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Predicting inhibitory and activatory 
drug targets by chemically 
and genetically perturbed 
transcriptome signatures
Ryusuke Sawada1, Michio Iwata1, Yasuo Tabei2, Haruka Yamato1 & Yoshihiro Yamanishi1,3

Genome-wide identification of all target proteins of drug candidate compounds is a challenging issue 
in drug discovery. Moreover, emerging phenotypic effects, including therapeutic and adverse effects, 
are heavily dependent on the inhibition or activation of target proteins. Here we propose a novel 
computational method for predicting inhibitory and activatory targets of drug candidate compounds. 
Specifically, we integrated chemically-induced and genetically-perturbed gene expression profiles 
in human cell lines, which avoided dependence on chemical structures of compounds or proteins. 
Predictive models for individual target proteins were simultaneously constructed by the joint learning 
algorithm based on transcriptomic changes in global patterns of gene expression profiles following 
chemical treatments, and following knock-down and over-expression of proteins. This method 
discriminates between inhibitory and activatory targets and enables accurate identification of 
therapeutic effects. Herein, we comprehensively predicted drug–target–disease association networks 
for 1,124 drugs, 829 target proteins, and 365 human diseases, and validated some of these predictions 
in vitro. The proposed method is expected to facilitate identification of new drug indications and 
potential adverse effects.

Genome-wide identification of all target proteins of drug candidate compounds is a challenging issue in drug 
discovery. Most drugs are small compounds that interact with target proteins to inhibit or activate their biological 
functions. However, drugs often interact with both primary targets and other proteins (off-targets). Thus, eval-
uations of possible pharmaceutical effects on single target proteins and multiple off-target proteins are required 
to improve the efficacy and safety of drug candidate compounds1–3 and to identify new indications for existing 
drugs (drug repositioning)4,5.

Numerous computational methods have been proposed for genome-wide drug target prediction using che-
mogenomic approaches based on compound chemical structures and protein sequences or structures6–10 and 
using phenotypic approaches based on drug side effects and similarities11–14. In addition, drug-induced gene 
expression profiles in human cell lines offer promise for predicting drug targets15–19. However, these methods 
depend heavily on the knowledge of ligands for target proteins, and fail to distinguish between inhibitory and 
activatory effects on target proteins.

Discrimination between inhibitory and activatory targets is crucial in many stages of drug development20,21. 
The related phenotypic effects (therapeutic and adverse effects) are heavily dependent on the inhibition or acti-
vation of target proteins. For example, drugs that activate dopamine receptors are used as Parkinson’s disease 
medications, whereas drugs that inhibit dopamine receptors are used as antipsychotic medications. In addition, 
target proteins remain unidentified for more than 60% of approved drugs, and only 50% of known drug–target 
interactions have annotations of inhibitory or activatory effects, according to our survey of existing chemical 
databases22–28.
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Herein, we show that these problems can be addressed by integrating gene expression profiles following chem-
ical induction and genetic perturbation. Accordingly, we postulated that, if a compound inhibits a certain protein, 
the ensuing gene expression profile can be correlated with that after gene knock-down of the corresponding 
protein. Likewise, if a compound activates a certain protein, the gene expression profile after chemical treatment 
of the compound may be correlated with that after over-expression of the protein. Based on this hypothesis, we 
developed novel methods that predict inhibitory and activatory targets of drug candidate compounds based on 
transcriptomic changes in global patterns of gene expression following chemical inhibition or induction and gene 
knock-down or over-expression. Finally, we confirmed the utility of these methods in analyses of pharmaceutical 
modes of action and in drug repositioning for a wide range of diseases.

Results
Overview of the proposed methods.  Initially, we constructed gene expression profiles (signatures) for 
compounds and proteins by introducing three types of perturbations into human cell lines. These included chem-
ical treatment, gene knock-down, and gene over-expression (Fig. 1A). 20,122 compounds were represented by 
chemical treatment signatures, whereas 4,331 proteins were represented by gene knock-down signatures and 
2,946 proteins were represented by gene over-expression signatures.

In the direct correlation (DC) method (Fig. 1B), we calculated correlation coefficients between the chemical treat-
ment and gene knock-down signatures, and between the chemical treatment and gene over-expression signatures for 
each of compound–protein pairs. Highly correlated compound–protein pairs were considered interacting pairs.

