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Decoding hind limb kinematics 
from neuronal activity of the dorsal 
horn neurons using multiple level 
learning algorithm
Hamed Yeganegi, Yaser Fathi & Abbas Erfanian  

Decoding continuous hind limb joint angles from sensory recordings of neural system provides a 
feedback for closed-loop control of hind limb movement using functional electrical stimulation. So 
far, many attempts have been done to extract sensory information from dorsal root ganglia and 
sensory nerves. In this work, we examine decoding joint angles trajectories from the single-electrode 
extracellular recording of dorsal horn gray matter of the spinal cord during passive limb movement 
in anesthetized cats. In this study, a processing framework based on ensemble learning approach is 
propose to combine firing rate (FR) and interspike interval (ISI) information of the neuronal activity. 
For this purpose, a stacked generalization approach based on recurrent neural network is proposed 
to enhance decoding accuracy of the movement kinematics. The results show that the high precision 
neural decoding of limb movement can be achieved even with a single electrode implanted in the spinal 
cord gray matter.

Restoration of paralyzed extremities through functional electrical stimulation (FES) is a presented paradigm for 
individuals with neuromuscular disorders and spinal cord lesions. In FES methodology, by applying electrical 
stimulations to cause contractions in the paralyzed muscles and restoring some mobility, not only an improve-
ment in the independence of disabled people is attained but also their general health conditions are ameliorated1. 
In order to take advantage of the benefits of a closed loop scheme in controlling complex limb movements, a 
continuous feedback of limb states is needed. Cutaneous and proprioceptive afferents have been proposed as a 
natural source of sensory feedback for FES systems2.

Stein et al. investigated the possibility of extracting the position of the foot in space (positions and velocities in 
Cartesian (x, y) and polar coordinates) from populations of neurons in the dorsal root ganglion (DRG)3. For this 
purpose, they recorded neural signals from up to 100 discriminable nerve cells in the L6 and L7 DRG of the anes-
thetized cat and employed a linear filter to decode the end-point of the limb in space from the firing rates (FRs) of 
the sorted neurons. It was reported that predictions using only the one neuron, whose firing was best correlated 
to the kinematic variable, accounted for about 70% of the variance and it was demonstrated that as more neurons 
were added, the performance increased and reached a plateau. To find the most informative neurons from a large 
population of identified neurons, a heavy offline processing is required. This makes the approach difficult for 
real-time control applications. Moreover, the decoding is based on a linear model. However, the firing rates of 
individual neurons do not necessarily need to be linearly related to the kinematics4,5.

Decoding the hind limb kinematics (i.e., ankle, knee, and hip joint angles) from the neural activity of a few 
neurons in the L7 dorsal root ganglia of three cats has been investigated during walking using a linear filter2,6. 
To improve the decoding performance, a nonlinear state space model was also employed for decoding the FRs 
in an ensemble of populations of primary afferent neurons during passive movements4. In5 a neuro-fuzzy neural 
network (FNN) was applied for decoding DRG recordings to estimate limb kinematics during passive as well as 
voluntary limb movements in cats. It was demonstrated that FNN model provided more accurate estimates of 
limb state and generalized better than multiple linear regression methods. Reconstruction of forelimb kinematic 
variables from neural activity of DRG neurons has been also studied in monkeys during voluntary reach-to-grasp 
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movements using sparse linear regression analysis7. The sensory information including distance and tilt of the 
vector between hip and limb endpoint, extracted from DRG neurons, has been utilized in the closed-loop con-
trol of hind limb movements using functional electrical stimulations8,9. Recently, the hind limb states (i.e., knee 
and ankle angles) were estimated using a dynamic driven recurrent neural network (RNN) from neural activity 
recorded by a 16-channel single-shank electrode array implanted in L7 DRG. The results show the superiority 
of a dynamic driven recurrent neural network (RNN) over linear dynamic models10. The tactile afferent signals 
recorded from DRG has been also decoded as different sensory events which are generated by mechanical stimu-
lation of three different areas of the left hind paw, using multilayer perceptron classifier11.

