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High-resolution seismic event 
detection using local similarity for 
Large-N arrays
Zefeng Li   1,2, Zhigang Peng1, Dan Hollis3, Lijun Zhu4 & James McClellan4

We develop a novel method for seismic event detection that can be applied to large-N arrays. The 
method is based on a new detection function named local similarity, which quantifies the signal 
consistency between the examined station and its nearest neighbors. Using the 5200-station Long 
Beach nodal array, we demonstrate that stacked local similarity functions can be used to detect seismic 
events with amplitudes near or below noise levels. We apply the method to one-week continuous 
data around the 03/11/2011 Mw 9.1 Tohoku-Oki earthquake, to detect local and distant events. In 
the 5–10 Hz range, we detect various events of natural and anthropogenic origins, but without a clear 
increase in local seismicity during and following the surface waves of the Tohoku-Oki mainshock. In 
the 1-Hz low-pass-filtered range, we detect numerous events, likely representing aftershocks from the 
Tohoku-Oki mainshock region. This high-resolution detection technique can be applied to both ultra-
dense and regular array recordings for monitoring ultra-weak micro-seismicity and detecting unusual 
seismic events in noisy environments.

Seismic arrays have provided important data for studying the Earth’s structures and earthquake processes since 
the 1960s1. Based on recordings from closely spaced uniform seismometers, various array methods can effectively 
enhance signal-to-noise ratios and significantly lower the detection threshold. Dense regional networks such as 
the Japanese Hi-net array and the Southern California Seismic Network, as well as the recent US-Array, have been 
increasingly used to monitor regional seismicity in real time and provide high-quality earthquake catalogs. Dense 
arrays are also useful for detecting new types of seismic events such as deep tectonic tremor2. With advances in 
instrumentation technology, the density of seismometers in a given array has increased dramatically in the past 
decades. In recent years, ultra-dense arrays with hundreds to thousands of sensors and tens- to hundred-meter 
interstation spacing have been deployed in several regions. One of the notable examples is the Long Beach 3D 
array, which contains 5200 sensors with 100 m spacing covering the urban area of the City of Long Beach3. Such 
arrays, sometimes called large-N arrays, provide unprecedented detection capability for small magnitude earth-
quakes and other unconventional sources4–6.

Apart from instrumentation technology, data processing methods also influence the resolution of seismic 
event detection. Traditional earthquake detection workflow includes phase picking (identifying impulsive arriv-
als of seismic phases) and phase association (grouping these phases into an individual event)7. Phase picking is 
commonly done by an energy detector such as the short-term average over long-term average (STA/LTA) ratio8,9. 
As computer power increases, many sophisticated detection algorithms have been proposed. Most of these algo-
rithms continuously search over possible source locations by shifting and stacking waveforms or their variants 
(e.g., envelope, STA/LTA, normalized waveform). Outstanding examples include the source scanning algorithm10, 
coalescence microseismic mapping11, and backprojection12,13.

Different from this category, template matching, or matched filtering, takes advantage of predetermined events 
and cross-correlates them with continuous recordings to detect events with high waveform similarities14. This is 
based on the fact that nearby seismic events should have similar source mechanisms and ray paths, and hence 
similar waveforms. Template matching techniques have been widely applied to detect emergent tremor and small 
earthquakes, and usually result in new events at a factor of 5–10 times the original catalog15–17. However, template 
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matching requires predetermined templates as inputs, which are not always available. In addition, it tends to 
detect events that are similar to templates, which may bias the detection results. An auto-detection technique 
could be used to build template events from scratch18. However, with O(N2) type scaling, this is computationally 
very intensive and hence cannot be applied to longer time series19. Other approaches, such as fingerprinting19 or 
earthquake search-engines20 have also been proposed for fast and robust detection of seismic events.