Figure 1C shows the joint learning (JL) method, in which predictive models are constructed for individual 
target proteins and are simultaneously learned to accommodate limited ligand information for target proteins. 
Models for inhibitory and activatory targets were then learned by sharing gene knock-down and over-expression 
similarities, respectively.

Correlation of chemical and genetic perturbations.  We investigated distributions of correlation 
coefficients of known compound–protein interaction pairs and non-interacting compound–protein pairs. In 
these computations, known interaction pairs tended to have higher correlation coefficients than the other pairs 
among both inhibition (p-value < 10−20) and activation interactions (p-value < 0.0237), indicating that chemical 
treatment with an inhibitor or activator is transcriptionally correlated with knock-down or over-expression of 
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Figure 1.  Data processing flow chart of the proposed method for predicting drug targets from transcriptome 
signatures of chemical and genetic perturbations; Panel (A) illustrates three types of gene expression profile 
for compounds and proteins. Compounds are represented by gene expression profiles after chemical treatment 
(chemical treatment signature). Proteins are represented by gene expression profiles after gene knock-down of 
the protein (gene knock-down signature), or by gene expression profiles after over-expression of the protein 
(gene over-expression signature). Panel (B) illustrates the direct correlation (DC) method. Correlation 
coefficients for inhibitory interaction pairs were calculated from chemical treatment and gene knock-down 
signatures. Correlation coefficients for activatory interaction pairs were calculated from chemical treatment 
and gene over-expression signatures. Panel (C) illustrates the joint learning (JL) method. Predictive models for 
individual target proteins were simultaneously learned by sharing protein similarities of gene knock-down and 
gene over-expression signatures.
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corresponding target protein. These results support the validity of the DC method. However, the correlation of 
chemical and genetic perturbations for activatory interactions is lower than that for inhibitory interactions. There 
is a possibility that the activation of a protein leads to reduction of its expression via negative feedback mecha-
nisms. The low correlation of chemical and genetic perturbations for activatory interactions may be explained by 
the negative feedback mechanisms.

In experiments with a subset of compounds, we examined approved drugs for which Anatomical Therapeutic 
Chemical (ATC) classification groups have been assigned. Figure 2A shows distributions of correlation coeffi-
cients between chemical treatment and gene knock-down signatures, and Fig. 2B shows distributions of corre-
lation coefficients between chemical treatment and gene over-expression signatures. Observed tendencies were 
dependent on ATC groups. For example, in the case of gene knock-down signatures, the tendencies were strong 
in Cardiovascular system and Antineoplastic groups, but were weak in Hormonal preparations and Antiinfective 
groups. In addition, the observed tendencies were strong in the inhibition, while the observed tendencies were 
relatively weak in the activation. These weak tendencies may reflect inclusion of non-interaction pairs that were 
previously unknown interaction pairs, and the ratio of previously unknown interaction pairs may differ between 
ATC groups, suggesting the presence of many unknown interaction pairs.

Performance evaluation.  We tested the ability of the proposed DC and JL methods to reconstruct inhibi-
tory and activatory compound–protein interactions from gold standard data using cross-validation (CV) exper-
iments (see the Methods section). We compared the proposed methods with the pairwise learning (PL) method 
that is widely used in chemogenomics (see Supplementary Information), and evaluated performance using 
receiver operating characteristic (ROC) and precision-recall (PR) curves. Results are summarized as areas under 
the ROC curves (AUC) and areas under PR curves (AUPR).

Tables S1 and S2 show the results of CV experiments using DC, PL, and JL methods, and AUC and AUPR 
scores of individual target proteins and their averages are presented. Because multiple cell lines were included for 
identical compounds and proteins, we applied cell-averaging and cell-concatenating operations (see the Methods 
section). The JL method gave higher AUC and AUPR scores than DC and PL methods, indicating that supervised 
learning with known compound–protein interactions is relevant. In the JL method, cell-averaging operations 
worked better than cell-concatenating operations in most cases. One explanation about the low performance 
of the DC method is that the number of known compound–protein interactions is very limited. Note that the 
DC method is an unsupervised approach, while the proposed JL method is a supervised approach. Because the 
DC method is unsupervised, its accuracy may be underestimated, reflecting previously unknown interactions. 
If potentially true compound-protein interactions were regarded as negative examples in the gold standard data, 
the accuracy scores would be low in the case of unsupervised approach. The DC method did not work in the case 
of activation, but the JL method improved the accuracy even in the case of activation.

