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sEMG-assisted inverse modelling of 
3D lip movement: a feasibility study 
towards person-specific modelling
Merijn Eskes   1,2, Alfons J. M. Balm1,2,3, Maarten J. A. van Alphen1, Ludi E. Smeele1,3,4,  
Ian Stavness5 & Ferdinand van der Heijden1,2

We propose a surface-electromyographic (sEMG) assisted inverse-modelling (IM) approach for 
a biomechanical model of the face to obtain realistic person-specific muscle activations (MA) by 
tracking movements as well as innervation trajectories. We obtained sEMG data of facial muscles 
and 3D positions of lip markers in six volunteers and, using a generic finite element (FE) face model in 
ArtiSynth, performed inverse static optimisation with and without sEMG tracking on both simulation 
data and experimental data. IM with simulated data and experimental data without sEMG data showed 
good correlations of tracked positions (0.93 and 0.67) and poor correlations of MA (0.27 and 0.20). 
When utilising the sEMG-assisted IM approach, MA correlations increased drastically (0.83 and 0.59) 
without sacrificing performance in position correlations (0.92 and 0.70). RMS errors show similar trends 
with an error of 0.15 in MA and of 1.10 mm in position. Therefore, we conclude that we were able to 
demonstrate the feasibility of an sEMG-assisted inverse modelling algorithm for the perioral region. 
This approach may help to solve the ambiguity problem in inverse modelling and may be useful, for 
instance, in future applications for preoperatively predicting treatment-related function loss.

Biomechanical modelling aims to represent human body dynamics as accurately as possible with mathematical 
equations, simulating and evaluating human movement and motor control while estimating the resulting internal 
and external forces. This can be useful in preoperative decision making. For instance, in children with cerebral 
palsy, Lofterød et al. evaluated the effect of providing 3D gait analysis information on preoperative surgical plan-
ning, finding that in the majority of cases surgical planning had been modified to incorporate important gait 
analysis data1.

Similar models are urgently needed in the field of Head and Neck Surgery, as well. Modelling of the perio-
ral region may improve treatment and counselling of head and neck cancer patients, particularly by assessing 
functional inoperability, when surgical resection of a tumour will lead to unwanted severe loss of function2, and 
other organ-sparing treatments should be considered instead, e.g. chemotherapy, radiotherapy, photodynamic 
therapy, or any combination thereof. Human estimation of post-surgical function loss is by nature subjective and 
unreliable3. Therefore, there is urgent clinical need for tools that can predict patient-specific function loss objec-
tively and quantitatively4–8. Promising results have been obtained with patient-specific biomechanical models of 
the face9–11, oral cavity12,13 and tongue4,14,15, including models that can simulate pharyngeal bolus transport13,16. 
Adding patient-specific neural control to such models by means of surface EMG (sEMG)-assisted inverse dynam-
ics will be an essential step forward, as this will provide insight into pathophysiological dynamics and potential 
compensatory mechanisms after virtual resection of specific muscles.

There are two main types of modelling dynamics in biomechanics. Forward modelling, or forward-dynamics 
simulation, is the process of controlling a biomechanical model with given (muscle) activation signals, calculating 
the resulting forces with the equations of motion to ultimately obtain the corresponding functional movement. 
Inverse modelling, or inverse-dynamics simulation, is the opposite process, estimating the underlying muscle 
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activation signals from measured actual forces or movements by using a biomechanical model with a mathemat-
ical optimisation criterion.

Inverse problems in biomechanical modelling are often mathematically ill-posed because of muscle redun-
dancy: similar functional movements can be performed by different sets of muscles. This so-called load-sharing 
problem17,18 poses a significant challenge: to predict a patient’s motor behaviour accurately, the simulations must 
“share” muscle activations in the same way the patient does.

Literature reports various strategies to tackle the load-sharing problem, but these generally apply to models of 
the arms or legs. A recent paper by Yamasaki et al. shows that higher-order derivatives in static optimisation and 
forward-inverse dynamics can improve the estimation of muscle activation in highly dynamic motions within 
a simple musculoskeletal model that includes a one-degree-of-freedom (1DOF) hinge joint19. Some authors 
enforced co-contraction of antagonistic muscles using 1DOF hinge joint models20–22 or multi-body models23, 
while others used energy-based load-sharing cost terms24,25. Hybrid models have combined forward and inverse 
modelling by using algorithms that can derive neural activation strategy information from the muscle activation 
signals obtained with EMG. Such so-called EMG-assisted, EMG-informed, EMG-calibrated, or EMG-tracking 
algorithms were successfully applied in biomechanical models of the trunk26–28, shoulder and arm29, and legs30,31. 
Another feat has been the creation of a toolbox for calibrated EMG-informed neuro-musculoskeletal modelling 
(CEINMS)32. Reports on inverse modelling of the perioral region are scarce33–35, and only few involve EMG 
measurements36.

This paper aims to establish an sEMG-assisted inverse-modelling method that can be applied to 3D lip move-
ments. We hypothesise that the addition of sEMG will allow for realistic inverse modelling solutions incorpo-
rating patient-specific activation strategies. If true, an sEMG-based model will be able to show the immediate 
functional outcome of surgery and also, if patients prove unable to relearn their functions, the final outcome. 
The proposed method is an adaptation of the so-called tracking-based inverse controller in ArtiSynth created by 
Stavness et al.15. This paper has been organised as follows. Section 2 summarises the static optimisation algorithm 
and introduces our adaptations. Section 3 describes the acquisition of experimental data and the pre-processing 
required. Section 4 reports on the use of these data in three experiments conducted to test the algorithm. Section 
5 contains the discussion. The paper ends with our conclusion.