All of the aforementioned works investigated extracting kinematic information from DRG neurons. However, 
it was reported that long-term chronic recordings from DRGs do not last for more than three weeks2. This is 
mostly because of the suspended structure of dorsal root ganglia, and the fact that attaching an array to it would 
increase the risk of tearing the roots. On the other side, dorsal horn is a compact bulky tissue suggesting a better 
choice for chronic implantations.

In addition to DRG, the modulation of dorsal spinocerebellar responses to the limb movement has been inves-
tigated in12–15. It was demonstrated that the activity of dorsal spinocerebellar neurons relates to global parameters 
of limb movement and posture rather than to specific muscle or joint parameters, specifically to a kinematic 
representation of the limb endpoint.

The possibility of decoding motor commands from peripheral nerve signals was also investigated16. For this 
purpose, the intra-fascicular electrodes were implanted in the median and ulnar nerves of an amputee’s stump 
and different hand movements including palmar grasp, pinch grasp, and flexion of the little finger were tried to 
identify using peripheral nerve signals. Recently, the peripheral nervous system responses to mechanical stimu-
lation of the limb were also investigated17. Three types of mechanical stimulations, namely, proprioception, touch 
and nociception were delivered to the limb and the electroneurogram signals were recorded simultaneously from 
the sciatic nerve with a 16-contact cuff electrode. The results show that neural responses can be separated accord-
ing to stimulus type as well as intensity.

A question that arises is whether the kinematic information of hind limb can be extracted from the dorsal 
horn of spinal gray matter neurons. This is the principle issue to be investigated in this paper. The sensory signals 
recorded from dorsal horn of spinal cord have been used previously for detecting the sensory events generated by 
electrical stimulation18 and decoding intravesical pressure in rat19.

The major focus of the current study is the decoding the hind limb kinematics from extracellular neural 
activity recorded directly from spinal cord gray matter neurons in the anesthetized cats. Both firing rate (FR) 
and interspike interval (ISI) were used to estimate the kinematic information. A stacked modular neural network 
based on the recurrent neural network is proposed as a combining tool for utilizing both FR and ISI information 
to decode the neural activity and the results are compared with that obtained using the conventional recurrent 
neural network. Moreover, the effects of multiunit activities (MUAs) and single unit activities (SUAs) on decoding 
performance are evaluated.

Methods
Animal preparation. Five adult cats were used in the present study (3.3 to 3.9 Kg). All surgical procedures 
and experimental protocols involving animal models described in this paper were approved by the Animal Care 
and Ethics Committee of Iran Neural Technology Research Centre, Iran University of Science and Technology. 
The experimental protocol was performed in accordance with the recommendations for the care and use of lab-
oratory animals. The animals were initially anesthetized with ketamine (20 mg/kg) injected intramuscularly into 
the cranial thigh muscle. The animals were then intubated and maintained at a surgical level of anesthesia with 
isoflurane (1.0%–3.0% in O2). Blood oxygen saturation level (SpO2) and heart rate signals were monitored con-
tinuously throughout the surgical process and experimental tests. A partial dorsal laminectomy was performed 
to expose L6 up to L3 segments and the dura mater of the dorsal surface of the spinal cord was opened with 
iridectomy scissors and the spinal cord was covered with saline to prevent its dehydration. The cats were then 
positioned in a stereotaxic setup (SN-1N, Narishige Group Product) which allows the hind limbs to hang free 
while the spinal vertebrae (L2 and L7) are clamped rigidly to the frame (Fig. 1(a)).