The emergence of large-N arrays (i.e., a large number of sensors and short station spacing) provides unprec-
edented opportunities for high-resolution structural imaging and microearthquake detection. Meanwhile, it 
also poses new challenges for processing methods. Recent studies attempted to use advanced signal processing 
techniques, such as subarray analysis and graph clustering, to detect and locate sources within dense large-N 
arrays21,22. Here we introduce a new method that takes advantage of the primary features of emerging large-N 
arrays. The method involves a new metric termed local similarity. It evaluates the similarity on a given station 
with respect to its nearest neighbors. This is different from conventional metrics that consider each station indi-
vidually, or standard array processing methods that consider all stations together with some general assumptions1 
(e.g., plane waves or spherical wavefront with predicted arrivals).

We apply this method to one-week continuous data between 03/06/2011 and 03/12/2011 recorded by the 
5200-station Long Beach array3. The Long Beach array was deployed from January to June 2011 as part of a petro-
leum exploration survey, which contained 5200 geophones with a 10-Hz corner frequency (Fig. 1). This array 
covers 7 × 10 km in the city of Long Beach, with a nominal interstation distance of 100 m. Several segments of the 
Newport-Inglewood fault pass through this area. The 1933 Mw 6.4 Long Beach earthquake occurred about 10 km 
to the southeast of the array. Because the area is densely populated and the sensors were simply buried very close 
to the surface, the recordings are heavily contaminated by large-amplitude anthropogenic noise, which poses a 
challenge for seismic detection4.

We choose the one-week time period in March mainly because of the occurrence of the Mw 9.1 Tohoku-Oki 
earthquake on 03/11/2011. This event has triggered numerous microearthquakes and deep tectonic tremor 
around the world23, including the San Jacinto Fault in southern California24. Systematical examination of remote 
triggering potential in California found that in addition to geothermal/volcanic regions, the Los Angeles basin 
has an unusually high triggering susceptibility compared to surrounding regions25. Hence, it is reasonable to 
assume that the Tohoku-Oki mainshock could have triggered some microseismicity in this region, although these 
events may not be detected with conventional methods/arrays.

In the following sections, we first show that detecting events below the noise level is feasible via direct 
stacking of local similarity. Then we perform a systematic comparison with template matching and STA/LTA. 
Finally, we apply it to one week of continuous data of the Long Beach array to detect local and distant events, 
and examine whether the Tohoku-Oki mainshock may have triggered any significant increase of microseis-
micity in this region.

Methods
For a pair of two spatially close stations, the ray paths for a common source are very similar. Hence, their wave-
forms are expected to be nearly identical, while random noise sources at these sites remain sufficiently different. 
Hence in principle, we can distinguish a signal from noise by measuring the waveform similarity on neighboring 
stations, which is termed local similarity (Fig. 2a and b). Note that here we do not require waveform similar-
ity across the entire network1,26. Mathematically, local similarity at a master station is defined as the average 
of sliding-window normalized cross-correlations (CCs) with its nearest neighbors. Each sliding time window 

Figure 1.  Map of study region, the Long Beach nodal array and local seismicity. (a) Blue dots are the 
5200-sensor nodal array. A red triangle mark the broadband station STS belonging to Southern California 
Seismic Network (SCSN). Black curves denote the surface trace of mapped faults. Gray solid circles are 
seismicity listed in the SCSN catalog between January and June 2011, whose sizes are proportional to magnitude. 
Red stars mark three selected cataloged events used for tests. The inset map shows locations of the M 9.1 
Tohoku-Oki earthquake and its ray path to Long Beach. (b) A zoom-in plot of the Long Beach array and the STS 
station. Figure was made using the Generic Mapping Tools version 4.2.133 (http://gmt.soest.hawaii.edu/).

http://gmt.soest.hawaii.edu/
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is allowed to shift within a time lag relative to its neighboring recordings, in order to account for arrival time 
differences between neighboring stations. The peak cross-correlation function between a master station and a 
neighboring station is defined as
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where ui is the recording of the ith master station, and uij is the recording of the jth neighbor of the ith master sta-
tion, δ is the sampling interval, (2M + 1)δ is the sliding window length, and Lδ is the maximal time lag, which is 
determined by the upper limit of wave slowness and distance from the jth neighboring station to the master station 
i. In this study, we set the sliding window length as 1 s and 3 s for the high-frequency (5–10 Hz) and long-period 
(<1 Hz) signal, respectively. The peak correlation value within the time range is taken as the value for that sliding 
window. The resulting correlations between the master and its neighboring stations are averaged into a single 
value, termed the local similarity Si (Equation 2):
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where K is the number of nearest neighbors, which is set by the user. Typically, we use four neighbors for a 2D 
array and two neighbors for a 1D array (Fig. 2a). Eight neighbors are also used in 2D arrays22, but adding neigh-
bors that are further away may violate the waveform similarity assumption in our method.

