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A new and general approach to 
signal denoising and eye movement 
classification based on segmented 
linear regression
Jami Pekkanen   & Otto Lappi  

We introduce a conceptually novel method for eye-movement signal analysis. The method is general 
in that it does not place severe restrictions on sampling frequency, measurement noise or subject 
behavior. Event identification is based on segmentation that simultaneously denoises the signal and 
determines event boundaries. The full gaze position time-series is segmented into an approximately 
optimal piecewise linear function in O(n) time. Gaze feature parameters for classification into fixations, 
saccades, smooth pursuits and post-saccadic oscillations are derived from human labeling in a data-
driven manner. The range of oculomotor events identified and the powerful denoising performance 
make the method useable for both low-noise controlled laboratory settings and high-noise complex 
field experiments. This is desirable for harmonizing the gaze behavior (in the wild) and oculomotor 
event identification (in the laboratory) approaches to eye movement behavior. Denoising and 
classification performance are assessed using multiple datasets. Full open source implementation is 
included.

Humans and other foveate animals – such as monkeys and birds of prey – visually scan scenes with a character-
istic fixate-saccade-fixate pattern: periods of relative stability are interspersed with rapid shifts of gaze. During 
“fixation” the visual axis (and high-resolution foveola) is directed to an object or location of interest. For humans, 
the duration of the periods of stability is on the order of 0.2–0.3 s, depending on a number of factors such as task 
and stimulus complexity. The typical duration of saccadic eye movements in on the order of 0.01–0.1 s, depending 
systematically on the amplitude of the movement1.

If the scene contains moving target objects, or when the observer is moving through it, then stabilization of 
gaze on a focal object or location requires a “tracking fixation”, i.e. a smooth pursuit eye movement. Here the eye 
rotates to keep gaze fixed on the target. Also, when the observer’s head is bouncing due to locomotion or external 
perturbations, gaze stabilization involves vestibulo-ocular and optokinetic compensatory eye movements. In nat-
ural behavior, all the eye movement “types” mentioned above are usually simultaneously present, and cannot nec-
essarily be differentiated from one another in terms of oculomotor properties or underlying neurophysiology2–5.

It is possible to more or less clearly experimentally isolate each of the aforementioned “types” in experiments 
that tightly physically constrain the visible stimuli and the patterns of movement the subject is allowed to make. 
Much of what we know about oculomotor control circuits is based on such laboratory experiments where the 
participant’s head is fixed with a chin rest or a bite bar, and the stimulus and task are restricted so as to elicit only 
a specific eye movement type. In order to understand how gaze control is used in natural behavior, however, it is 
essential to be able to meaningfully compare oculomotor behavior observed in constrained laboratory recordings 
to gaze recordings “in the wild”2,5–7.

Laboratory grade systems typically have very high accuracy and very low noise levels. Sampling frequencies 
may range from 500 to as high as 2000 Hz. As the subject’s behavior is restricted, it is possible to tailor custom 
event identification methods that rely on only the eye movement type of interest being present in the data (and 
would produce spurious results with data from free eye movement behavior). On the other hand, mobile meas-
uring equipment has much lower accuracy and relatively high levels of noise, with sampling frequency typically 
between 30 and 120 Hz. The subject’s behavior is complex, calling for robust event identification that works when 
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all eye movement types are simultaneously present. Unfortunately, these different requirements have led, and 
increasingly threaten to lead, the methodologies and concepts of “laboratory” and “naturalistic” research into 
diverging directions. For wider generalizability of results, it would be desirable to analyze eye movement events 
in a similar way across task settings, by using event detection methods that do not rely on restrictions or assump-
tions which are not valid for most natural behavior.

Here, we introduce Naive Segmented Linear Regression (NSLR), a new method for eye-movement sig-
nal denoising and segmentation, and a related event classification method based on Hidden Markov Models 
(NSLR-HMM). The approach is novel in that it differs in concept from the traditional workflow of pre-filtering, 
event detection and segmentation. Instead, it integrates denoising into segmentation which is now the first – 
rather than the last – step in the analysis, and then performs classification on the denoised segments (rather than 
sample-to-sample). The method is general in two ways: Firstly, it performs a four-way identification of fixations, 
saccades, smooth pursuits and post-saccadic oscillations, which allows for experiments with complex gaze behav-
ior. Secondly, it can be directly applied to noisy data to recover robust gaze position and velocity estimates, which 
means it can be used on both high-quality lab data and more challenging mobile data on natural gaze behavior. 
The method also automatically estimates the signal’s noise level and determines gaze feature parameters from 
human classification examples in a data-driven manner, requiring minimal manual parameter setting.

We believe this is an important development direction for eye movement signal analysis as this can help 
counteract the historical tendency in the field of eye tracking to develop operational definitions of eye move-
ment “types” that are based on very specific and restrictive oculomotor tasks and event identification methods 
tailor-made for them (and then “reify” the types as separate phenomena). In contrast, our method has a number 
of desirable features that compare favorably with the state of the art and will in part help harmonize the traditional 
oculomotor and more naturalistic gaze behavior research traditions:

 1. The NSLR method is based on a few simple and intuitively transparent basic concepts.
 2. It requires no signal preprocessing (e.g. filtering, as denoising is inherent into the segmentation step), and 

no user-defined filtering parameters.
 3. Segmentation is conceptually parsimonious and uses only a few parameters (that can be estimated from 

the data itself).
 4. No “ground truth” training data from human annotators is necessary for segmentation. (Human coding 

data is needed for classification, which is treated as a separate subproblem).
 5. The HMM classifier can identify four types of eye movement (saccade, PSO, fixation, pursuit).
 6. This classification uses global signal information. (It is not based on sample-wise application simple criteria 

such as duration or velocity thresholds).
 7. Because of its wide range of oculomotor event identification and powerful denoising performance it can 

be used for both low-noise laboratory data in tasks that only elicit one or two types of oculomotor events 
and high-noise field data collected during complex behavior. This is desirable for harmonizing the gaze be-
havior (in the wild) and oculomotor event identification (in the laboratory) perspectives on eye movement 
behavior.