Joint angle measurement. The movements were recorded with a motion capture system (Vicon Motion 
Systems Ltd., UK) with three camera. Reflective markers were attached overlying iliac crest, greater trochanter 
(hip joint), lateral condyle of the femur (knee joint), lateral malleolus (ankle joint), and the distal end of the fifth 
metatarsophalangeal (MTP) joint of the cats. The temporal sampling rate was 100 Hz. During each trial of the 
experiment, an operator moved the foot of the cat in a stepping-like pattern. Having the distance between marker 
positions, hip, knee, and ankle angles were extracted using the law of cosines. Each recording session consisted of 
10 trials of experiment and each recording trial lasted for 5 minutes.

Neural Data Acquisition and Preprocessing. A single-wire steel electrode with a 75 μm shank diam-
eter, Epoxylite insulated with a 10°–5° tapered tip of 120 μm exposed length and 300–500 kΩ resistance (FHC 
Inc., Bowdoin, ME USA) was positioned at a location within the right dorsal horn where the correlation of neu-
ral activity with passive movement of the limb was visually inspected. The microelectrode was mounted on a 
micromanipulator (SM-15, NARISHIGE Group Product) that could control the three-dimensional positioning 
of the electrode with the minimum graduation of 10 µm. The electrode was positioned at the locations within 
the L6 and L5 dorsal horn, approximately 1–2 mm lateral from the midline between 0.5 and 1.0 mm in depth 
(Fig. 1(b)). To determine the best electrode position within the dorsal horn, the electrode was vertically advanced 
through the spinal cord dorsoventrally. Along the electrode track, operator moved the foot of the cat. Then, the 
electrode was withdrawn and moved 100 μm mediolaterally and/or rostrocaudally to an adjacent location while 



www.nature.com/scientificreports/

3SCIENTIfIC REPORTS |  (2018) 8:577  | DOI:10.1038/s41598-017-18971-x

the correlation of neural activity with the passive movement of the limb was visually inspected on the monitor 
of the recording system. The positions that produced relatively highest correlation were selected. Neural signals 
were recorded at 20 kHz sampling rate using a digital data acquisition system (USB-ME64 system, Multichannel 
Systems Reutlingen, Germany) during the passive movement of the limb.

Preprocessing and Feature Extraction. The recorded neural signals were band-pass filtered between 300 
and 3000 Hz with the low-pass and high-pass elliptic filters of order four. The threshold for spike detection was 

Figure 1. Experimental setup and recording site. (a) Hip, knee, and ankle joint angles were calculated having 
the positions of five markers placed over iliac crest, hip, knee, ankle, and metatarsophalangeal (MTP) joints. 
A rod was stuck to MTP joint to move the hind limb passively. (b) Histology: L6 spinal cord section of cat 5 
stained with Hematoxylin and Eosin (H&E) staining.

Figure 2. Structure of two hidden-layer recurrent neural network.
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set to four times the standard deviation of the noise estimated from filtered signal, and spike events were iden-
tified as each instance the signal exceeded this threshold. Spikes were sorted using an unsupervised algorithm, 
Wave_Clus program, that automatically determines the number of classes and assigns each spike to one class 
based on wavelet coefficients of spike waveforms as the features and superparamagnetic clustering algorithm20. 
The original MATLAB codes are provided by Dr. Quian Quiroga and are publicly available online (http://www2.
le.ac.uk/centres/csn/research-2/spike-sorting). The feature set was formed from the continuous firing rate (FR) 
and the interspike interval variability (ISI).

Firing Rate. Continuous FR was computed by taking a window of duration 300 ms and sliding it along the spike 
train with 250 ms overlap and counting the number of spikes within the window at each time and thereafter 
low-pass filtering at cutoff frequency of 10 Hz (FIR filter with maximum passband ripple of 1 dB and 60 dB of 
stopband attenuation). FRs were calculated for either of unsorted and sorted spike trains.