EMG-assisted static optimisation
Our EMG-assisted inverse modelling algorithm is based on the inverse tracking controller in ArtiSynth devel-
oped by Stavness et al.15. They used a combined movement target term and an l2-norm regularisation term, which 
resulted in a quadratic programming problem. In the current paper, we stacked the position coordinates of a set 
of ten tracked 3D marker points on the lips in a 30D vector kz ( )t  where k is the discrete time index. For brevity, we 
shall use the notation z t instead of kz ( )t . The model-predicted positions z(k) depend on −ka( 1), which is the 
vector of muscle activations at time −k 1, and on the previous state −kz( 1). This is denoted by 

= − −k k kz f a z( ) ( ( 1), ( 1))m , where fm() is a state-space description representing the biomechanical model. For 
brevity, we shall write a instead of −ka( 1) and fm(a) instead of − −k kf a z( ( 1), ( 1))m . Note also that the ele-
ments of a are limited to the interval [0,1]. The technology of sEMG provides indirect measurements of the inner-
vation of each muscle. These measurements provide quantitative indications of the activations and are therefore 
denoted by at, which gives rise to the following quadratic cost function:
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With = −ka a( 2)prev . The matrices M, A, D, and E are matrices that weigh different cost aspects. The term 
with M assures that model positions are close to measured positions. The term with A is a regulation term to tame 
the found activation signals. The term with D prevents large fluctuations of the found activations. Finally, the 
term with E assures that the estimated activations are consistent with the measured sEMG signals. In our experi-
ments, the numerical values of the matrices were as follows: = diagM (1), = .diagA (0 05), = .diagD (0 005), and 

= diag emgE ( )val  or = diagE (0) in case inverse modelling is performed without sEMG tracking. emgval was 
determined during the experiments.

To minimise the cost function in equation (1), the expression was worked out to a form:

= −
∈
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in which irrelevant terms in equation (1) were dropped, and a linearised approximation of the state-space 
model was used based on Taylor series expansion. Equation (2) is recognised as a quadratic programming prob-
lem for which stable, numerical solutions are available. The seed for the inversion was always set to the estimated 
muscle activity of the previous frame. The initial frame’s seed was always set to zero muscle activity.

Data acquisition and pre-processing
Volunteers and data acquisition.  To perform inverse modelling experiments, we used data of six healthy 
volunteers (three males, three females), with a mean age of 25 years (range 21 to 30 years), whom we had recruited 
for our previous studies6,7. For details, see Eskes et al.6. Essentials are summarised below. The data are available on 
the Open Science Framework37. Written consent was obtained for publishing the photograph in Fig. 1.

sEMG signals sm (m muscle channels) were recorded with the TMSi® Porti™ system (TMSi®, Oldenzaal, 
the Netherlands) and micro-sEMG electrodes (1.5 mm diameter, Ag/AgCl, disc-shaped, with actively shielded 
cables). The following muscles were measured in bipolar configuration according to the optimal placement 
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described by Lapatki et al.38: the Orbicularis Oris Superior (OOS), the Orbicularis Oris Inferior (OOI), the 
Depressor Anguli Oris (DAO), the Mentalis (MEN), the Risorius (RIS), the Zygomaticus major (ZYG), and the 
Levator Labii Superioris Alaeque Nasi (LLSAN) (Fig. 1). The sEMG signals were bandpass filtered with high-pass 
and low-pass cut-off frequencies of 15 and 500 Hz, respectively.

To acquire 3D lip movements, we tracked six optical face markers ∈(X )OR
18  for head orientation and ten 

optical lip markers ∈(X )30  at 100 frames per second using a triple camera set-up (avA1000–100gc, Basler AG, 
Ahrensburg, Germany), which we had developed for assessing tongue mobility and capturing tongue movement 
after hypoglossal nerve stimulation8,39 (Fig. 1).

We asked the volunteers to perform six different instructions once: A. purse lips, B. raise upper lip, C. depress 
mouth corners, D. voluntary smile, E. draw mouth corner to the left, then to the right, and again to the left, and F. 
purse lips to closed-mouth smile to purse lips (Eskes et al.7, Fig. 2).

The experiments were approved by the Medical Research Ethics Committee of the Netherlands Cancer 
Institute and all volunteers gave written informed consent.

Finite-element face model.  We performed inverse modelling on the generic face model used in Eskes 
et al.7 (Fig. 1), which was based on the work performed at ICP/GIPSA and TIMC-IMAG laboratories in 
Grenoble40,41, with details published by Nazari et al.42. Their ANSYS® model was ported to ArtiSynth and was 
named the reference face model43–45. With soft tissues represented in three layers of elements, this model had 6342 
elements (6024 linear hexahedral and 318 linear wedge) and 8720 nodes. Fourteen muscle groups were available 
as muscle fibres. We created finite-element muscles, which were defined as the elements surrounding the muscle 
fibres within a radius of 5 mm. The elements of the Orbicularis Oris muscles were manually assigned. All these 
muscle elements were given muscle properties as described by Blemker et al.46. The bony parts, the mandible and 
maxilla, were modelled as rigid bodies. We used literature-based common muscle model parameters for all vol-
unteers7,11, with the exception of maximum muscle stress (σmax). We optimised the stress parameter per volunteer 
starting at 300 kPa and gradually decreased σmax repeatedly with 10 percent until the simulation ran smoothly 
without creating inverted elements. Simulations were performed on two workstations with intel Xeon core and 
one laptop computer with an intel i7 core.

sEMG to normalised model activations.  The model used Orbicularis Oris Peripheralis (OOP) and 
Marginalis (OOM) definitions. Therefore, these activations were constructed from the measured OOS and 
OOI activations, taking into account the information about activation patterns described by Flynn et al.11. The 
Buccinator (BUC), the Depressor Labii Inferior (DLI), and the Levator Anguli Oris (LAO) were not directly 
measured but derived from the measured muscles as follows:

= . +s s s0 50( ) (3)OOP OOS OOI

= . +s s s0 10( ) (4)OOM OOP OOI

Figure 1.  Left: Surface electrode locations, orientation markers, and lip markers. Right: Anterior-posterior view 
and lateral view of the model and the model’s muscle bundles and lip markers. The muscles are abbreviated as 
follows: zygomaticus major (ZYG), risorius (RIS), levator labii superioris alaeque nasi (LLSAN), levator anguli 
oris (LAO), buccinator (BUC), orbicularis oris peripheralis (OOP) and marginalis (OOM), depressor labii 
inferior (DLI), depressor anguli oris (DAO), and mentalis (MEN). Subscript L is for left side and subscript R for 
right side. Adopted from Eskes et al.7.
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= . +s s s0 50( ) (5)BUC RIS ZYG

= .s s0 75 (6)LAO LSSAN

= .s s0 75 (7)DLI DAO

For the different instructions, the following muscles were considered relevant7,11:

	 A.	 OOP, OOM, and BUC
	 B.	 LLSAN
	 C.	 DAO and MEN
	 D.	 ZYG, RIS, LAO, LLSAN, DAO, and DLI
	 E.	 OOP, OOM, LLSAN, RIS, ZYG, BUC, and LAO
	 F.	 OOP, OOM, LLSAN, RIS, ZYG, BUC, and LAO

Figure 2.  The top row shows the point-mass model with simulated forward movement to the northeast corner. 
The muscles’ red colour intensities illustrate the extent of activation. The eight graphs below show the influence 
of the different cost terms on the estimated muscle activations of five muscles during inverse modelling. The 
original simulated activations are given in the lower right corner (‘au’ is for ‘arbitrary units’).
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In previous research, we found the following procedure to be optimal for transforming measured sEMG sig-
nals into normalised muscle activations5–7. We first calculated the Willison Amplitude with =s 10 mVlim  over 
sliding windows of 200 ms with maximum overlap:

∑= | + − − + |
=

−
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The feature gm(t, i, r) was calculated from the measured sEMG sm(t) of muscle m, where t was the time index 
of the EMG signals, and n the running time index within each sliding window consisting of N samples. This was 
done for all instructions i and repetitions r (in this case =r 1). The feature gm(t, i, r) was normalised according to:
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Registration of measured 3D lip markers to generic face model.  As each face has unique dimen-
sions, we had to apply a registration to allow for movement tracking and root mean square (RMS) error com-
parison of the generic face model’s lip markers with the measured lip markers. We registered each measured 
coordinate according to equation (10):
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Zd(k) is the ‐d th element from the original measured position vector zt(k). The normalised measured positions 
are denoted by kZ ( )d

norm . In equation (10), µd
Z is the mean of the measured position coordinates, and µd

X the mean 
of the model’s position coordinates. The standard deviation of the model’s position coordinates is denoted by σd

X, 
whereas the standard deviation of the measured position coordinates is given by σd

Z.

Performance measures.  To perform quantitative evaluation, we used the RMS error, epos, that was calcu-
lated over time and over the markers via:
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With k being the discrete time index, K the number of time samples, and Zd(k) the model’s lip marker position 
coordinates. =D 30 reflects the dimensions, i.e. 10 markers with 3 coordinates each. The factor 3  was intro-
duced because we wanted to express the RMS in terms of distances, rather than in terms of coordinates.

The 3D correlation coefficients were calculated as described by Pitermann et al.36. The mean position μz of a 
3D lip marker trajectory, with samples = x y vZ ( , , )t t t t , was calculated with equation (12):
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The standard deviation σz of Zt was calculated with equation (13):
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The 3D correlation coefficient ρ3D between 3D landmark trajectories Zt and Xt was calculated with equation 
(14):
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The RMS error was also calculated for the activations (eact) according to equation (15) with g(t) being the nor-
malised feature values and a(t) the inverse calculated activation values, whereas Pearson’s correlation coefficient 
was used as an activation correlation measure.
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For all experiments, we compared the inverse calculated activation signals with the original sEMG features 
using the RMS error and Pearson’s correlation coefficient. Also, the movement tracking errors (epos and ρ3D) were 
calculated for all experiments. Together, these measures give an indication of performance.

Experiments
In this study, we performed three different experiments to investigate the added value of sEMG-assisted inverse 
modelling:

	 I.	 A simple muscle contraction to test feasibility of the model and implementation of the inverse methods
	 II.	 Inverse simulations with synthetic data produced by the sEMG-driven forward model. Inverse modelling 

was guided by 3 different sEMG constraints: no constraint, using all muscles (actall), and using relevant 
muscles (actrel). By comparing the results of these three constraints, we could test our method for feasibility 
inside the mathematical universe of the face model.

	III.	 Inverse simulations with measurement data containing 3D position data of ten lip markers and sEMG data 
of fourteen facial muscles. This experiment was conducted to assess the contribution of sEMG in a realistic 
situation.

Experiment I: Test Cost term implementation by means of a simple point-mass system.  Goal 
and experimental set-up.  To test our implementation of the cost function, we first created a simulated muscle 
activation pattern, contracting the north-north-east, north-east, and east-north-east muscle bundles of the 
point-mass system as shown in Fig. 247. It should be noted that the muscles have different maximum isometric 
forces, the thick muscles being more powerful than the thinner muscles. Next, inverse modelling was performed, 
first alternating the cost terms and finally using all cost terms at once. We expected to find that IM with each 
cost-term alone would not result in calculated IM activations that were similar to the simulated activation pat-
terns, except for IM with the sEMG term, which would probably mimic the forward simulation. When using all 
cost terms together, we expected there would be a trade-off between the different cost terms, which would likely 
cause a result that was less perfect but more usable in the real application. In line with logic, when testing a cost 
term alone, we set its weighing factor at one. When testing all cost-terms together, we set the various weighing 
factors as described in section 2: = diagM (1), = .diagA (0 05), = .diagD (0 005), and = diag emgE ( )val  with in 
this case = .emg 0 05val .