Full C++ and Python implementation of the method is available under an open source license at https://
gitlab.com/nslr/.

Gaze Signal Denoising
All eye-movement recordings contain some level of noise, ie high frequency variation in the signal not caused 
by movement of the eye itself. Total noise is a combination of several noise mechanisms, but mainly due to 
the vibration of the recording equipment in relation to the eyes with some additional noise inherent in the 
recording method (e.g. image sensor noise in optical tracking and environment’s electromagnetic noise in 
electro-oculography or scleral search coil recording). The noise level can vary by multiple orders of magnitude 
depending on the environment and equipment, from around 0.01° with scleral search coils or high-quality optical 
equipment in laboratory conditions, to around 0.3° with head-mounted cameras in mobile settings8, to well over 
1° in mobile recording with remote cameras9.

The ramifications of the measurement noise on event identification and on the interpretation of the results 
depend on how the gaze signal is analyzed, but in general, the noise introduces two kinds of challenges. Firstly, 
measurement noise directly leads to noise in estimates of the gaze features, such as gaze position or gaze angular 
velocity. Secondly, it causes problems when classifying the different eye movement types by using these gaze sig-
nal features, especially velocity.

Most contemporary event identification algorithms use sample-level features, e.g. sample-to-sample veloci-
ties10–12 which are especially prone to be affected by high-frequency noise. In order to avoid erroneous detections 
due to the noise, most of the algorithms rely on some kind of signal denoising, particularly in applications where 
signals need to be recorded in more challenging environments such as driving, outdoors, infant or nonhuman 
data, or free eye-hand coordination (cf.13,14).

A common denoising approach is to use some kind of linear time-invariant (LTI) filter, such as the 
Butterworth, the Gaussian or the Savitzky–Golay filter. These techniques have some favorable properties: they are 
well understood, high-quality implementations are readily available, they have low computational requirements 
and many can be run in online mode. However, especially in high-noise scenarios, the low-pass (noise smooth-
ing) part of the filters can significantly distort the relevant signal features, such as saccade velocities. This can be 
somewhat remedied by adding a high-pass (sharpening) component, but this can introduce artifacts of its own, 
especially it may introduce false oscillations (“ringing”). In general, finding an LTI parameterization that balances 
the noise reduction and signal distortion is a somewhat challenging problem15.

https://gitlab.com/nslr/
https://gitlab.com/nslr/
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Some of the LTI filters’ issues may be ameliorated with non-LTI filtering. Some such filters used for gaze sig-
nals filters include the median filter and its adaptations16, the Kalman filter17 and the Bilateral filter11. Although 
these do help with some of the LTI filters’ problems, they still share a main characteristic: the resulting signal is 
some sort of aggregate of a neighborhood of samples at any given point. Importantly for gaze signals, this means 
that every denoised sample is at least somewhat dependent on its full neighborhood, e.g. location of the preceding 
fixation’s samples has an effect on the denoised samples of the next fixation, although in reality, such dependency 
is largely eliminated by the saccade between the fixations.

On the other hand, the usually relatively small neighborhood limits the denoising algorithms’ accuracy, as 
they can’t use the full data. Methods for finding an estimate of the global optimum under some assumptions do 
exist, but most of these, such as sequential Bayesian smoothing and smoothing splines18, have prohibitive compu-
tational complexity and/or assume a signal form that is a poor fit for eye-movement data. One possible exception 
is the Total Variation filter and related techniques19, which tend to form stepwise constant estimates and can be 
approximated using fast iterative methods20, although to our knowledge these have not been used for gaze signal 
denoising.

Denoising by Naive Segmented Linear Regression. Our proposed method is based on the assumption 
that in most situations the gaze position signal is well approximated by a piecewise linear function, and events 
correspond to the pieces of such function. The method finds a piecewise linear function that approximately min-
imizes the approximation error, while taking account prior knowledge of typical eye movement characteristics.

A similar problem is often discussed as changepoint detection, and it’s been that a globally optimal solution 
for such problems can be found in linear time using the Pruned Exact Linear Time (PELT) method21. The PELT 
method builds on a previous idea known as the Optimal Partitioning method22. Under rather realistic assump-
tions, for each measurement of the time-series, we can form two hypotheses: either the current segment con-
tinues or a new one starts. Furthermore, if the measurement noise and probability of a new segment starting 
are assumed to be independent of the segmentation, a new segment starting from the currently most likely past 
segmentation has always the highest total likelihood. This result can be quite straightforwardly used to come up 
with an algorithm that finds the optimal segmentation, but with O(n2) computational complexity22, which renders 
it impractical for long and high sampling rate series such as produced by eye trackers.

The PELT method reduces the method’s complexity to O(n) by pruning segmentation hypotheses that can 
never yield the optimal result. Briefly, as starting a new segment always gives a lower regression error, segmen-
tation hypotheses with a smaller likelihood than the newly formed new segment hypothesis can never reach the 
new hypothesis’ likelihood, and thus can be ignored in future calculations.