Interspike Interval Variability. Consecutive spike peaks constitute an S-S interval time series i.e. the ISI signal. 
S-S interval time series is not sampled at uniform intervals due to differences between the duration of adjacent 
spikes. Uniform sampling can be performed by using different interpolation methods in order to achieve equally 
spaced S-S intervals. In this work, the extracted S-S interval time series were interpolated by a cubic spline and 
then sampled at a rate of 20 Hz.

Decoding Model
Recurrent Neural Network. The RNN which involves dynamics elements in the form of feedback loop, has 
a profound impact on the learning capability of the network and on its performance21. Moreover, the feedback 
loops which feedback the lagged outputs of the neurons to the inputs of neurons, enable the network to perform 
dynamic mapping and learning tasks that extend over the time. The architecture of the RNN takes many different 
forms21. In this work, we use recurrent multilayer perceptron with two hidden layers, as illustrated in Fig. 2(c). 
The network contains delayed recurrent connections from the output of each hidden layer to its input. We may 
then describe the dynamic behavior of the network by the following equations:

First hidden layer:
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Figure 3. (a) Stacked structure. (b) The RNN with FRs as the input. (c) The RNN with ISIs as the input.
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where f(.,.) is a nonlinear activation function (sigmoid activation function) characterizing the hidden units, y t( )i
h  

is the response of the ith hidden unit in the hidden layer h, wi q
l
,  is the connecting weight of unit i in layer l to the 

unit q in the next layer. The v and u are the connecting weights of the unit-delay units to the hidden units in the 
first and second hidden layer, respectively. The hidden layers are nonlinear but the output layer is linear. The RNN 
is trained using the Levenberg–Marquardt method. The Levenberg–Marquardt method is a compromise between 

Figure 4. A typical measured joint angles and neural signal recorded from the dorsal horn neurons during 
passive movement (trial 3, cat 1): (a) measured joint angles, (b) raw recorded and filtered neural signal, (c) 
unsorted and sorted spike trains, and (d) unsorted and sorted spike waveforms.
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the Gradient descent which has a guaranteed convergence upon a proper choice of the step-size and Newton’s 
method, which converges speedily near a local or global minimum22.

Stacked Recurrent Neural Network. The structure of the proposed stacked RNN is shown in Fig. 3(a). 
Stacking benefits a two-level learning paradigm. Selected input features are fed into first level models, commonly 
called level-0 models, and each one produces a prediction value for each output. Then, the outputs of level-0 mod-
els are fed into the second stage, or level-1 models, which combines them into the final prediction.

In this work, we take advantage of stacked RNN to fuse continuous ISI and spike related information (i.e., FR). 
In this way, two RNNs are assigned in the level-0 stage, one for ISI and the other for FR. The past values of the FR 
and ISI were fed into the RNNs.

All training samples are divided into two parts. The first part is used to train each RNN of the level-0 stage. The 
second part is used to train the level-1 model using predicted values of level-0 RNNs as the input. Dividing the 
training samples into two parts and using different training data to train the level-0 and level-1 models may cause 
an increase of generalization ability of the models23,24. Moreover, two different conventional structures were also 
used to decode joint angles (Fig. 3(b,c)) and the results were compared with stacked structures.

Figure 5. A typical measured joint angles and corresponding continuous firing rate (FR) and interspike interval 
(ISI) variability during passive movement (trial 3, cat 1): (a) measured joint angles, (b) multiunit firing rate 
and interspike interval, (c) firing rate of the three identified sorted units, and (d) interspike interval of the three 
identified sorted units.
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Data availability. All datasets generated during the current study are available from the corresponding 
author under request.

Results
To assess the performance of proposed method in decoding the kinematic information of the limb, the normal-
ized root-mean-square (NRMS) of the estimation error and the coefficient of determination, R2 value, were used. 
The NRMS and R2 were defined as
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where x is the measured joint angle, x  is the corresponding mean value, x̂ is the predicted value, and N is number 
of data points.