Figure 3 shows AUC scores based on numbers of known ligands for each protein for DC and JL methods using 
inhibition and activation benchmark datasets. AUC and AUPR scores for DC, PL, and JL methods are shown 
in Figures S3 and S4, respectively. AUC scores tended to be lower for lower degree values, whereas AUC scores 
tended to be higher with higher degree values. Hence, predictions are difficult when numbers of known ligand 
compounds in the learning set are small. Moreover, prediction accuracy for low degrees was better maintained 
with the JL method than with DC and PL methods.

Furthermore, we evaluated performances of target-based drug indication predictions and sensitivities 
to differences between inhibitory and activatory targets based on known therapeutic targets for diseases (see 
the Methods section). Figure 4 shows AUC and AUPR scores for diseases in drug indication predictions with and 
without distinctions between inhibitory and activatory targets. Note that previous methods for predicting drug 
indications were performed without distinguishing between inhibition and activation. Accuracy was greater with 

Figure 2.  Distribution of correlation coefficients between chemical treatment signatures of inhibitors and gene 
knock-down signatures of the target proteins (A) and between chemical treatment signatures of activators and 
gene over-expression signatures of the target proteins (B). The corresponding box-plots are shown according 
to the first level of Anatomical Therapeutic Chemical (ATC) classification of drugs. White boxes indicate 
similarities of known interacting pairs, while gray boxes indicate similarities of the other pairs.



www.nature.com/scientificreports/

4Scientific REPOrTS |  (2018) 8:156  | DOI:10.1038/s41598-017-18315-9

distinction than without distinction. Hence, distinctions between inhibitory and activatory targets are crucial for 
appropriate evaluations of the therapeutic effects of candidate drug compounds on human diseases.

To investigate the sensitivity of the performance to the effect of the ratio of negative compounds against pos-
itive compounds in the training set, we generated a balanced training set by sampling such that the ratio of 
negative compounds against positive compounds is 3 (positive vs negative = 1:3) for each target protein, and 
performed additional cross-validation experiments. We compared the cross-validation results between the bal-
anced training set and the original training set (positive vs negative = 1:all), where in the both cases we used 
the same test set and evaluated all compounds in the test set. Table S3 in Supplementary Information shows the 
corresponding AUC and AUPR scores, and Figure S6 in Supplementary Information shows the box-plots of the 
corresponding AUC and AUPR scores by degrees. It was observed that the AUC and AUPR scores of the balanced 

Figure 3.  Distributions of AUC scores for individual target proteins; AUC scores are plotted against numbers 
of known ligands (degree) for each protein. Upper and lower rows indicate results for inhibition and activation 
benchmark datasets, respectively.

Figure 4.  Performance evaluation of drug indication predictions. Panels A and B show AUC and AUPR scores 
for diseases, respectively, in the presence and absence of distinctions between inhibitory and activatory targets.
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training set were lower than those of the original training set. We used all negative compounds in the training set 
for constructing a predictive model in this study.

Large-scale prediction of drug–target–disease networks.  Herein, we applied the proposed methods 
to drug repositioning and predicted new indications of 1,124 drugs (registered in Japan, USA, and Europe) for 
365 human diseases. Initially, we estimated target proteins for these drugs using the JL method, for which pre-
dictive models were learned using all gold standard data as training data. We focused on the top 5% predictions, 
which produced 42,174 inhibitory drug–protein interaction pairs among 760 drugs and 755 proteins and 4,141 
activatory drug–protein interaction pairs among 622 drugs and 74 proteins.