The discussed changepoint detection methods are usually applied to piecewise constant functions, but we uti-
lize the PELT method to find an approximation of maximum likelihood piecewise linear segmentation assuming 
Gaussian distributed measurement noise in O(n) time. A central requirement for most dynamic programming 
methods, such as PELT, is that the problem has optimal substructure, i.e. it can be decomposed into independent 
subproblems. In our case of finding a maximum likelihood estimate, this means that the likelihood function 
must have a form where its value at a given step doesn’t depend on the future steps. The likelihood function of a 
continuous piecewise regression clearly doesn’t fulfill this requirement; changes anywhere in the function affect 
all of the segments and thus the likelihood.

In order to satisfy the optimal substructure criterion, we approximate the maximum likelihood segmentation 
by greedily satisfying the continuity condition, ie force each new linear segment to start with the currently pre-
dicted value of the previous segment. For the final estimate of the regression, we fit an optimal continuous regres-
sion to the segmentation obtained using the greedy continuity. Due to the greediness, we refer to the method as 
Naive Segmented Linear Regression (NSLR). The method is presented more formally along with a Python imple-
mentation in a Supplementary Note. More performant C++ implementation with Python bindings is available 
at http://gitlab.com/nslr/nslr.

In order to avoid the trivial solution of every sample starting a new segment, segmented regression requires 
additional regularization to “penalize” too short segments. A common approach is to use a generic information 
criterion that penalizes for model complexity21, however, these are based on asymptotic behavior of certain mod-
els – such as ARMA models and ordinary linear regression – which likely differ from our model regarding model 
complexity and overfitting23. Furthermore, incorporating knowledge of the underlying signal into the penaliza-
tion should improve the denoising performance. In order to take account specifics of our model and character-
istics of gaze signals, we present numerically estimated penalty factors based on simulated eye movement data.

Measurement noise and segmentation penalty parameters. The final objective function depends only on two 
parameters: variance of the measurement noise and the penalty factor for starting a new segment. However, for 
eye movement analysis especially the penalty factor is rather far removed from how practitioners assess the signal 
properties and cannot be easily expressed as a verbal rule of thumb or intuited from the raw data; as indicated by 
our simulation results, an optimal penalization parameter value depends on multiple characteristics of the under-
lying signal. For a more intuitive parameterization, we use synthetic eye movement data simulating different eye 
movement scenarios and formulate the penalty factor as a function of saccade amplitudes, slow eye movement 
durations, and slow eye movement velocities.

Given a penalty factor, the measurement noise level can be optimized automatically. This is done iteratively 
by observing standard deviation between reconstruction and the signal and using this as the noise estimate for 
the next iteration. The iteration is stopped when a standard deviation observed earlier is repeated. The standard 
deviation of the signal itself is used as the initial estimate.

The automated estimate can mostly account for uncorrelated high-frequency noise, but gaze signals also do 
have some correlated noise (see Human eye movement data) and minute eye movements (e.g. microsaccades or 

http://gitlab.com/nslr/nslr
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tremors) that are generally considered irrelevant for macro level oculomotor event identification. In order to treat 
these as “noise”, we propose adding an additional “structural error” value to the estimated noise, with value typi-
cally around 0.1°, especially when using the segmentation for event identification with low noise signals.

Combined with the typical eye movement characteristics, provided here with the algorithm, the automatic 
noise estimating means that the denoising and segmentation method can be in most cases used without any user 
specified parameters. The parameter estimation method and resulting parameterizations are presented in detail 
in the Supplementary Methods.

Denoising performance results. We study the denoising performance of the NSLR method by measuring 
its ability to recover the recorded eye position from a noisy signal. The performance is compared to the Wiener 
filter, which, as the optimal linear time-invariant filter for this measure provides an upper bound of performance 
for any LTI filter, and to the nonlinear Total Variation denoising filter19. Total Variation filter was chosen as the 
reference nonlinear filter based on some favorable theoretical properties (see Gaze Signal Denoising) and on 
informal experimentation where it compared favorably with various nonlinear filters. The parameters of both 
reference methods are optimized against the ground truth data (see Denoising benchmarking), thus providing 
approximate upper bound of their performance. Note that NSLR uses the default parameterization and automati-
cally estimates the noise level, without access to the ground truth data (see Measurement noise and segmentation 
penalty parameters).

We use two elsewhere recorded high-quality gaze signal datasets which include both stationary and mov-
ing targets (see Human eye movement data), and one simulated dataset (see Simulated eye movement data) as 
recordings. Recording noise is simulated by additive axis-independent Gaussian noise with the standard devia-
tion ranging from 0.03° to 3.0°. An excerpt from a recording from24 with NSLR denoising at different noise levels 
is plotted in Fig. 1.

Denoising performance measured using Improvement in Signal-to-Noise Ratio (ISNR), which is plotted for 
each algorithm in Fig. 2. At very small noise levels (σ ≲ 0.1°), NSLR has the weakest performance on all datasets. 
This is likely due to linear approximation error of the gaze signals’ nonlinearity dominating over denoising on 
very low noise levels. In the non-simulated datasets, some additional nonlinearity is introduced by the orig-
inal recording’s measurement noise (see Human eye movement data). On higher noise levels, NSLR and the 
per-recording optimized Total Variation filter have a similar denoising performance, with NSLR slightly stronger 
on moderate noise levels (0.3° ≲ σ ≲ 1.5°). Apart from very low noise levels, the Wiener filter has clearly the worst 
performance. This is likely due to linear time-invariant filters’ inherent difficulties with abrupt changes in a sig-
nal’s spectral features during fast saccade movements. Figure 3 shows an example of the time series behavior of 
the different algorithms.