Results.  For the point-mass system, movement tracking errors were similar in all simulations, whereas acti-
vation patterns differed greatly. Using the motion term alone produced a very stiff system, whereas the l2-norm 
distributed the forces over the different muscles in the same way the damping term did. Including only the sEMG 
term showed minimal differences between the inverse calculated activation and the simulated activation and 
resulted in a good forward solution (epos). When using all cost terms together, including our sEMG term, we 
found that muscle activation patterns were still good (Fig. 3) while used muscle activation strategies improved 
considerably over performance with individual cost terms or all cost terms combined with exclusion of the sEMG 
term. However, it should be noted that the solution depends on the weighing factors of the cost terms, e.g. when 
too much sEMG information is used, the result will mimic the forward solution.

The results were not perfect because of the other cost terms in the objective function and because of integra-
tion, which adds noise. Even when we activated only the sEMG target term, there was still a small error between 
the inverse calculated activations and the simulated sEMG pattern used in forward modelling. Larger errors 
occurred when we applied all cost terms in the inverse modelling of the point-mass model, which is a direct 
consequence of taking into account all cost terms, where the sum of all terms should be small, instead of only 
minimising the sEMG term.

Conclusion.  To conclude, these experiments justified our approach and showed that sacrificing only a little 
performance in movement tracking resulted in major improvement in muscle activation tracking. Neither the 
use of any original cost term by itself nor any combined use of cost terms resulted in the correct muscle activation 
strategy. Incorporation of the sEMG cost term greatly improved the estimated muscle activations while keeping 
movement tracking orders in the same range. The weighing factors influence the result and should be determined 
experimentally for the next experiments.

Experiment II: Inverse modelling using simulated data.  Goal and experimental set-up.  To test the 
inverse modelling approach within the mathematical universe of the face and assess its feasibility, we started with 
a standard inverse-modelling approach15. To first evaluate this approach in a simple situation, we used our 
forward-modelling results as motion targets for this experiment7. After activating the relevant muscles per 
instruction (actrel), the forward simulation produced 3D trajectory data of the lip markers. Since this movement 
lies within the range of the model (position, acceleration) there is no need for registration, which could induce 
error, and the movement can function as a first indicator of feasibility. Figure 4 depicts the mean activations and 
their standard deviations based on all volunteers for the measured muscles. For use as input for the forward 
model, they were adjusted with equations (3) to (7). In this experiment, we used three constraints for the IM 
sEMG term: no sEMG, including all muscle activations (actall), and including relevant muscle activations (actrel). 
Thus, the sEMG term’s penalty matrix E was set to zero if no activation targets were used, while we experimentally 
obtained the optimal value using three different values for emgval to get an idea of the influence of the sEMG term: 

× −5 10 5, × −5 10 4, and × −5 10 3. Now, a trade-off between muscle activation tracking and movement tracking 
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will be made. In this experiment, all muscles were used (actall). After obtaining the optimal emgval, the constraints 
actall and actrel were tested.

Results.  The influence of the sEMG cost term and thus the optimal weighing factor can be derived from Fig. 5. 
All volunteers show the same pattern: a weighing factor of × −5 10 3 actually results in forward modelling as it 
depends too much on the muscle activations patterns, whereas × −5 10 4 appears to be the optimal value of all 
tested factors.

Table 1 gives the RMS error between the target lip markers and the models’ lip markers epos averaged over 
all instructions and volunteers for experiments II and III, as well as the eact between the models’ calculated acti-
vations and measured muscle activations. Similarly, Table 2 shows the 3D correlation coefficients ρ3D between 
model markers and measurement markers and Pearson’s correlation coefficients ρ between calculated model 
activations and measured muscle activations.

As we evaluate these experiments, some comments have to be made. The experiments confirm the 
load-sharing problem: three different activation strategies showed similar performances in 3D lip movement 
tracking with a mean ρ3D of 0.93 (no constraint), 0.93 (actall), and 0.92 (actrel), while the correlation with the nor-
malised sEMG features varied: 0.27 (no constraint), 0.44 (actall), and 0.83 (actrel), respectively, illustrating different 
activation strategies. The forward solution was created with actrel, leading to good correlations in the experiment 
with actrel constraint (mean ρ = .0 83). Like in experiment I, the correlations were not perfect because of the other 
cost terms in the objective function and because of the noise added by integration.

Although we cannot perform statistical tests that will be reliable because of our small data set, some clear 
trends can be seen. Looking at the RMS errors, we note that the epos of no sEMG constraint was about the same 
as with actall constraint, whereas for actrel the epos was always higher than the other two. The activations errors eact 
were always lower for actrel constraint than the other two constraint, except for OOM and BUC. More surpris-
ingly, the actrel constraint resulted in a higher epos, while we had expected the most accurate results from the use 
of actrel as it was used in the forward simulation. Presumably, the influences of other cost terms and integration 
and the optimisation of muscle stress must have caused inaccuracies that resulted in better (though not perfect) 
estimated activations, sacrificing a little in motion tracking performance.

Conclusion.  The ideal = × −emg 5 10val
4 enabled a reasonable sEMG-assisted IM appraoch. The sEMG cost 

term improved the correlations of activations as well as RMS errors while sacrificing only little in motion tracking 
performance.

