirmed 
by qPCR. Although the actual mechanism of the cartilage’s role in comb growth still remains unclear, BMP2 and 
CHADL are suspected to be candidate genes for comb growth.

The four calcium-related GO terms in our study (calcium-mediated signaling, cellular response to calcium 
ion, positive regulation of cytosolic calcium ion concentration, and calcium ion binding) and the calcium signal-
ing pathway were significantly enriched. They imply a role of calcium signaling in comb growth because calcium 
is an important material for bone deposition. In addition, the DEGs were found to enrich the GO terms including 
cell communication, cell migration, cell-cell signaling as well as the KEGG pathways of cytokine-cytokine recep-
tor interactions, demonstrating that cytokine-mediated cellular interactions might be involved in the regulation 
of comb size.

By constructing a protein-protein interaction network for DEGs, we found a list of key genes: STK32A, 
PI3KR1, EDN1, HSPA5, and HSPA8. As the up- and down-regulated genes interacting with most genes of the net-
work, serine/threonine kinase 32 A (STK32A) and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) had 
a direct relationship according to STRING database. STK32A encodes a serine/threonine kinase, which involved 
numerous biological processes. In mice, the misexpression of STK32A is identified as a candidate fertility factor38. 
A previous study shows that a larger comb size could be used as an indicator of fecundity7, and up-regulation 
of STK32A in the BC group might promote comb growth. PIK3R1 is associated with insulin resistance39. In our 
study, seven genes were enriched in the insulin resistance signaling pathway. It would be possible that PIK3R1 
regulates comb growth by interacting with the genes involved in the signaling pathway. Endothelin 1 (EDN1) is 
a potent vasoconstrictor mainly produced by endothelial cells, and it plays a role in restricting cartilage differ-
entiation in Zebrafish40, suggesting that this gene has a similar function as CHADL in comb growth. Heat shock 
protein family A member 5 (HSPA5) and heat shock protein family A member 8 (HSPA8) encode two different 
proteins belonging to the heat shock protein 70 (HSPA) family, which is known for its role in responses to heat 
stress41. Considering the comb involvement in heat regulation, these genes HSPA5 and HSPA8 might participated 
in comb growth, but their involvement details are not clear.

The present study provides global transcriptome analysis in the comb tissues of chickens differing extreme 
comb size. The results suggested that the identified DEGs were related to the phenotypic differences of these 
two groups. The function enrichment analysis revealed that the DEGs were involved in cell communication and 
calcium signaling, and shed light on their potential regulation roles in chicken comb growth. Moreover, BMP2, 
CHADL, STK32A, PIK3R1, EDN1, HSPA5, and HSPA8 might have great impacts on comb growth.

Materials and Methods
Ethics statement.  All animal experiments were approved by the Animal Care and Use Committee at the 
Institute of Poultry Science, Chinese Academy of Agricultural Science (Approval ID: S20160605) and con-
ducted at the institute. All of the experiments followed relevant guidelines and regulations set by the Ministry of 
Agriculture of the People’s Republic of China.

Sampling.  All roosters used in the present study were collected from a Partridge Shank chicken breeding line 
in Jiangsu Lihua Animal Husbandry Company (Jiangsu, China). All chickens lived under the same conditions 
and were raised using a standardized feeding method with free access to water. To collect roosters with different 
comb sizes for sequencing, the comb areas and heights of 100 nine-week-old male chickens were measured using 
a computer-assisted method. Based on the measurement results, three birds with the biggest comb sizes and three 
with the smallest phenotypes were selected for RNA-seq. The thresholds for the BC group were the comb area 
of not less than 2,450 mm2 and comb height of not less than 39 mm, while those for the SC group were the comb 
area of not greater than 680 mm2 and comb height of not greater than 21 mm. Details about the selected roosters 
are shown in Table 1.

Comb tissues were harvested from the selected chickens after sacrificed by euthanasia, temporarily frozen in 
liquid nitrogen and stored at -80 °C until further manipulation.