Subsequently, we comprehensively predicted novel drug indications with target profiles comprising known 
targets and newly predicted targets, based on known therapeutic targets of diseases (see Methods section). We 
confirmed the validity of several prediction results using independent resources that were absent from the learn-
ing data. For example, the antifungal drug ciclopirox was predicted to inhibit B-cell lymphoma 2 (BCL-2) as a 
treatment for leukemia. BCL-2 is a recently identified therapeutic target that is highly expressed in various cancer 
cell types, and its inhibition has antiproliferative effects29, as indicated by antileukemia effects of ciclopirox30. 
Tibolone is prescribed to ease menopausal symptoms, but was predicted to activate the vitamin D receptor 
(VDR). Because vitamin D deficiency decreases bone density and increases the risk of osteoporosis31, Tibolone 
has been predicted to have efficacy as a treatment for osteoporosis, and corresponding therapeutic effects were 
reported32. Figure 5 shows a small portion of the resulting drug–target–disease association network, which pro-
vides mechanistic insights into predicted drug indications. Networks involving the confirmed examples and other 
predicted pairs with high prediction scores for inhibitory and activatory interactions were generated by using 
Cytoscape33.

Experimental validation in in vitro assays.  We focused on retinoic acid receptor α (RAR α) as a target 
protein. RAR α is a nuclear receptor that is involved in signal transduction for cellular maturation and differ-
entiation34, and is required for estrogen-related cell profiles35. Inhibition of RAR α induced apoptosis in breast 
cancer cells36 and RAR α silencing inhibited cancer cell proliferation37. Thus, the inhibition of RAR α may lead to 
therapeutic effects in estrogen-related cancers such as breast and ovarian cancers.

We focused on sulfamethoxypyridazine, prenylamine lactate, and dienestrol that were top 3 compounds pre-
dicted to inhibit RAR α. We tested the activities of the three compounds in cellular assays (see the Methods 
section and Supplementary Information for more details). We were able to confirm the activity of dienestrol, but 
unable to confirm the activities of sulfamethoxypyridazine and prenylamine lactate.

Figure 6 shows the dose response curve of dienestrol in the antagonist mode. In these experiments, dienestrol 
antagonized the RAR α with an IC50 of 2.75 μM. Moreover, percentage activity decreased from approximately 
65% to 35%. No agonistic effects were observed. These experimental results validate the prediction that dienestrol 

Figure 5.  A small portion of the drug–protein–disease network predicted by the joint learning method. Blue 
circles indicate drugs, red rectangles indicate proteins, and green diamonds indicate diseases. Orange arrows 
indicate newly predicted activatory interactions and green T-shapes indicate newly predicted inhibitory 
interactions. Gray arrows indicate known activatory associations and gray T-shapes indicate known inhibitory 
associations.
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inhibits signal transduction via RAR α. Thus, the anti-psychotic drug dienestrol may be useful for the treatment 
of estrogen-related breast and ovarian cancers.

Discussion
In this study, we propose novel methods for predicting inhibitory and activatory targets of drug compounds 
on a genome-wide scale. The present methods are novel integrations of chemically and genetically perturbed 
transcriptome data, and can be used to discriminate between inhibitory and activatory targets. Furthermore, 
simultaneous predictions for multiple target proteins improved the accuracy for proteins with limited ligand 
information. Finally, we demonstrated the utility of the proposed methods for predictions of drug targets and 
indications. We suggest that the proposed methods will facilitate the understanding of modes of action of candi-
date drug compounds.

Phenotype-based high-throughput screening (PHTS) can be used to identify drug candidate compounds that 
lead to desired phenotypes38. However, the underlying molecular mechanisms of hit compounds identified by 
PHTS remain unknown, and further investigations are required to determine target proteins with desired pheno-
type associations39,40. To this end, the present methods can be used to relate phenotypic effects of hit compounds 
with corresponding target proteins. Drug repositioning may also be a promising application of the proposed 
method, because although various computational methods for systematic drug repositioning have been devel-
oped using molecular data16,41–50, most of these are purely predictive and lack biological relevance. In contrast, 
the present method can indicate comprehensive drug–target–disease networks in which inhibitory and activatory 
targets are distinguished for drugs and diseases.

Another promising application of the proposed method may be in the prediction of adverse drug effects13,51–53. 
For example, drugs that inhibit dopamine receptors should not be prescribed for Parkinson’s disease, because 
dopamine agonists are medications for Parkinson’s disease. Similarly, drugs that activate dopamine receptors 
should not be prescribed for psychotic patients, because some anti-psychotics drugs are inhibitors of dopamine 
receptors. Accordingly, the present method facilitates evaluations of risk in clinical applications.