Figure 1. Horizontal gaze position time series excerpt of a recording where the participant is watching a 
movie clip24. The panels show three different levels of simulated measurement noise (standard deviation from 
top to bottom: 0.1°, 0.5°, 1.5°). Red lines indicate the denoising result of NSLR (the identified segments) with 
the default parameters and automatically-from-data inferred noise level. For both axes, see Supplementary 
Figures S1–S3.
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Event Identification
Event identification in the eye tracking literature refers to methods that classify a sequence of raw data samples 
from an eye tracker – usually a time series of eye horizontal and vertical rotations – into discrete event types 
(event detection), and determine the begin and end points of oculomotor events, ie successive samples belonging 
to the same type (segmentation)10. In static scenes, the event classes are usually fixations and saccades. In dynamic 
scenes, or ones including observer movement, fixations are either replaced by or augmented with the smooth 
pursuit eye movement event class. This immediately causes problems for standard methods developed mainly 
for static stimuli11. Also, methods that ignore post-saccadic oscillations (PSO’s) face problems. Whether the PSO 
is placed to the end of a saccade or the beginning of the fixation/pursuit clearly affects effect durations25. Also if 
gaze velocity is used as a feature for identifying saccades (and differentiating them from smooth pursuit), then it 
makes a difference whether the relatively high-speed observations during the transition from the saccade to the 
slow phase movement are placed into the fixation/pursuit event, or treated as a separate event type.

Traditionally, event detection was done by hand. Classification relying on the intuition of an experienced 
researcher is still taken to represent a “gold standard” or ground truth in many cases11,26,27. A number of algorith-
mic methods have been developed, the advantage of which is that they can make use of more explicit and repro-
ducible rules and criteria, and, hence, offer in principle potential for greater transparency and reproducibility of 
results. In practice, however, manufacturer provided algorithms are typically not documented or available as open 
source code, and the generality and agreement between algorithms does not meet the level of human experts’ 
labeling28,29. To ensure the replicability of results across groups using different eye-tracking equipment and phys-
ical apparati, the development of more standardized and, most of all, publicly available methods for analyzing the 
eye tracker signals are desirable.

Another drawback of many methods in wide use today is that a number of parameters have to be adjusted by 
the user. This includes not just parameters for filtering the raw signal but also for specifying the basic properties 

Figure 2. Denoising performance (higher is better) of NSLR in comparison to the Total Variation and Wiener 
filters at different noise levels. Results are shown for human data and one simulated dataset. Total Variation and 
Wiener parameters were numerically optimized against each recording (see Denoising benchmarking). NSLR 
was run using its default parameters (see Measurement noise and segmentation penalty parameters).

Figure 3. Sample time series of a simulated linear smooth pursuit (solid black line) separated by saccades, 
and the denoising results of the three benchmarked algorithms with simulated sampling noise level of 1.5° 
(gray data points). NSLR (solid red line) identifies four segments. Note that it approximates the intersaccadic 
slow movement interval as two separate linear segments, with the first corresponding to the post saccadic 
oscillation. Total Variation (dotted blue line) and Wiener (dotted green line) filters reduce the measurement 
error considerably as well. Total Variation produces an approximately piecewise constant signal, which is 
characteristic to this algorithm. Wiener filter recovers the PSO well but exhibits ringing effects during the more 
linear part. Supplementary Figures S4–S6 show NSLR with different simulated noise levels using the simulated 
data.
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of each event type (such as minimum acceleration of a saccade, maximal dispersion during or minimum duration 
of a fixation). These event detection parameters need to be adjusted on the basis of empirical assumptions about 
the dynamics of the event of interest, while simultaneously considering sampling frequency and measurement 
noise, and effects of the filtering step. Unfortunately, no hard and fast rules exist, and parameters are often chosen 
by trial and error (or simply copying values from the literature) which is counter the to the desiderata of repro-
ducibility and transparency.

Event identification with a Hidden Markov Model. The segmentation produced by NSLR can be inter-
preted as a series of discrete oculomotor events, with end boundaries. For traditional event identification that 
aims to parse the signal into events of different “types”, all that remains is to classify each segment into one type.

We will demonstrate the method using the annotated dataset by Andersson et al.11, allowing direct compari-
son of our method to human labeling. We will identify all four classes annotated by the human experts (fixation, 
saccade, post-saccadic oscillation and smooth pursuit). For this purpose, we use a four-class Hidden Markov 
Model classifier with observations modeled using multivariate Gaussian distributions of log-transformed veloci-
ties and Fisher-transformed cosine of the angle between subsequent segments.

The XY angle (in screen coordinates) between subsequent samples has been used in differentiating between 
smooth pursuits and fixations12, but is also useful for identifying post saccadic oscillations. In a PSO the gaze 
position rapidly oscillates at the end of a saccade with roughly 180-degree reversals. This property can be used 
to separate PSO’s from the preceding saccade and ensuing fixation/pursuit. Including PSO’s in the model also 
improves performance on identifying saccades, fixations, and pursuits themselves.

Traditional event detection methods rely on sample-to-sample velocities for classification and a separate 
pre-filtering step. Using the segmented signal has two major advantages over such methods. The velocity and 
amplitude estimates are more robust and based on a method that uses raw, unfiltered eye position signal, thus 
preserving velocity information in the data. Also, features of whole segments (e.g. duration or angle) rather than 
just individual samples can be used as a classification feature.

Figure 4 shows the log gaze speed and inter-segment angle values for each segment identified by NSLR. The 
color of each datapoint indicates the event class assigned (to the majority of samples in the segment) by a human 
annotator. To estimate the per-class feature distributions, we first classify label each segment using the human 
classification the dataset by Andersson et al.11. Using such classified samples, each class’ distribution is estimated 
using sample mean and variance.