Total RNA extraction.  Total comb RNA was extracted from each comb sample using TRIzol reagent 
(Invitrogen, USA) according to the manufacturer’s instructions. RNA concentration and integrity were estimated 
by NanoDrop 2000 (Thermo, USA) and Agilent 2100 Bioanalyzer (Agilent Technologies, USA), respectively.



www.nature.com/scientificreports/

7SCIentIfIC Reports |  (2018) 8:2015  | DOI:10.1038/s41598-018-20373-6

Library preparation for sequencing.  TruSeq Stranded Total RNA with Ribo-Zero Gold kit (Illumina, 
USA) was used to establish strand-specific RNA-seq libraries following the manufacturer’s recommendations. In 
brief, Ribosomal RNA was removed from 3 μg RNA. After RNA fragmentation, double-stranded cDNA was syn-
thesized by replacing dTTPs with dUTPs in reaction buffer used for second-strand cDNA synthesis. The resulting 
double-stranded cDNA was ligated to adaptors after being end-repaired and A-tailed. Single-stranded cDNA was 
then obtained using USER Enzyme, and PCR amplification was performed to enrich the cDNA libraries. Finally, 
PCR products were purified and the library quality was assessed on an Agilent 2100 Bioanalyzer system.

Sequencing was performed on an Illumina HiSeq. 2500 instrument to generate 150 bp paired-end reads using 
TruSeq PE Cluster Kit v3-cBot-HS (Illumina, USA).

Sequencing data analysis.  Quality control and read statistics were determined by FastQC (v0.11.2)42. 
After reads containing adapter or ploy-N and other low-quality reads were discarded, clean reads were aligned 
to the reference chicken genome (Galgal 5.0) using Tophat2 (v2.0.12)20. Transcripts were reconstructed and then 
compared with known transcripts to predict novel transcripts using Cufflinks software (v2.2.1)20; novel tran-
scripts were performed with coding analysis using CPC software (v0.9)21. Gene structures were refined by com-
paring known transcripts with the reconstructed transcripts from the six transcriptome sequencing datasets using 
BLAST software.

Identification of alternative splicing events and SNPs.  AS events were detected using ASprofile soft-
ware22 and were classified into 12 categories: alternative 5′ first exon (transcription start site, TSS), alternative 3′ 
last exon (transcription terminal site, TTS), skipped exon (SKIP), approximate SKIP (XSKIP), multi-exon SKIP 
(MSKIP), approximate MSKIP (XMSKIP), intron retention (IR), approximate IR (XIR), multi-IR (MIR), approx-
imate MIR (XMIR), alternative exon end (AE), and approximate AE (XAE). SNP calling was performed using a 
genome analysis toolkit GATK2 (v3.2)23 based on the Unified Genotyper algorithm.

Identification of differentially expressed genes.  The expression level of each gene was calculated 
using HTSeq software (v0.6.1)24 and normalized with the RPKM method. DEGs between the BC and SC groups 
were analyzed using the edgeR R package25. P-value < 0.05 and |fold-change| > 1.5 were considered as significant 
thresholds.

qPCR validation.  To increase the reliability of this test, 30 comb samples were collected from the roosters 
aged 9 weeks in the same group including 15 big and 15 small comb size individuals, which were tested by qPCR. 
The details about the samples were provided in Supplementary Table S8. qPCR was performed on an ABI 7500 
Real-Time PCR system (Applied Biosystems, USA) using KAPA SYBR Fast universal qPCR kit (Kapa Biosystems, 
USA). Specific primers of the genes shown in Supplementary Table S9 were designed using Primer Premier 5 and 
confirmed by Oligo 6.0. Using β-actin as a reference, relative expression levels of the genes were quantified using 
2(−ΔΔCt) methods43.

Functional annotation and QTL location analysis of differentially expressed genes.  GO and 
KEGG pathway enrichment analysis of the DEGs was performed using DAVID online tool (https://david.ncifcrf.
gov/, version 6.8)26. We performed QTL mapping for the DEGs by comparing the DEGs with chicken QTL chro-
mosome positions using BEDTools44.

Protein-protein interaction network analysis.  Based on STRING database (http://string-db.org/, 
version 10.5)44, we analyzed the protein-protein interaction network for DEGs and further investigated the 
interaction between DEGs in the comb tissues of the BC and SC chickens. Cystoscope was used to visualize the 
protein-protein interaction network to find out key genes.

Data availability.  Raw and processed data in this study were deposited in the NCBI Gene Expression 
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) with the following accession number: GSE107815.
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