We recorded 10 sets of 5-minute long trials for each animal. The trials where the marker positions had spon-
taneous jumps were not considered for further analysis. The data set consisted of at least 6 sets of 5-minute-long 
recording trials. After removing trials with unstable marker positions, from all of the data, two trials were taken 
apart to be used only for model training, validation and parameter settings (i.e. setting window length of FR, 
number of neurons in the model, and number of delays).

Figure 4 shows a typical recorded joint angles, raw recorded neural signal, unsorted and sorted spike trains, 
and the multiunit spike waveforms. It can be seen that the filtered neural signal (as well as the spike trains) is 
highly correlated with the limb movement. The limb movements as stimuli, give rise to a correlated activity in 
the spinal cord gray matter neurons. This indicates that reverse regression can be employed for decoding neural 
responses to estimate limb kinematics.

The results of spike sorting is shown in Fig. 4. A total of 4 units were discriminated from one channel record-
ing on the third trial of experiment on cat 1. One unit has fired as low as one spike per minute and has not fired 
during 20-s of data shown if Fig. 4(e). This unit is ignored as it may represent spontaneously bursting activity of 
the neurons in spinal cord. It is observed that among these four units, only the firing of one unit closely correlated 
with the limb movement.

Figure 6. Average (±standard deviation) of mutual information over 31 trials of experiments on five cats: (a) 
Average of MI between the FR of each identified sorted unit activity as well as the FR of multiunit activity and 
each joint angle; (b) Average of MI between the ISI of each identified sorted unit activity as well as the FR of 
multiunit activity and each joint angle.
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ISI and FR
The results show that the continuous firing rate trajectory closely follows the joint angle variations. Continuous 
firing rate increases with the extension of the lower limb joints and decreases with the flexion. Figure 5 shows 
a typical recorded joint angles and corresponding continuous FR and S-S interval time series for unsorted and 
sorted spike trains. It is observed that increasing the firing rate corresponds to the extension of the hip joint, flex-
ion of the knee joint, and full extension of the ankle. It is observed that the firing activity was diminished during 
some portions of the movement (i.e., during hip flexion, knee extension, and flexion and extension of the ankle). 

Figure 7. Typical example (trial 5, cat 1) of decoding joint angles: (a) using the RNN with the multiunit FR 
(left) as the input and with the most informative single unit FR as the input (right); (b) using the RNN with the 
multiunit ISI as the input (left) and with the most informative single unit ISI as the input (right); (c) using the 
stacked RNN with the multiunit activity as the input (left) and with the most informative single unit activity 
(right).
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However, continuous ISI conveys some information about these portions of the movement. The mutual informa-
tion (MI) between the multiunit FR and the hip, knee, and ankle angles are 0.16, 0.27, and 0.40, respectively and 
the MI between multiunit ISI and the joint angles are 0.05, 0.04, and 0.10. The results indicate that in addition to 
FR, the ISI conveys information about the limb movement but not as much as FR.

The results of spike sorting during passive limb movement are shown in Fig. 5(b) and (c). It is observed that 
only one identified unit could provide information about the limb movement. The MI between the single-unit FR 
and the hip, knee, and ankle angles are 0.18, 0.26, and 0.41, respectively.

The results of MI analysis indicate that single unit activity could provide more information about the limb 
kinematics than multiunit activity. The average of the MI between FR as well as ISI and joint angles over 31 
experimental trials on 5 cats is shown in Fig. 6. The average of the MI between the most informative single-unit 
FR (ISI) and the hip, knee, and ankle angles are 0.15 ± 0.04, 0.31 ± 0.02, and 0.33 ± 0.02 (0.09 ± 0.05, 0.12 ± 0.01, 

Figure 8. Typical example (cat 1, trial 5) of the angle-angle plot of the estimated and measured joint angle 
trajectory. The results show for the RNN with the multiunit FR as the input (a) and the stacked RNN with the 
most informative single unit activity (b).