As can be seen from the figure, the distributions of the segments divide the feature space into three clusters, 
corresponding to saccade, PSO and fixation/pursuit, and there is still substantial overlap between the clusters. 
To remedy some of the overlap, an HMM with transition probabilities given in Fig. 4 were used. Transition 
probabilities are mostly used to enforce that post-saccadic oscillations can only occur after saccades, and a sac-
cade cannot directly follow a PSO. Also, direct transitions between smooth pursuit and fixation classes are given 
lower probabilities than the “merging” of successive fixations or pursuits. This formalizes a kind of “labeling 
inertia”: a non-saccadic segment between fixations is more likely to be classified as a fixation, and a non-saccadic 
segment between smooth pursuits is more likely to be a smooth pursuit. To avoid the Markov model switching 

Figure 4. Parameterization of the event classifier. Top: Segment classification (human) based on the 
annotated dataset of11, and 90% highest density regions of the per-class estimated distributions. Each datapoint 
corresponds to one segment given by NSLR. Bottom: Transition probabilities of the four-state HMM.
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between classes in contiguous non-saccadic segments the transition probabilities between classes are set at half 
the within-class transition probability (1/5 vs. 2/5). All other feasible transitions are given equal probability to 
transition into any feasible state. The initial state probability is uniform 1/4 across classes.

The transition probabilities could also be directly estimated from the data. However, we opted for the sim-
ple state transition model described because observed transitions depend greatly on the dataset used: e.g. if 
the majority of the recordings are of static stimuli, transitions into smooth pursuits from any class are rare just 
because they are not observed. The choice to introduce the “labeling inertia” was partly inspired by examining the 
human labeling, but also due to the fact that very low-velocity segments can be detected during (slower) smooth 
pursuits due to measurement noise.

Per-segment classes are estimated by finding the maximum likelihood event sequence under the model using 
the Viterbi algorithm. All segments in the data set are thus classified to maximize the overall likelihood (rather 
than going through the data series one segment at a time with the previous segment fixed in the previous step). 
Sample-level classification is attained by assigning all samples belonging to a segment into the segment’s class.

Classification compared to human labeling results. The agreement with manual human event detec-
tion was assessed using the human annotated dataset by Andersson et al.11, which also includes classifications of 
10 different algorithms with parameters tuned for this dataset. For NSLR, the feature distributions of the classes 
were estimated from the human labeled data as described above.

Table 1 lists Cohen’s kappa values for the human raters, NSLR, and the ten algorithms. For four-class classifica-
tion, the average per-class Cohen Kappa values between the two human raters and NSLR indicate high agreement 
(0.82) for saccades, and moderate agreement for fixations (0.51), smooth pursuits (0.43) and post-saccadic oscil-
lations (0.53), with overall Kappa of 0.43. Out of the 11 algorithms, this is the strongest agreement for all classes 
except for post-saccadic oscillations, on which NSLR-HMM is second to the LNS algorithm specifically designed 
to detect post-saccadic oscillations30.

Of the included algorithms, NSLR-HMM is the only one that includes all four classes, and only two others 
include post-saccadic oscillations. To include all of the algorithms for an overall benchmark, we study saccade 
versus slow eye movement binary classification by collapsing all slow eye movements (fixations, smooth pursuits 
and post-saccadic oscillations) into a single class. In binary classification, NSLR has the highest agreement with 
the human raters with Kappa of 0.82 although LNS has similar Kappa score of 0.81.

The majority of total classification disagreement in the four-class classification can be attributed to the dif-
ficulty in distinguishing between fixations and smooth pursuits. This can be expected by examining the feature 
distributions of the classifier (see Fig. 4), where the two classes overlap considerably. One such disagreement with 
a human classification can be seen in Fig. 5, where a rather low-velocity segment is classified as a fixation by the 
human coder but as a smooth pursuit by NSLR-HMM. Examples of NSLR-HMM classifications using real-world 
noisy data can can be seen in Supplementary Figures S8–S11.

Future Directions
One obvious idealization the method uses is the assumption of linear (in the XY plane) form of eye movements, 
which leads to some reconstruction inaccuracy during saccades, and forces the method to reconstruct curved 
pursuit movements from successive linear segments. Nonlinear segments could probably improve accuracy, but 
it’s unclear if such can be even approximated in linear time (the segmentation problem becomes the full penalized 
spline problem). And, as shown, despite the clearly counterfactual idealization the linear segmentation actually 
does a very good job.

Of course, we have here demonstrated the method only on human data collected during watching natural-
istic pictures and movies. These datasets have the benefit of being originally measured with very high accuracy, 
giving us an empirical ground truth to compare the performance under added simulated noise against. One 
obvious next step is to formally show how the method works for fully naturalistic free-head-movement locomotor 
real-world data. For a qualitative view on how NSLR-HMM performs on such data, please see Supplementary 
Figures S8–S11. As can be seen from these samples, naturalistic data tends to have outlier measurements, which 
violate our assumption of gaussian noise. Making the segmentation robust to such outliers should be rather 
straightforward by including an “outlier hypotheses” in the segment estimation (such was already used in a pre-
vious version of the method for very noisy driving data31).

To benchmark classification with more naturalistic data, large annotated datasets with multiple event types 
labeled by experts would be needed. Here, though, there is an additional conceptual complication: the way ocu-
lomotor events are defined and identified can be conceptually quite different in naturalistic and laboratory tasks. 