Figure 3.  Inverse modelling with all cost terms active except for the sEMG term. Left: the estimated activations 
when not using the sEMG term. Right: estimated activations when using all cost terms including the sEMG 
term (‘au’ is for ‘arbitrary units’).
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Experiment III: Inverse modelling using measured data.  Goal and experimental set-up.  The goal of 
experiment III was to apply our new sEMG-assisted IM approach on real data and test its performance. To do so, 
we used measurement data obtained from healthy volunteers. The motion targets were obtained from recorded 
position data registered to the generic face model with equation (10). The sEMG term’s penalty matrix E was set 
to 0 in case of no sEMG constraint and to = × −emg 5 10val

4 in case of the sEMG constraint actall (as determined 
during the previous experiment, see Fig. 4).

Results.  Tables 1 and 2 show the RMS errors and the correlation coefficients, respectively. Congruence between 
measured muscle activations and calculated activations via inverse modelling was similar between volunteers, 
showing huge standard deviations and a mean around zero in correlations when using no sEMG constraint and 
reasonable to high correlations using actall (Fig. 6). 3D movement correlations were similar, too. Remarkably, 
when using no constraint we found that volunteer 6 showed a deviating higher error in the movement epos (Fig. 6). 
The ρ3D s of lip movement were always equal or higher compared to no constraint. Except for the marker 7. The 
mean ρ3D s showed a moderate to good correlation (ρ .~ 0 7). The epos was always lower in the sEMG-assisted 
approach, suggesting that the IM without constraint got stuck in a local minimum.

Calculating correlation coefficients for lip marker performance, we found that the lateral lip markers 1, 2, 6, 
and 7 performed better than the centre markers, similarly to the forward modelling results7. This can be explained 
by the fact that the volunteers’ centre markers moved notably, whereas the model’s centre markers only slightly 
deviated from their original position due to symmetry in the model. However, when we compare the epos for all 
lip markers we observe the opposite effect: the RMS errors are higher for the lateral markers than for the centre 
markers. This may also be explained by the fact that more movement allows for greater error due to a larger pos-
sible distance.

There was a lack of correlation without the sEMG constraint for the activations, caused by too many degrees of 
freedom in the muscle space. The sEMG-assisted inverse-modelling approach showed clear tendency of produc-
ing better, realistic and consistent muscle activations patterns.

Zooming in on the errors and correlation coefficients of the activations, those muscles whose activations were 
derived from measured muscles (DLI, BUC, LAO) performed worse than the muscles that were measured 
directly. This helps to explain why our forward model showed lower correlation coefficients in previous studies7. 
The OOP and OOM, derived from OOS and OOI measurements, also showed lower correlations (values), ρ .~ 0 5 
versus ρ .~ 0 7. This is actually an interesting result, suggesting that the measurements do contribute a lot and can 
provide useful information. It would be interesting to look into the effects of only tracking the measured muscles 
instead of using derived muscle activations as we did here and to compare the results with experiments in which 
the DLI, BUC, and LAO are also measured directly.

Figure 4.  Muscle activation patterns calculated from sEMG features of the instruction ‘purse lips’ as input for 
forward modelling. The mean and standard deviations of all volunteers are shown for all measured muscles. 
High standard deviations show the volunteer-specific activations, with asymmetry in the DAO and LLSAN 
muscles, in particular. (‘au’ is for ‘arbitrary units’).
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Conclusion.  In conclusion, adding sEMG tracking does not reduce 3D movement tracking accuracy, whilst 
giving better solutions in muscle activation tracking, as we already expected after experiments I and II. In essence, 
adding sEMG tracking tailors the inverse solution to a personalised activation strategy with equal performance. 
Apparently, surface EMG is sufficiently accurate without requiring any invasive needle approaches. However, 
challenges remain, as the inversion without constraint gave some questionable results, suggesting that the inver-
sion may have got stuck in a local minimum. This would mean that including the sEMG constraint would be a 
way to avoid the inversion getting stuck in that miminum. However, it also hampers the general goal of seek-
ing compensatory mechanisms by means of other muscle activation strategies. Also, because of a small dataset 
no statistical test could be performed. However, clear trends were observed and should be confirmed by future 
experiments.

General results.  Muscle stress varied per volunteer, per instruction, and per experiment (Table 3). Variation 
was highest between instructions and between experiments. The required computational time varied across sim-
ulations. Experiment III without the sEMG constraint may serve as a good example for computational times, as 
it was run completely on one workstation whereas the other experiments were distributed over the two worksta-
tions and the laptop computer, requiring longer computational times per simulation.

General discussion.  To our knowledge, this is the first study to describe the feasibility of sEMG-assisted 
inverse modelling of 3D lip movements using a biomechanical model of the face and lips. We have shown that 
implementing a simple sEMG cost term can direct the calculated muscle activations towards the derived muscle 
activations calculated from sEMG measurements. Adding the sEMG cost term showed a clear trend towards 
superior overall performance with regard to 3D lip marker trajectories as well as muscle activation patterns when 
compared with regular inverse modelling.

Figure 5.  Influence of the sEMG cost weighing factor on the 3D correlation coefficients of movement and on 
Pearson’s correlation coefficients of calculated muscle activations and sEMG features. The median is shown with 
a horizontal line and the mean with a dot. The boxes give first to third quartiles and the outer horizontal lines 
reflect minimum and maximum values.
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Marker  
# Muscle

1  
OOM

2  
OOP

3  
LLSAN

4  
DAO

5  
RIS

6  
ZYG

7  
MEN

8  
BUC

9  
DLI

10  
LAO Average

EXPERIMENT 
II Without 
sEMG

µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ)

Lip markers 0.84 (0.35) 0.34 (0.13) 0.28 (0.11) 0.27 (0.13) 0.29 (0.11) 0.36 (0.14) 0.89 (0.40) 0.40 (0.23) 0.41 (0.35) 0.40 (0.23) 0.45 (0.35)