Multi-unit Single unit

NRMS% R2% NRMS% R2%

FR

hip 11.8 ± 5.1 73.4 ± 24.4 11.2 ± 4.6 76.6 ± 22.7

knee 12.4 ± 5.0 74.0 ± 23.7 12.5 ± 5.3 72.8 ± 26.1

ankle 13.1 ± 5.2 75.3 ± 22.2 13.0 ± 5.3 75.2 ± 22.8

mean 12.4 ± 5.1 74.2 ± 22.3 12.3 ± 5.1 74.9 ± 23.6

ISI

hip 17.3 ± 6.7 50.4 ± 33.4 16.3 ± 5.7 54.5 ± 29.5

knee 16.7 ± 5.2 58.4 ± 26.7 15.9 ± 5.4 59.8 ± 29.5

ankle 17.2 ± 5.4 59.5 ± 24.2 17.0 ± 5.7 59.9 ± 28.8

mean 17.1 ± 5.8 56.1 ± 28.4 16.4 ± 5.5 58.1 ± 28.8

Stack

hip 11.6 ± 5.3 74.0 ± 27.0 11.1 ± 5.0 76.8 ± 27.2

knee 12.0 ± 5.3 76.6 ± 25.3 11.5 ± 5.1 77.8 ± 22.5

ankle 13.1 ± 5.5 75.9 ± 23.8 12.9 ± 5.5 75.7 ± 22.8

mean 12.2 ± 5.3 75.5 ± 25.1 11.8 ± 5.2 76.7 ± 24.0

Table 1. Average of decoding performance over five cats using different methods: RNN with FR as the input, 
RNN with ISI as the input, and stacked RNN with both FR and ISI as the input.
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and 0.12 ± 0.01) respectively, while the average of MI between the multiunit FR (ISI) and the joint angles are 
0.16 ± 0.02, 0.28 ± 0.02, and 0.29 ± 0.11 (0.11 ± 0.00, 0.13 ± 0.00, and 0.13 ± 0.05) respectively.

Decoding Performance. The results of decoding the joint angles show that the decoding performance was 
significantly improved using the stacked RNN compared to the conventional RNN. However, there is no signif-
icant difference between the decoding performance obtained by the single-unit and multiunit activity. Figure 7 
illustrates a typical result of decoding the joint angles using different frameworks presented in Methods section. 
Figure 7(a) shows the results of decoding when the FR of the multiunit activity or the FR of the most informative 
single unit activity is used as the feature. The average of NRMS decoding error is 12.8% and 12.1% when the FR 
of the multiunit activity and single unit activity is used as the feature, respectively. For this trial of experiment, 
the results show that decoding performance is slightly improved (0.7%) when the single unit activity is used for 
decoding compared to the multiunit activity. Figure 7(b) shows the results of decoding when the ISI of the multi-
unit activity and of the most informative single unit activity is used as the feature. The average of NRMS decoding 
error is 13.0% and 13.6% for the multi- and single unit activities, respectively. No improvement in decoding per-
formance is observed for this trial of experiment when the ISI of the single unit activity is used.

Figure 7(c) shows the results when the stacked RNN is used for decoding. The average of NRMS decoding 
errors are 11.2% and 10.5% for the multi- and single unit activities, respectively. It is observed that the single unit 

Figure 9. Typical example (cat 1, trial 3) of the receptive fields of the dorsal horn neurons. The response of the 
least (a) and the most informative neurons (b) at each position during the passive movement of the limb. The 
values of FR and ISI at each position have been represented by the spheres which their volumes are proportional 
to the values of FR or ISI.
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activity provides 0.7% improvement with respect to multiunit activity. The stacked RNN with single unit activity 
improves the decoding performance by 1.6% compared to when only the FR of the single unit activity is used.

Fig. 8 shows the angle-angle plot of the decoding results for the same trial used in Fig. 7. The results indicate 
that the stacked RNN provides more robust decoding performance compared to the RNN decoder using only FR.