Class Human
NSLR-
HMM LNS IVT EM IHMM NH IKF IMST IDT CDT BIT

Binary 0.90 0.82 0.81 0.76 0.74 0.70 0.67 0.58 0.55 0.47 0.42 0.41

Saccade 0.90 0.82 0.81 0.76 0.74 0.70 0.67 0.58 0.55 0.47 — —

Fixation 0.81 0.51 — 0.31 — 0.32 0.20 0.32 0.10 0.09 0.26 0.32

Smooth pursuit 0.79 0.42 — — — — — — — — — —

PSO 0.73 0.53 0.64 — — — 0.24 — — — — —

Table 1. Cohen’s Kappa values for algorithm versus human agreement for NSLR and the ten algorithms 
included in the study of11. A dash indicates that the algorithm doesn’t (explicitly) use that class. Best performing 
algorithm for each class is in boldface.
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Perhaps the main mismatch is that “fixations” are usually discussed in terms of traditional laboratory settings, 
i.e. static environments with usually fixed observer position. Such settings lead to a signal that is approximately 
constant during fixations which are separated by fast saccades. In naturalistic settings such signal almost never 
occurs; even with static environment, the observer usually moves, which leads to gaze signal dominated by “slow 
eye movements”, or smooth pursuit and compensatory eye movement events. From the task analysis perspective, 
these are fixations to scene targets, but from the traditional oculomotor perspective such eye movements are usu-
ally seen as a “separate” smooth pursuit case5. How and whether to separate fixation from smooth pursuit remains 
an open conceptual issue that impacts the desiderata of event identification. As the function of a classification is 
to reflect this conceptual separation, not vice versa, the algorithmic classification results should mirror, or at least 
be interpreted from, the task analysis perspective.

The event identification accuracy could be improved by including apriori assumptions about durations of the 
different event types. One way could be using the segment durations as a classification feature, but we decided 
against this as the segment durations vary also due to recording noise, sampling rate and microevents, thus 
hindering generalizability. A more principled and generalizable way would be to use a Hidden Semi-Markov 
model, which support more flexible duration distributions, but at the cost of significantly higher computational 
complexity32.

The current formulation of NSLR-HMM requires human labeled data for the classifier parameter estimation. 
As it’s formulated as a Hidden Markov Model, the parameters could be automatically estimated using standard 
HMM reestimation methods like the Baum-Welch and the Viterbi reestimation algorithm, as is often done with 
the I-HMM identification algorithm10. However, in our informal experiments such reestimation tended to con-
verge to rather bad solutions, which we hypothesize at least partly to be due to the weak separation of fixations 
and smooth pursuits in the feature space (see Fig. 4). Should this be the reason, the reestimation could be made 
more robust using a hierarchical model, where the fixation/pursuit would be estimated first as a single class, and 
the separation between these classes would be estimated independently of the other classes (if a strict fixation/
pursuit separation is desired).

The most principled and likely most effective development to increase an accuracy of both denoising and 
event identification would be to identify the segments and events in an integrated manner. This would involve 
integrating the prior knowledge of the durations and segment slopes of the different classes into the segmentation 
algorithm. Such formulation would, however, violate the PELT method’s assumptions even further and could 
prove difficult to do in a performant and accurate manner.

The presented formulations of denoising and event identification are based on finding an approximate global 
optimum based on the whole data, and thus are not directly applicable to online use. NSLR could be used for 
zero-latency denoising quite simply by greedily estimating the current point based on the currently viable hypoth-
eses, for example by taking the predicted value of the current most likely hypothesis, or a likelihood-weighted 
average of all hypotheses. Somewhat better performance would be expected if some latency is tolerated and NSLR 

Figure 5. Sample-level data from a gaze recording where the participant is watching a video of a triple jumper 
passing in front of the camera. For a more detailed view, please see the Supplementary Figure S7. Data and 
human labeling from11. Left: Vertical and horizontal recorded gaze position samples. Dot colors indicate human 
coder four-way classification, the thin red line shows the piecewise-linear NSLR segments. Top right: Time 
series of the vertical gaze coordinates and NSLR reconstruction overlaid. Color coding as in the left panel. 
Bottom right: Individual segments extracted by NSLR, color coded to show the four-way classification of the 
segments by NSLR-HMM.
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would be formulated e.g. as a fixed-lag smoother. However, behavior and performance of such usage should be 
studied empirically, as effects of the hypothesis pruning and greedy continuity enforcement are not understood. 
Furthermore, the resulting estimate would lose the piecewise linear structure, which introduces difficulties for the 
segment-based HMM classification.

Finally, it should be repeated that NSLR finds only an approximation of the optimal segmentation. The ramifi-
cations of our greedy approximation are not currently understood, although it almost certainly causes some bias 
in the estimate. The future inquiry should at least study these biases, and ideally, find methods to reduce or even 
eliminate them by an optimal algorithm.

Discussion
We have introduced here a method for eye-movement signal analysis, NSLR-HMM, that has some novel and 
desirable features compared to the state of the art. The most important novelty lies in the way the workflow of 
the algorithm differs from the more the traditional workflow for event identification, where the signal is usually 
pre-filtered before event identification, and event detection and segment boundaries are based on a sample-wise 
application of heuristic rules (such as hard event duration or eye speed thresholds).

With NSLR-HMM event identification begins with segmentation that simultaneously denoises the signal and 
determines segment boundaries. What is more, NSLR is not performed by proceeding one sample at a time but 
based on a search for an approximately optimal segmentation of an entire time-series measurement. Our imple-
mentation can process tens of thousands of samples per second on a normal laptop PC, regardless of the time 
series length.