Left muscles 0.08 (0.05) 0.32 (0.18) 0.22 (0.13) 0.36 (0.23) 0.16 (0.14) 0.14 (0.14) 0.37 (0.22) 0.12 (0.10) 0.27 (0.16) 0.28 (0.15) 0.23 (0.15)

Right muscles 0.08 (0.05) 0.31 (0.17) 0.19 (0.12) 0.42 (0.23) 0.16 (0.14) 0.14 (0.15) 0.36 (0.20) 0.12 (0.11) 0.31 (0.16) 0.26 (0.16) 0.23 (0.15)

With sEMG actall µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ)

Lip markers 0.81 (0.35) 0.31 (0.10) 0.29 (0.09) 0.29 (0.11) 0.30 (0.09) 0.33 (0.10) 0.84 (0.39) 0.39 (0.20) 0.46 (0.32) 0.39 (0.21) 0.44 (0.20)

Left muscles 0.10 (0.07) 0.35 (0.18) 0.19 (0.13) 0.29 (0.21) 0.14 (0.14) 0.10 (0.10) 0.33 (0.23) 0.08 (0.07) 0.25 (0.19) 0.31 (0.16) 0.21 (0.15)

Right muscles 0.10 (0.07) 0.33 (0.18) 0.16 (0.12) 0.32 (0.19) 0.14 (0.14) 0.11 (0.10) 0.32 (0.21) 0.09 (0.08) 0.30 (0.18) 0.26 (0.18) 0.21 (0.15)

With sEMG actrel µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ)

Lip markers 1.07 (0.55) 0.50 (0.25) 0.50 (0.27) 0.51 (0.27) 0.51 (0.27) 0.53 (0.26) 1.11 (0.57) 0.62 (0.33) 0.65 (0.34) 0.63 (0.36) 0.66 (0.55)

Left muscles 0.27 (0.30) 0.10 (0.10) 0.08 (0.06) 0.04 (0.06) 0.06 (0.06) 0.05 (0.06) 0.02 (0.04) 0.20 (0.19) 0.02 (0.05) 0.16 (0.15) 0.10 (0.11)

Right muscles 0.27 (0.28) 0.10 (0.09) 0.08 (0.07) 0.04 (0.06) 0.06 (0.07) 0.06 (0.07) 0.02 (0.04) 0.19 (0.19) 0.03 (0.05) 0.12 (0.14) 0.10 (0.11)

EXPERIMENT 
III Without 
sEMG

µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ)

Lip markers 1.83 (1.61) 1.32 (0.79) 1.26 (0.78) 1.20 (0.77) 1.21 (0.81) 1.45 (1.00) 1.91 (1.56) 1.24 (0.98) 1.23 (0.91) 1.32 (1.17) 1.40 (1.61)

Left muscles 0.16 (0.19) 0.33 (0.19) 0.30 (0.17) 0.48 (0.22) 0.22 (0.16) 0.15 (0.16) 0.37 (0.23) 0.19 (0.14) 0.33 (0.16) 0.29 (0.15) 0.28 (0.18)

Right muscles 0.12 (0.15) 0.34 (0.19) 0.30 (0.14) 0.42 (0.22) 0.24 (0.20) 0.17 (0.18) 0.37 (0.23) 0.20 (0.17) 0.30 (0.16) 0.30 (0.16) 0.28 (0.18)

With sEMG actall µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ)

Lip markers 1.33 (0.66) 1.05 (0.46) 1.02 (0.49) 1.02 (0.44) 1.03 (0.48) 1.10 (0.53) 1.52 (0.77) 0.97 (0.62) 1.01 (0.74) 0.95 (0.51) 1.10 (0.66)

Left muscles 0.08 (0.06) 0.20 (0.16) 0.09 (0.06) 0.07 (0.03) 0.07 (0.04) 0.02 (0.02) 0.10 (0.11) 0.23 (0.18) 0.31 (0.14) 0.31 (0.15) 0.15 (0.10)

Right muscles 0.06 (0.03) 0.21 (0.16) 0.08 (0.07) 0.06 (0.03) 0.07 (0.04) 0.02 (0.02) 0.10 (0.11) 0.21 (0.15) 0.28 (0.15) 0.29 (0.15) 0.14 (0.09)

Table 1.  Root mean square errors. The mean (µ) and standard deviation (σ) of the epos for the ten lip markers 
and eact for the ten muscles left and right over all volunteers and all instructions.

Marker  
# Muscle

1  
OOM

2  
OOP

3  
LLSAN

4  
DAO

5  
RIS

6  
ZYG

7  
MEN

8  
BUC

9  
DLI

10  
LAO Average

EXPERIMENT 
II Without 
sEMG

µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ]

Lip markers 0.92 (0.07) 0.94 (0.05) 0.94 (0.05) 0.94 (0.05) 0.94 (0.04) 0.93 (0.04) 0.92 (0.06) 0.93 (0.04) 0.94 (0.05) 0.93 (0.05) 0.93 (0.07)

Left muscles 0.41 (0.47) 0.46 (0.41) 0.50 (0.52) −0.19 (0.48) 0.37 (0.60) 0.52 (0.51) 0.29 (0.46) 0.38 (0.57) −0.07 (0.47) 0.02 (0.51) 0.27 (0.50)

Right muscles 0.42 (0.49) 0.41 (0.44) 0.52 (0.48) −0.20 (0.50) 0.31 (0.59) 0.44 (0.53) 0.32 (0.46) 0.39 (0.55) −0.09 (0.47) 0.11 (0.55) 0.26 (0.51)

With sEMG 
actall

µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ]

Lip markers 0.94 (0.05) 0.94 (0.05) 0.93 (0.07) 0.92 (0.07) 0.93 (0.05) 0.94 (0.05) 0.94 (0.04) 0.94 (0.05) 0.90 (0.13) 0.93 (0.06) 0.93 (0.05)