The resulting average CC trace represents the signal resemblance of the master station with respect to its 
neighbors in continuous time. After obtaining local similarity traces for all the stations, we directly stack them 
without any shifts to obtain a representative network trace (Fig. 2c). Direct stacking enables us to perform a 
general-purpose detection without assuming any wave types and velocity models in the study region.

Event detection in template matching is done by applying a common threshold to the network-stacked 
cross-correlation trace, which is generally defined as the median plus several times the median absolute deviation 
(MAD). Such thresholding is not suitable for local similarity because local similarity tends to have a fluctuating 
trend due to temporal drift in the similarity of background noise. To remove this long period trend, we first per-
form a weighted least-squares fit of the trace with a tenth-order polynomial, and then subtract the fitting curve 
from the trace. The tenth-order polynomial applied to the hourly data primarily fits components with periods 
longer than 18 mins (Figure S4). Tenth-order is an empirical choice and small changes in the order have very little 
influence on the results. After that, we apply a 1-minute sliding time window to select the outstanding peaks. For 
every window, the threshold is defined by the MAD and median calculated for that window. Statistically, a higher 
significance level suggests more stable detection and potentially fewer false alarms. We use the median plus ten 
times the MAD as the threshold for event detection in this study (Fig. 2d).

Figure 2.  Flowchart and schematic diagrams of local similarity detection. (a) For each master station, find its 
nearest neighbors for local similarity computation. (b) Convert the seismic waveforms on the master station 
into local similarity by cross-correlation and averaging of those of its neighbors. (c) Stack local similarity of all 
stations. (d) Apply sliding-window threshold to select positive detections.
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Results
Comparisons with STA/LTA, envelope function and template matching.  We use three local 
events listed in the SCSN catalog (SCEC ID: 14995244, 10936949 and 14981076) to evaluate the performance 
of local similarity. We select these events as they are 20–50 km from the network (Fig. 1) and have magnitude 
less than 2, so the waveforms recorded by the Long Beach array have very weak amplitudes. Figure 3a–c shows 
that the recordings are heavily contaminated by incoherent noise. We then examine how these events are man-
ifested by local similarity, STA/LTA and envelope functions, respectively. For each method, we first convert the 
waveforms of individual stations into a metric function and stack them into a network representative trace. 
For STA/LTA, we use 10 s for LTA and 1 s for STA. On the stacked trace, we measure the peak significance of 
the target event relative to the background level by evaluating (peak-median)/MAD, which is the number of 
MADs above the median.

Figure 3 shows that for the three target events, the results from STA/LTA are comparable to those from the 
envelope function. They both have reasonable peaks for events 14995244, 10936949, but do not show any dis-
cernable patterns for event 14981076. In comparison, local similarity shows significant peaks for all three events 

Figure 3.  Performance tests of local similarity, short-term-average/long-term-average (STA/LTA), and envelope 
for three catalogued weak events. Traces along Y-axis are sorted by their epicentral distances. (a–c): raw 
waveforms of the events plotted in color for the Long Beach array. The upper curves in the box are raw recordings 
at station STS. Magnitude and distance from the array center are listed beside the event IDs. The waveforms are 
plotted according to their normalized amplitudes relative to the median. (d–g): local similarity corresponding 
the waveforms in (a–c). The black curves at the top are the stacked local similarity of the whole network. The 
significance levels of the peaks are marked. (g–i) and (j–l): for STA/LTA and envelope, respectively.
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and has peak significance twice or more than that of STA/LTA and envelope. Thus local similarity produces more 
reliable detection than the other two metrics.