An important advantage is that the signal need not (and should not) be pre-filtered. Thus, the user is not 
required to make critical preprocessing choices that potentially affect the appropriate parameter choices in sub-
sequent event identification. (For example, low-pass filtering leads to a lowering of observed gaze speeds, which 
affects the results of velocity-based thresholding algorithms). Of course, such choices of event identification 
threshold values themselves would also make substantial empirical assumptions (e.g. minimum fixation dura-
tion), which become incorporated into the reduced event time series data. When these choices are based on 
accepted practice (values copied from previous studies) there is a danger that such assumptions will not be tested 
against the accumulating data, and will propagate in the literature without being proper replications. Clearly an 
undesirable state of affairs — which can be much mitigated by adopting our analysis method that is not based on 
prefiltering and thresholding, and does not make the user face the complex and poorly understood problem of 
matching filtering and event identification parameters.

The classification step does require empirical assumptions about the underlying dynamical characteristics of 
the eye movements one is interested in, and we use human labeling data to estimate the parameters for the clas-
sifier. However, these assumptions are not expressed in the form of a few local rules (e.g. sample to sample gaze 
velocity). Human expert classifiers do not follow such rules, but observe an overall pattern in the signal and rely 
on their experience which may not be reducible to a small number of rigid rules. This makes us suspect that any 
algorithm that relies on such local rules rather using more global information in the signal is unlikely to be able 
to match a human labelling very well, at least when the algorithm cannot rely on highly restrictive assumptions 
about subjects’ gaze behavior, but needs to be able to classify a large number of eye movement types (four in our 
case).

Conclusions
For over a hundred years, the oculomotor system has served as a model system for studying motor control, and 
as a window into perception, cognition and other higher brain functions. Over the past 25 years, a wealth of stud-
ies on gaze behavior using more naturalistic stimuli and even real-world tasks has delivered important insight 
into oculomotor control in more complex settings than traditional oculomotor experiments33,34. Especially in 
difficult conditions, such as mobile eye tracking in real world tasks, event detection methods generally work on a 
prefiltered signal to avoid spurious detected events due to measurement noise but this leads to its own problems.

In laboratory conditions, the measurement noise is usually low and a subtle low-pass filtering usually suffices 
for most cases. However, for more challenging measurement environments and when studying more minute 
aspects of eye movements, such as microsaccades and subtler smooth pursuits, finding a filter that eliminates the 
noise but retains important signal characteristics can be demanding15.

Our approach that unifies signal denoising and segmentation, and treats segment classification (and its cor-
respondence to human labelling) as a separate problem, has the potential to remove many sources of error and 
aspects of “black art” from eye tracking signal analysis, encourage a more conceptually elegant and clear view of 
the event identification problem itself, and, hopefully help in the methodological and theoretical unification of 
the traditional laboratory oculomotor research and the study of complex gaze behavior “in the wild”.

Methods
performance in denoising and classification, we use three published human eye-movement datasets avail-
able11,24,35. In addition, we generate simulated eye movement data for estimating the parameterization of our 
method and for assessing the filtering performance in an ideal case where the absolute ground truth (gaze posi-
tion at each moment in time) is known and follows the model. The human datasets include both static and 
dynamic stimuli and are recorded with high-quality equipment in laboratory conditions.

Two of human datasets24,35 are used for evaluating NSLR’s denoising performance. Denoising performance 
is assessed using simulated Gaussian noise and measured using Improvement in Signal-to-Noise Ratio (ISNR), 
which is a rather straightforward transformation from the mean square errors of the denoising result and sim-
ulated noise. The reference algorithms are numerically optimized against the “ground truth”, ie the recording 
without additional noise.
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The third dataset11, which we use for evaluating the eye-movement classification performance, includes 
human four-way labeling by two coders. Ten different algorithms tuned for this dataset are compared with 
NSLR-HMM. Eye-movement classification is assessed using per-sample agreements with the human coders and 
measured using Cohen’s Kappa.

Human eye movement data. Andersson et al. The dataset by Andersson et al.11 was recorded with SMI 
HiSpeed 1250 at a 500 Hz sampling rate, with reported noise RMSD of about 0.03°, which translates to about 0.02° 
standard deviation per axis. The recording was binocular, but only the signal from the right eye was used. The 
signal was prefiltered using the equipment vendor’s implementation of the Bilateral Filter. Unfortunately, details 
of the implementation don’t seem to be documented by the vendor. See Fig. 6 for a sample of the signal.

The stimuli used include static images, video clips and moving dot targets. We include all of the recordings 
that were used in the evaluation of11, which totals in 35 recordings from 17 different participants.

Each recorded gaze sample is classified by two human coders into one of six classes: saccade, fixation, smooth 
pursuit, post saccadic oscillation, blink or undefined. The samples assigned to the latter two classes of either rater 
were included in the algorithms’ classifications but omitted when calculating the Cohen’s Kappa values. In addi-
tion, the dataset includes per-sample classification using ten different algorithms tuned in various degrees to the 
dataset. The algorithms and their parameterizations are documented in11. The dataset is available online at https://
github.com/richardandersson/EyeMovementDetectorEvaluation.

Vig et al. The dataset by Vig et al.24 consists of recordings of five participants watching movie clips from a video 
dataset36. The eye movements were recorded using SR Research EyeLink 1000 with sampling rate 1000 Hz. The 
recording was binocular and the resulting signal is the estimated gaze position using both eyes. The recording 
noise level is not reported, but we estimate its standard deviation to be around 0.03° per axis (see Fig. 7). No pre-
filtering step was reported.

The total data consists of 1706 recordings per subject, but some of these were omitted due to a high level (over 
20%) of outliers. For the denoising benchmark, we randomly selected 100 recordings out of recordings lasting 
over 20 seconds. The dataset is available online at https://doi.org/10.6084/m9.figshare.93951.v4.