Left muscles 0.39 (0.44) 0.49 (0.39) 0.64 (0.53) 0.57 (0.48) 0.45 (0.60) 0.59 (0.52) 0.59 (0.47) 0.41 (0.57) 0.19 (0.47) 0.00 (0.53) 0.43 (0.50)

Right muscles 0.40 (0.45) 0.44 (0.41) 0.68 (0.46) 0.63 (0.38) 0.40 (0.60) 0.51 (0.53) 0.60 (0.43) 0.39 (0.57) 0.16 (0.47) 0.16 (0.57) 0.44 (0.49)

With sEMG 
actrel

µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ]

Lip markers 0.93 (0.06) 0.94 (0.04) 0.91 (0.09) 0.90 (0.11) 0.90 (0.12) 0.93 (0.05) 0.93 (0.06) 0.93 (0.05) 0.89 (0.12) 0.92 (0.05) 0.92 (0.06)

Left muscles 0.85 (0.11) 0.85 (0.11) 0.91 (0.07) 0.96 (0.02) 0.95 (0.04) 0.96 (0.04) 0.93 (0.08) 0.56 (0.45) 0.90 (0.10) 0.29 (0.49) 0.82 (0.15)

Right muscles 0.85 (0.10) 0.86 (0.10) 0.90 (0.08) 0.96 (0.01) 0.92 (0.06) 0.93 (0.07) 0.93 (0.07) 0.60 (0.39) 0.89 (0.09) 0.60 (0.22) 0.84 (0.12)

EXPERIMENT 
III Without 
sEMG

µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ]

Lip markers 0.74 (0.23) 0.68 (0.25) 0.65 (0.21) 0.58 (0.24) 0.61 (0.23) 0.70 (0.23) 0.80 (0.16) 0.65 (0.35) 0.64 (0.26) 0.68 (0.31) 0.67 (0.23)

Left muscles 0.05 (0.47) 0.20 (0.55) 0.50 (0.41) −0.11 (0.52) 0.22 (0.64) 0.42 (0.57) 0.00 (0.50) 0.40 (0.56) 0.05 (0.49) 0.15 (0.55) 0.19 (0.53)

Right muscles 0.05 (0.43) 0.20 (0.52) 0.43 (0.51) −0.10 (0.48) 0.18 (0.60) 0.53 (0.51) −0.04 (0.53) 0.40 (0.52) 0.09 (0.49) 0.33 (0.44) 0.21 (0.50)

With sEMG 
actall

µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ] µ (σ) [ρ]

Lip markers 0.77 (0.21) 0.74 (0.17) 0.65 (0.19) 0.62 (0.26) 0.67 (0.21) 0.75 (0.19) 0.73 (0.25) 0.68 (0.36) 0.66 (0.32) 0.69 (0.34) 0.70 (0.21)

Left muscles −0.00 (0.49) 0.64 (0.43) 0.90 (0.28) 0.97 (0.09) 0.77 (0.41) 0.79 (0.38) 0.92 (0.21) 0.41 (0.51) 0.31 (0.47) 0.04 (0.52) 0.57 (0.38)

Right muscles −0.00 (0.49) 0.63 (0.43) 0.91 (0.29) 0.94 (0.24) 0.79 (0.35) 0.82 (0.34) 0.89 (0.26) 0.39 (0.49) 0.33 (0.45) 0.29 (0.47) 0.60 (0.38)

Table 2.  3D and 2D correlations. The mean (µ) and standard deviations (σ) of the 3D correlations for the ten lip 
markers and the Pearson’s correlation coefficients of the facial muscles bilaterally overall for all volunteers and 
all instructions.



www.nature.com/scientificreports/

1 1SCIENTIfIC REPOrtS |  (2017) 7:17729  | DOI:10.1038/s41598-017-17790-4

Our inverse-modelling approach has inherited the limitations of the model described by Eskes et al.7. First and 
foremost, the generic model does not account for individual physical geometry. Although our volunteers’ meas-
urements were entered into the model initially, inaccuracies could build up during simulations due to mismatches 
in patient and model morphology. To account for individual geometry and anatomy, our future models should 
use the mismatch-and-repair algorithm or similar methods48,49, including diffusion-tensor magnetic resonance 
imaging (DT-MRI) to reveal muscle fibres and their trajectories50. Such combined approach may yield better 
approximation of muscle dimensions, orientations, and trajectories.

Furthermore, we may improve our simple skin model by introducing anisotropicity and viscoelasticity. 
Although the simplified soft representation does induce inaccuracies, these are negligible in the light of the larger 
errors caused by suboptimal registration and sEMG to force mapping. Our conclusions would probably not 
change if we would use more advanced models with anisotropic and viscoelastic properties.

Inverse modelling without sEMG tracking resulted in estimated activation patterns that totally lacked any 
correlation with the sEMG signals measured. It may even got stuck in a local minimum. Future experiments to 
address this could use the sEMGs as starting point and from there calculate the inverse activations. As expected, 
adding sEMG tracking gave calculated muscle activation patterns that resembled the measurements more closely. 
Pitermann et al. already highlighted the load-sharing problem by demonstrating that their calculated muscle 

Figure 6.  RMS errors and 3D correlation coefficients (movement) and Pearson’s correlation coefficients 
(activations) of the different volunteers for experiment III with and without sEMG cost term. The median 
is shown with a horizontal line and the mean with a dot. The boxes give first to third quartiles and the outer 
horizontal lines reflect minimum and maximum values (‘au’ is for ‘arbitrary units’).

sEMG 
constraint

Maximum muscle stress µ 
(σ) [kPa] Computational time µ (σ)

EXPERIMENT II Without . × . ×6 5 10 (5 1 10 )4 4   06h06m55s (00h 57m 09s)

actall . × . ×3 2 10 (2 6 10 )4 4   11h04m17s (05h 57m 01s)

actrel . × . ×6 8 10 (5 7 10 )4 4   07h41m32s (4h 02m 17s)