To further quantify the performance, we carry out synthetic tests with different signal-to-noise ratios (SNRs) 
for local similarity, STA/LTA, and template matching. Here we remove the envelope due to its comparable perfor-
mance with STA/LTA and include template matching in the comparison. We note that because template matching 
uses prior information, i.e., known target waveforms, it should be treated as an optimal benchmark for the other 
two methods.

We generate synthetic data according to the following steps27: (1) select a local event with good SNR (ID 
14930284, M 2.24), and multiply the waveforms by a scaling factor; (2) add the waveform on top of a randomly 
selected continuous noise at each station; (3) apply local similarity, STA/LTA and template matching method to 
the data obtained in step (2), resulting in a stacked trace; (4) measure the peak significance on the stacked trace 
at the time when the event is added. This process is outlined in Fig. 4a. Note that the scaling factor is changed for 
every test to generate data with different SNRs. When the scaling factor is 1, the SNR distribution of 4053 stations 
has a median SNR at 11, with a dominant range from 1 to 100 (Fig. 4b). Different scaling factors just shift the dis-
tributions of SNR. Hence, the peak significance for each method can be characterized as a function of the median 
SNR of the array (Fig. 4c). As expected, template matching outperforms the other two methods. In this particular 
case, template matching has a detection capability down to SNR~10-5 if the threshold of positive detection is set 
at 10 MAD above the median. Local similarity, without the requirement of any prior knowledge, can detect events 
down to SNR~0.01. It ranks the second and generally has a detection significance level more than twice that of 
STA/LTA (except at very low SNRs), which is consistent with the tests using three catalog events (Fig. 3). These 
results show that our local similarity method can detect events far below noise level without prior information 
or assumption, which is different from traditional array-based methods or recent template-matching techniques. 
Therefore, we name it as “high-resolution detection”.

Figure 4.  Synthetic test of detection performance of local similarity, template matching, and STA/LTA as a 
function of the median signal-to-noise ratio (SNR) of the array. (a) Flowchart of the synthetic test. Note event 
waveform is scaled by different factors to create recordings with different array median SNRs. (b) Histogram 
of SNR for 4000 stations when the scaling factor is 1. (c) Significance level versus SNR from local similarity, 
template matching, and STA/LTA. The vertical and horizontal gray lines mark SNR = 1, and detection 
threshold = 10 MAD, respectively.
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Performance dependence on the number of sensors, sensor spacing, and frequencies.  We 
perform additional tests to examine the method’s performance depending on array settings and waveform fre-
quencies. To evaluate the dependence on the number of array elements, we change the number of array sensors 
by removing sensors at the peripherals and measure the significance level of the events on the summed similarity 
trace. We perform the test on three example events shown in Fig. 3 and obtain similar trends. Figure 5a shows 
that, with an increase in the number of sensors, the significance of the detection also increases, as expected. We 
also fit the results with sqrt(N) and log(N) functions, and find sqrt(N) generally performs better job than log(N), 
where N is the number of sensors. This suggests that, with increasing number of sensors, the incremental perfor-
mance gain per added sensor decreases gradually.

To test the dependence on station spacing and frequency bands, we down sample the sensors spatially (while 
maintaining the same array aperture), and filter the data into multiple narrow frequency bands. The original 
number of array sensors is ~4200 (spacing is ~100 m). We down sample the sensors by a factors of 2, 4, 8, …, 64, 
resulting in spacings 141, 200, 282, …, 800 m. The frequency bands are chosen as 1–3, 2–4, 3–5, …, 13–15 Hz. 
For each dataset, we perform the detection test and measure the significance of peaks. The results summarized in 
Fig. 5b show that with decreasing spacing, performance generally decreases, as expected. The performance also 
depends on the examined frequencies band, because the SNR varies for different frequencies.

Detection of local and distant seismicity.  We apply the method to the Long Beach data between 6 
March 2011 and 12 March 2011, covering the 11 March 2011 Mw 9.1 Tohoku-Oki sequence. We examine two 
frequency ranges, 5–10 Hz and <1 Hz, in order to detect local and distant events, respectively. The detection 
threshold is set as 10 MAD above the median. In the 5–10 Hz range, we detect 451 events (Table S1), whereas 401 
are vibroseis truck signals from the petroleum survey. The vibroseis truck signals appear as sharp peaks in stacked 
local similarity with nearly every one-minute interval between 6 March and 9 March (Figs 6a, S1; Animation S1). 
In the remaining 50 events, three are nearby earthquakes listed in the SCEC catalog, one of which is a M 1.7 event 
from ~200 km away (Fig. 6b; Animation S2).