Holland and Komogortsev. We used the “Dataset II” from the dataset by Holland and Komogortsev35. It was 
recorded using the EyeLink 1000 at 1000 Hz sampling rate using the monocular mode. The used stimuli were 
dot targets, which moved stepwise to induce saccades and linearly to induce smooth pursuits. The signal was 
prefiltered using the vendor’s implementation of the algorithm described by Stampe12,37. The signal seems to have 
high-frequency oscillatory-type correlated noise, which may be ringing introduced by the prefiltering. The noise 
level is not reported, but we estimate its standard deviation to be around 0.1° (see Fig. 8). The dataset is available 
online upon request at http://cs.txstate.edu/ ok11/embd_v2.html.

Simulated eye movement data. For parameter estimation, we generated random eye-movement 
sequences using a simplified eye-movement model. We simulate scenarios where a participant follows a target 

Figure 6. A sample recording of a single fixation from the dataset by Andersson et al.11.

Figure 7. A sample recording of a single fixation from the dataset by Vig et al.24.

https://github.com/richardandersson/EyeMovementDetectorEvaluation
https://github.com/richardandersson/EyeMovementDetectorEvaluation
https://doi.org/10.6084/m9.figshare.93951.v4
http://cs.txstate.edu/
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with their gaze. A scenario is parameterized by maximum fast phase amplitude a*, maximum slow phase duration 
d* and maximum slow phase velocity v*. To generate the gaze target signal, after each slow phase, the signal jumps 
from the current position to random direction with amplitude drawn from uniform distribution u(0, a*). After 
the jump, it starts a slow phase with duration drawn from u(0, d*) to a random direction with velocity drawn from 
u(0, v*).

To approximate eye-movement characteristics, we use a simple damped oscillator model38 with independent 
vertical and horizontal axes, and use position difference from the target signal as driving force: 
→ = →′ − → − →

̈x K x x D x( ) , where →̈x  is the (output) eye acceleration, →′x  is the target position, →x  is the eye posi-
tion, →x  is the eye velocity and KÂ and DÂ are scalar constants. See Fig. 9 for an example of the simulated data.

The parameterization of the eye model (K = 6000, D = 90), was selected so that the produced eye movements 
approximately follow the peak velocity, saccade duration and peak acceleration of the “saccadic main sequence”39. 
Completely faithful replication of the empirical main sequence results isn’t possible, as the model form forces the 
peak velocity and acceleration to be linear wrt. saccade magnitude, and the saccade duration is constant regard-
less of the magnitude. The produced signal can nevertheless be taken as quite a reasonable approximation, for our 
specific purpose of calibrating parameters for the NSLR algorithm. See Fig. 10 for a detailed view of a simulated 
fixation/slow smooth pursuit.

Figure 8. A sample recording of a single fixation from the dataset by Holland and Komogortsev35.

Figure 9. A sample time series of a simulated recording, where gaze (solid red line) tracks a target (dotted green 
line) that jumps from place to place producing rapid saccadic eye movements, and in between moves with a 
slow (down to zero) velocity producing slow movements/fixations. Noise is added and the signal resampled to 
produce simulated measurement data. Maximum fast phase amplitude a* = 10°, maximum slow phase duration 
d* = 1s, maximum slow phase speed v* = 5°/s and noise level σ = 1.0°.

Figure 10. A sample of a single simulated fixation (or very slow smooth pursuit).
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The simulated signal was generated at 1009 Hz and downsampled using linear interpolation to simulate dif-
ferent eye tracker sampling rates. Each scenario was 2 minutes in duration. Axis-independent Gaussian noise was 
added to the generated signal to simulate different levels of measurement noise.

Benchmarking methodology. Denoising benchmarking. The denoising performance was measured 
using Increase in Signal-to-Noise Ratio:

=
∑ |→ − →|

∑ |→ −
→

|ˆ

x g

x g
ISNR 10log ,

(1)

i i i

i i i

DB 10

2

2

where →xi  is the measured (noise contaminated) gaze position, →gi  is the true gaze position and 
→
ĝi  is the recon-

structed gaze position at measurement index i. Before introducing the data to the algorithms, all samples marked 
as outliers in the dataset were removed and replaced by linearly interpolating the signal using the nearest two 
non-outlier samples. The error in the interpolated samples was not included in the calculation of the ISNR values. 
Furthermore, 256 first land last values were omitted from the error calculation to avoid extraneous error due to 
boundary effects for the Wiener filter.

The Wiener filter convolution kernel was derived by taking the inverse Fourier transform of the ratio between 
estimated cross power spectral densities (CSD) of the noise contaminated and uncontaminated signals for each 
recording. The CSDs were estimated using the Welch method, as implemented in scipy.signal.csd40, using a 256 
sample Hamming window.

For the Total Variation filter, we used the implementation by20, available online at https://github.com/albarji/
proxTV. The regularization parameter was optimized against the uncontaminated data of each recording using 
the L-BFGS-B algorithm as implemented by scipy.optimize.minimize40.

NSLR used the default parameterization (see Measurement noise and segmentation penalty parameters) with-
out access to the uncontaminated data.

Gaze event identification benchmarking. Gaze event identification was assessed by measuring agreement with 
human coder identification by11. The agreement was operationalized as Cohen’s Kappa values, as implemented 
by sklearn.metrics.cohen_kappa_score41. Prior to calculating the agreement scores, all samples that either of the 
human coders labeled as outliers (“blink” or “other”) were omitted. The reported Kappa value for the algorithms 
is the arithmetic mean of the algorithm’s agreement to both human coders.
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