EXPERIMENT III Without . × . ×3 3 10 (2 5 10 )4 4   05h31m15s (06h 45m 46s)

actall . × . ×3 3 10 (2 7 10 )4 4   07h24m35s (04h 46m 19s)

Table 3.  Maximum muscle stress and computational times.
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activations patterns did not show any correlation with the measured intra-muscular rectified and integrated EMG 
patterns36. Varying the initial conditions resulted in different solutions to the inverse problem, including solutions 
with negative muscle activity. To address this issue, they restricted the inverted EMG to positive values, only, but 
they found no significant difference in performance between the methods with and without this positive con-
straint. This illustrates the difficulty of getting volunteer-specific muscle activation patterns when muscle redun-
dancy causes an ill-posed inverse-dynamics problem. Nevertheless, they produced good correlation coefficients 
for 3D lip marker coordinates36, even when they applied a volunteer-specific face model to a different volunteer 
and restricted registration to general linear scaling.

These promising results encouraged us to make the step towards patient-friendly measurements. Pitermann’s 
team measured intramuscular EMG using invasive needle electrodes, but we chose to acquire muscle activation 
signals with the noninvasive technique of sEMG. Another improvement we made in the experimental set-up was 
measuring sEMG and 3D lip markers bilaterally. Pitermann et al. measured EMG on the left and facial movement 
on the right side, which may have induced error as volunteers may not have performed each instruction with 
perfect symmetry. Our results suggest that surface EMG is sufficiently accurate to replace the invasive technique 
of intramuscular EMG with intramuscular needle placement.

Terzopoulos & Waters created one of the first physics-based face models using discrete mass-spring systems 
to estimate muscle activity from video employing interactive deformable contours (snakes)33. They were able 
to resynthesize facial expression from estimated muscle activity using a simple, yet powerful algorithm, which 
called for further research in this direction. Where they mapped static facial expression to muscle activity in 2D, 
our results relate to 3D musculature. Incorporating improved tissue biomechanics, the ArtiSynth model uses a 
continuum mechanics based FE formulation as well as an advanced orbicularis oris muscle, in contrast to the two 
fiducial points used in Terzopoulos & Waters’ model. Furthermore, we increased the number of perioral muscles 
to 20, where Terzopoulos & Waters studied merely 4.

Kim & Gomi and Kim et al. created a discrete model of lumped nodal masses connected via viscoelastic ele-
ments34,35. Despite much lower computational costs, a major drawback of their set-up is the simplified representa-
tion of reality provided by their continuum-based finite-element model. Moreover, their inverse-modelling 
approach involved a gradient descent search with optimisation per trial instead of per sample and without quan-
titative reporting. However, if sufficiently accurate, such model may be a useful addition to our virtual-therapy 
toolbox for rapidly simulating new inverse solutions. Our computational times, were quite high, especially when 
simulating the instruction set proposed in Eskes et al. for all essential functional movements6.

To exert similar force on the elements in the model across experimental conditions, maximum muscle stress 
had to be variable. Although muscle stress differed per volunteer and per instruction, we found that mean muscle 
stress was similar in experiments II and III, at . ×3 3 10 kPa4 . The variance can be explained by the fact that mus-
cle activation amplitudes differed, as did the extent of co-contraction. The different amplitudes may be explained 
by sEMG-technical issues. Signal amplitude may have been affected by numerous factors including sensor place-
ment51: inaccurate sensor placement will inevitably contribute to crosstalk.

Another important paper by Hirayama et al.52 reports on inverse dynamics of articulatory trajectories. Using 
a supervised-learning algorithm, they followed the direct inverse-modelling approach as described by Jordan & 
Rumelhart53. However, theirs was a statistical model, while we prefer biomechanical models that also account for 
physical laws to simulate the effects of surgical interventions.

All of the above publications confirm the difficulty of validating computed muscle activations with the actual 
muscle activation strategy. Most researchers have used EMG data as reference values to test algorithm perfor-
mance. This method is even less reliable when EMG information is used to best track the muscle activation 
patterns. Recently, Nikooyan et al. reported on a new method to validate forces (and activation levels) in patients 
with shoulder prostheses, measuring the glenohumeral-joint reaction forces in vivo29. Similar data obtained with 
knee prostheses were made available for the “Grand Challenge Competition to Predict In Vivo Knee Loads”54,55. 
Unfortunately, this type of direct-force data cannot be obtained for facial muscles.

Despite these challenges, we were able to demonstrate that performance in 3D movement tracking did not 
decrease drastically - in fact, it had a tendency towards improvement - while the activation tracking improved. We 
think this will open new ways of obtaining realistic person-specific activation strategies.

Conclusion
We have demonstrated the feasibility of an sEMG-assisted inverse-modelling algorithm for the perioral region. 
Our method means an important step in the development of a virtual-surgery toolkit for the preoperative estima-
tion of function loss after lip and oral cavity cancer surgery.

Ethical approval.  All volunteers were informed about the experiment and about their rights. Written con-
sent was obtained for publishing the photograph in Fig. 1. The Medical Research Ethics Committee (MREC) of 
the Netherlands Cancer Institute determined that the study did not fall under the scope of the Medical Research 
Involving Human Subjects Act (WMO), because the study did not infringe the (psychological) integrity of the 
volunteers. The measurements were noninvasive and not stressful. Thus, prior review by an accredited MREC 
was not required. The study was performed within the Dutch legislation regarding the Agreement on Medical 
Treatment Act, Personal Data Protection Act, and the Code of Conduct for Responsible Use of the Federa (Dutch 
Federation of Biomedical Scientific Societies). Written informed consent was obtained.
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