We also detect some weak but long-duration events up to a few minutes. One such event is very close to 
a possible production well identified from Google map (Figure S2; Personal communication with Philip 
Maechling). Although their waveform amplitudes were weak, we are able to observe the wavefield propagation 
in the animation and pinpoint the epicenter (Fig. 6c, Animation S3). However, this association could be by coin-
cidence because there are many production wells in the study region. Apart from these events, many others are 
un-interpretable due to lack of additional information at this stage. Figure 6d shows an event with a sharp onset 
and a secondary phase and then followed by an emergent wavetrain. The animation suggests that both are from 
the same origin, but the underlying mechanism remains unclear (Animation S4).

We locate these 50 events with grid search over possible local source locations using a coarse grid size of 
1 × 1 km. By shifting and stacking the local similarity traces, we take the source location corresponding the max-
imal stacked peak as the final location. Excluding the events with locations at the box boundaries (which are 
mostly unreliable), we obtained the locations of 35 events (Figure S3), none of them were listed in the SCSN 
catalog. The locations are scattered but have a weak NW-SE trend. Due to insufficient seismicity in this study, it is 
not clear if these events are associated with the local fault structure.

On the other hand, in the <1 Hz frequency range, we detect 183 distant events (Table S2). There were 125 
events after the M 9.1 Tohoku earthquake and 101 matched with the earthquakes listed in the Japan Meteorological 
Agency (JMA) catalog. These earthquakes are far from Long Beach and, therefore, have very small amplitudes 
(Fig. 7a). The events not matching the JMA catalog could be possibly missing foreshocks or aftershocks13 or seis-
micity elsewhere around the world23. Figure 7 shows the detection of the aftershocks within two hours after the 

Figure 5.  Performance tests of local similarity dependence on array settings and waveform frequencies.  
(a) Tests of significance level dependence on the number of sensors while maintaining the same station spacing. 
The red and blue dashed lines are sqrt(N)- and log(N)- type fitting curves, where N is the number of sensors. We 
note that sqrt(N) generally performs better than log(N) does. (b) Tests of significance level dependence on the 
station spacing (while maintaining the same array aperture) and frequency bands.
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occurrence of the mainshock. From the waveform recordings, we observe three main events, corresponding to 
the M 9.1, M 7.6 and M 7.5 events in the JMA catalog and a few other weaker events (Fig. 7a). The stacked local 
similarity shows clear evidence of these and many other smaller events (Fig. 7b). Our sliding-window threshold 
method detects 56 events from the stacked local similarity, including those buried in the coda of large events.

Finally, we also examine the number of local detections (in the frequency range of 5–10 Hz) 6 hours before and 
after the Tohoku-Oki mainshock and find two and three events, respectively. However, none of them occurred 
during the passing surface waves of the mainshock. Hence, with our local similarity method, we are unable 
to observe any statistically significant change in local seismicity (Fig. 7c–d) associated with the Tohoku-Oki 
mainshock.

Discussions
In this study, we introduced a new metric named local similarity based on waveform cross-correlations on spa-
tially close stations for large-N arrays. By comparing a trace with those of neighboring stations, local similarity 
can effectively eliminate high-frequency spikes that likely contaminate conventional amplitude-based metrics 
(e.g., envelope or STA/LTA). This feature enables us to detect very weak events (up to 0.01 SNR in this case) with 
data recorded in noisy environments. We applied this method to one week of continuous data during the 2011 
Mw9.1 Tohoku-Oki mainshock. While we detected many distant events in the frequency range of <1 Hz (most 
likely aftershocks), we did not observe any statistically significant change in events in the 5–10 Hz frequency range 
following the mainshock.