As a result of investigating our hypothesis, we showed that inhibitors (resp. activators) were correlated with 
inhibitory targets (resp. activatory targets) in terms of gene expression patterns, but these correlations were 
sometimes weak. We also showed that the weak correlations could be overcome to some extent by simultaneous 
prediction with a machine learning technique. However, there remains much room for the improvement of the 
proposed method. For example, the identification of features predictive towards the labels and the improvement 
of cell-averaging/cell-concatenating operations are important tasks. We would like to tackle these problems as 
important future works.

Methods
Chemically-induced and genetically-perturbed transcriptome.  Gene expression profiles from the 
Library of Integrated Network-based Cellular Signatures (LINCS) project were obtained from the Broad Institute’s 
website (http://download.lincs-cloud.org/)54, and the effects of chemical treatments, gene knock-down, and gene 
over-expression were compared. In this study, we used gene expression profiles of chemical treatments to repre-
sent drug features. Subsequently, we analyzed gene expression profiles following gene knock-down to represent 
features of inhibitory target proteins, and gene expression profiles following gene over-expression to represent 
features of activated target proteins. Gene expression levels were measured using flow cytometry, and test samples 
were prepared using 384-well plates. LINCS provided 978 landmark genes (L1000 genes). We used the expression 
of 978 landmark genes as the gene expression signatures in this study.

We prepared three types of gene expression profiles, including drug candidate compounds, inhibitory target 
proteins, and activatory target proteins (Fig. 1A). We selected 663,572 chemical treatment signatures (“trt_cp”), 
448,737 gene knock-down profiles (“trt_sh”), 86,267 gene over-expression profiles (“trt_oe”), and 81,342 con-
trol profiles (“ctl_”). We then normalized gene expression profile values to corresponding control profiles and 

Figure 6.  Dose response curve of dienestrol (solid line) in the RAR α assay in the antagonist and agonist 
modes. The horizontal axis shows the log concentration of dienestrol. The vertical axis shows percentage 
dienestrol activity. Circles represent data points from triplicate experiments.

http://download.lincs-cloud.org/
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calculated z-scores. Compounds with chemical treatment signatures and proteins encoded by the genes that 
were identified in gene knock-down and over-expression signatures were converted to InChIKey (http://www.
iupac.org/home/publications/e-resources/inchi.html) and KEGG GENE IDs26, respectively. We obtained a total 
of 114,642 chemical treatment signatures including 20,122 compounds and 71 cell lines, 37,558 gene knock-down 
signatures including 4,331 proteins and 20 cell lines, and 19,859 gene over-expression signatures including 2,946 
proteins and 10 cell lines.

Gene expression profiles for single drugs or genes were generated using multiple cell lines. Thus, we used 
cell-averaging and cell-concatenating operations. For cell-averaging operations, all cell line profiles were aver-
aged, and in cell-concatenating operations, all cell line profiles were concatenated into a single profile.

Inhibitory and activatory compound–protein interactions.  Inhibitory and activatory interactions 
of compound–protein pairs, including drug–protein pairs, were obtained from the seven public databases 
ChEMBL22, MATADOR23, DrugBank24, Psychoactive Drug Screening Program Ki (PDSP-Ki)25, KEGG DRUG26, 
BindingDB27 and Therapeutic Target Database28.

For ChEMBL, we selected only compound–protein interaction pairs that were clearly denoted as active inter-
actions or had a binding affinity less than 30 μM. We used the following criteria to select inhibition or activation 
pairs from the interactome database. We selected the drug–protein pair with defined inhibition or activation 
interactions (definition field includes the”inhibitor”,”activator”,”antagonist” or”agonist”). In addition, we selected 
interaction pairs with inhibitory binding affinity units (IC50 and Ki) as inhibition pairs. We selected compound–
protein pairs with defined inhibitory or activatory interactions using the following definition fields: inhibitor, 
activator, antagonist, and agonist, and selected interaction pairs with inhibitory binding affinity data. In total, 
10,031 compound–protein inhibitory interactions (2,445 compounds and 769 proteins) and 432 compound–pro-
tein activatory interactions (350 compounds and 77 proteins) were obtained. The compound–protein interactions 
consisted of compounds and proteins from chemical treatment signatures, gene knock-down signatures, and gene 
over-expression signatures were used as gold standard data in CV experiments to evaluate the performance of 
drug target estimation.