The average of the NRME as well as R2 over all trials and all animals for each joint angle is summarized in 
Table 1. The results show that the single unit activity achieves higher decoding performance than the multiunit 
activity. Also, the stacked RNN based on the FR of the single unit activity achieves higher performance than the 
RNN. The average of NRMS errors are 11.1%, 11.5%, and 12.9%; and R2 achieved are 76.8%, 77.8%, and 75.7%, for 
the hip, knee and ankle joints, respectively, using the stacked RNN with the single unit activities.

The results of the two-way analysis of variance (ANOVA) show that there is no significant different in the 
decoding performance obtained by the multiunit and the single unit activities, but the performance achieved by 
the stacked RNN is significantly higher than the RNN with FR ( = .p 0 093) and higher than the RNN with ISI 
( = . × −p 2 760 10 15).

Receptive Fields of Sorted Neurons. To characterize the receptive fields of the dorsal horn neurons, the 
response of the two sorted neurons; the most and the least informative neurons; is observed at each position of the 
limb in space. Figure 9 shows the FR and ISI of the two neurons at each position during the passive movement of 
the limb. The values of FR and ISI at each position have been represented by the spheres which their volumes are 
proportional to the values of FR or ISI. It can be seen that the least informative neurons (i.e., unit 3) fires sponta-
neously in the state space (Fig. 9(a)). In contrast, for the most informative unit (i.e., unit 1), the FR increases with 
increasing the joint angles and decreases with decreasing the joint angles (Fig. 9(b)).

Discussion
In this work, for the first time, it was demonstrated that hind limb joint angles could be decoded from the dorsal 
horn recordings using single-electrode recording. It is well known that there are multisegmental connections 
from one spinal cord level to other levels by the propriospinal fibers. These propriospinal fibers of the cord pro-
vide pathways for the multisegmental reflexes that coordinate simultaneous movements in the forelimbs and hind 
limbs. This fact motivates us to extract whole limb movement (i.e., joint angles) from single-unit recordings. By 
appropriate signal processing, it should be possible to decompose the information regarding each joint angle from 
the single-unit recording.

The advantage of dorsal horn over DRG recordings is its convenient accessibility during surgery. Besides, we 
think that dorsal horn may be a better choice for chronic implantation because it is a compact bulky tissue to 
place electrodes while DRG is a suspended tissue and previous studies demonstrated that chronic DRG recording 
did not exceed more than three weeks2,8. Moreover, access to the dorsal root ganglia needs more surgical opera-
tions and more caution is needed to avoid damaging the tissues during surgery, while the anatomy and structure 
of dorsal horn makes its accessibility to the surgeon more convenient and less risky.

One concern about dorsal horn recording is the risk of tissue reaction or spinal compression due to the 
invasive technique applied in this experiment19. However, using just one single electrode minimizes this risk. 
Moreover, the computational cost will be highly reduced in comparison to previous works which one or more 
microelectrode arrays were used in DRG to record neural signals. To improve the decoding performance using 
single-electrode recording, RNN with multiple output structure was used. All hind limb joint angles were con-
sidered as the outputs of the RNN. To fuse the ISI and FR information for decoding the kinematic information, a 
stacked generalization approach based on recurrent neural network was proposed. Stacked generalization is a way 
of constructing ensemble learning combining multiple models to induce a higher-level decoder with improved 
performance.

Another issue investigated in this study was the role of spike sorting as a preliminary step in extracellular 
signal processing25,26. Based on the statistical test, the results show that there is no significant difference between 
unsorted spikes and sorted spikes in decoding performance.

The current study just demonstrated the feasibility of the movement kinematic decoding from the neural 
signal recorded by microelectrode implanted acutely in dorsal horn of anesthetized cats. Estimating the limb 
position from chronic neural recording in awake animals, investigating the chronic stability and reliability of 
dorsal horn recording can be considered as a direction for future study.
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