As shown in Fig. 6, local similarity can identify both impulsive and emergent events, which renders broad 
applicability, e.g., short-duration regular earthquakes and long-duration tectonic/volcanic tremor. In addition, 
direct stacking removes any wave type assumption or velocity model dependence, making it useful for detecting 
both local and distant events. Hence, our method could be used for detecting new types of events, as demon-
strated by those interesting local events detected in the 5–10 Hz range (Fig. 6). However, direct stacking does not 

Figure 6.  Detected examples of local events in 5–10 Hz filtered data. (a) Stacked local similarity trace and 
colormap of waveforms for two vibroseismic truck experiments. Denoted time on the title corresponds zero 
in time axis. (b) Detected nearby earthquake. (c) An unknown event, possibly associated with oil production. 
(d) An unknown event. The animations of these events can be found in the supplementary material 
(Animations S1–S4).
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provide any locations or focal mechanisms. So additional methods are needed to further locate and classify event 
types. We note that when a certain class of events is targeted, a shift-stacking scheme can be applied to local simi-
larity, such as used in the source-scanning algorithm10. With proper time shifts predicted by an assumed location 
and 1D velocity model, stacking of local similarity is expected to be more constructive. For example, to detect a 
local earthquake, we can apply theoretical travel time shifts of P (or S) waves to stack local similarity. This could 
result in a source-scanning-like or backprojection-like algorithm, but with local similarity traces rather than an 
envelope or normalized waveforms.

Figure 5 shows an interesting relationship between SNR and detection significance. Traditional seismology 
mainly focuses on events above the noise level, which fall in quadrant I (Fig. 5c). Some studies using template 
matching have achieved the capability to detect events below noise level28. However, it is unclear if events below 
the noise level are detectable without known templates. Using local similarity applied to ultra-dense arrays, we are 
able to detect events in a wide range below noise levels with high confidence (quadrant II in Fig. 5c).

Inbal et al.4,5 applied a backprojection method to 6-month recordings of the Long Beach array and detected 
many seismic events in the lower crust and upper mantle. To suppress local noise, they used downward continua-
tion to back propagate the wavefield from the surface to 5 km depth. In comparison, in this study, we only ran on 
one-week data and used the original data without downward continuation. Currently, our method only performs 
grid search over horizontal space but not depth, and, hence, we do not have the accurate information on the 
depths of those detected events. However, by visually inspecting the animations (e.g., Animations S1–S4), we find 
most of them likely have shallow origins instead of from the lower crust or upper mantle. We have checked and 
found that none of our detections matched with Inbal et al.’s in the examined one-week window. Such difference 
could be mostly due to their use of downward continuation, which enhances detections of events at greater depths 
but suppresses detections of events less than 5 km.

Recent years have seen the exciting emergence of other dense nodal arrays like the Long Beach 3D array. Other 
examples include the San Jacinto Fault in California29, Sweetwater in Texas, Mount St Helens in Washington30, 
Piton de la Fournaise volcano in La Reunion31, and the 2016 IRIS community wavefield experiment. Our local 
similarity method could be potentially applied to these large-N datasets to detect weak and unknown seismic 
events. We note that the only requirement of this method is that the target signals on neighboring stations are 
more correlated than the background noise. Thus it does not require ultra-dense arrays with hundreds or thou-
sands of stations. As long as the station spacing is comparable to or less than expected wavelengths, it can be 

Figure 7.  Waveforms and detection of two-hour Long Beach data after the Mw 9.1 Tohoku-Oki mainshock. (a) 
Lowpass 1 Hz waveforms recorded by the Long Beach array. (b) Stacked local similarity for lowpass 1 Hz data. 
The dashed gray lines mark the detected events. (c) Bandpass 5–10 Hz waveforms recorded by the Long Beach 
array. (d) Stacked local similarity for bandpass 5–10 Hz data. Note that no significant peaks are observed on the 
trace.
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applied to either 1D linear array or 2D array with only a few tens of stations. In fact, we have applied this method 
to the 1D Hi-CLIMB array across Himalaya and Southern Tibet, and the 2D PASO array (~60 stations) near 
Parkfield, and have detected many interesting local signals32. Hence, this method has the potential to be applied 
for event detections with traditional dense arrays as well.
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