Direct correlation (DC) method.  To predict inhibitory and activatory interactions, correlation coefficients 
of chemical treatment signatures and gene knock-down signatures, and correlation coefficients of chemical treat-
ment signatures and gene over-expression signatures were calculated, respectively. Highly correlated compound–
protein pairs were considered candidate interaction pairs, and the corresponding correlation coefficients were 
used as prediction scores.

Joint learning (JL) method.  Individual predictive models were constructed for multiple target proteins, 
and the models simultaneous learning was achieved by sharing protein similarities based on gene knock-down 
and over-expression profiles.

In these computations, we predicted whether or not a given compound Xi(i = 1,2, … , N) would inhibit or 
activate the m-th target proteins (m = 1, 2, … , M). We then constructed statistical models defined as 

φ=f X Xw( ) ( )m
inh

i m
inh

i
T  and φ=f X Xw( ) ( )m

act
i m

act
i

T , where compound Xi is represented by the chemical treatment 
signature φ X( )i , wm

inh is a weight vector for inhibiting the m-th target protein, and wm
act is a weight vector for acti-

vating the m-th target protein. To accommodate compound actions that are poorly characterized, we learned 
individual predictive models …f f f, , ,inh inh

M
inh

1 2 , by sharing known gene knock-down perturbations across M 
target proteins, and learned …f f f, , ,act act

M
act

1 2 , respectively, by sharing known gene over-expression perturba-
tions across M target proteins. Details of the algorithm are described in the Supplementary Information.

Performance evaluation protocol.  To perform CV experiments, all compounds in the gold standard 
compound–target interaction datasets were split into five subsets for use as test data and the other subsets were 
used as training data. Target proteins of test compounds were then predicted using a predictive model that was 
constructed with training data. Finally, prediction accuracy was evaluated using prediction scores of all test 
compounds.

The number of positive samples is much smaller than that of negative samples in the gold standard datasets. 
In this study, there are 10,031 positives and 1,870,174 negatives for inhibition and 432 positives and 26,518 nega-
tives for activation. In general, the imbalanced sets produce low AUPR values. In practice the number of negative 
examples is much larger than that of positive examples, thus it is important to simulate such practical situations 
in the cross-validation experiments. We evaluated the accuracy for individual proteins and calculated the average 
over the proteins. Many proteins have few ligands (e.g., only one or two drugs inhibiting/activating the proteins), 
thus it is very difficult to learn on such a small number of positive examples. Thus, the resulting AUPR scores tend 
to be low.

Drug indication predictions.  Drug indications (applicable diseases) were predicted from target profiles 
of drugs, including primary targets, off targets, and target profiles of diseases. For each drug–disease pair, we 
identified inhibitory and activatory target proteins that appeared in the drug target profile and in the disease 
target profile. Drugs were then linked to diseases when at least one common target protein could be distinguished 
in terms of inhibition and activation. We repeated this procedure for all drug–disease pairs and extended pre-
vious methods50 by accommodating differences between inhibition and activation. Details are described in the 
Supplementary Information.

In vitro assays.  The effects of compounds against human retinoic acid receptor alpha (RAR α) were deter-
mined using Mammalian one-hybrid type GAL4-Reporter Gene Assays, which were performed by Phenex 

http://www.iupac.org/home/publications/e-resources/inchi.html
http://www.iupac.org/home/publications/e-resources/inchi.html
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Pharmaceuticals AG using HEK293 cells (DSMZ ACC 305). Assays were conducted in two modes, agonist and 
antagonist, where the compound was tested at 9 concentrations with 2 vehicle controls in quadruplicate. In the 
antagonist mode, lower levels of luminescence were observed for higher concentrations of antagonists, whereas in 
the agonist mode, higher levels of luminescence were observed for higher concentrations of agonists. More details 
of the experimental procedures are presented in the Supplementary Information.
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