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Brain gene expression signature 
on primate genomic sequence 
evolution
Shahar Barbash1 & Thomas P. Sakmar   1,2

Considering the overwhelming changes that occurred during primate evolution in brain structure and 
function, one might expect corresponding changes at the molecular level. Surprisingly, a relatively 
constrained gene expression pattern is observed in brain compared with other tissues among primates, 
an observation that calls for reassessment of RNA expression influence on primate genome evolution. 
We built phylogenetic trees based on genomic sequences of functional genomic regions and tissue-
specific RNA expression in eight tissue types for six primate species. Comparisons of the phylogenetic 
trees from brain tissues revealed that DNA- and RNA-based trees were significantly similar. The 
similarity was specific for promoter regions and cerebellum and frontal cortex expression, suggesting a 
major impact of gene regulation in the brain on genome shaping along the primate branch.

When comparing the phenotype of humans with non-human primates in the context of evolutionary fitness one 
might argue that the most significant changes are brain related1. Among these brain-related phenotypes are verbal 
language and advanced tool making. Indeed, the development of these brain capabilities was coupled with major 
structural and functional changes in the brain2. In recent years, researches have looked for molecular processes 
that could explain these human specific structural and functional distinctions3. Particularly, RNA expression 
changes among primates have been studied4–6. Surprisingly, among primates, gene expression in the brain is 
actually more constrained than gene expression in other tissues7,8. Given the huge changes in brain dependent 
phenotypes on the one hand, and the restricted changes in brain RNA expression among primates on the other, 
we decided to address the matter with an alternative hypothesis.

We hypothesized that genomic sequence changes will be associated with expression changes in the brain more 
than they will with other tissues. Importantly, this hypothesis does not require large brain expression changes 
among primates since a particular expression change can be small in size and still highly associated with a 
genomic change. Therefore, while previous studies have examined the amount of brain expression change among 
primates, we set out to examine the strength of association between the expression change and the genomic 
change. A tighter association of a particular tissue expression change with a genomic change would suggest strong 
influence of this tissue on primate genomic evolution (Fig. 1A). Several coding and non-coding mutations that 
affect brain development have been previously reported1. The goal of our study was to estimate the global con-
tribution of tissue-transcriptomes to genomic shaping and compare these estimates among genomic regions and 
tissues in a systematic and unbiased manner.

Results
To evaluate the hypothesis that genomic sequence changes will be associated with expression changes particularly 
in the brain, we built and compared phylogenetic trees based on sequence distance, and separately based on tissue 
expression distance. These expression- and genomic-based trees were built using expression and genomic data 
from six primates and included eight tissues for each species (Fig. 1B). The six examined species represent five 
major primate groups: Humans (human), Great Apes (chimpanzee), Old World Monkeys (baboon and macaque), 
New World Monkeys (marmoset) and Prosimians (mouse lemur). Mutations in an organism’s DNA could lead 
to a change in protein structure or a change in the temporal and spatial pattern of the gene’s expression9. Both of 
these outcomes, namely changes in protein structure and gene expression, are believed to have phenotypic effects 
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on primate evolution10. Therefore, the genomic trees were separately built for four distinct functional genomic 
regions, including coding and non-coding regions (Fig. 1B).

In order to build genomic-based trees, we downloaded the genomes of six primates (human, chimpanzee, 
rhesus macaque, olive baboon, common marmoset and mouse lemur) from Ensemble Genome Browser. In order 
to build expression-based trees, we downloaded tissue expression data from The Nonhuman Primate Reference 
Transcriptome Resource (NHPRTR)11 and additional human expression data from The Genotype-Tissue 
Expression (GTEx) project12 (see Methods for full details on analyzed data). From the genomic data we collected 
sequences of the following genomic regions for each gene: promotor region of 1.5 Kbp upstream to gene’s tran-
scription start site (TSS, similar to a previous study8), 5′ untranslated region (5′ UTR), coding sequence (CDS) 
and 3′ untranslated region (3′UTR; see Methods for regions‘ definition). The promotor region was further frag-
mented into three equal-size windows: from 1.5 Kbp to 1 Kbp, from 1 Kbp to 0.5 Kbp and from 0.5 Kbp to 0 Kbp 
upstream to TSS (see Fig. S1 for regions‘ length analysis). In addition, a region of 1.5 Kbp upstream of the pro-
moter region was analyzed. We observed longer 3′UTRs for humans compare to non-human primates recapit-
ulating previous reports by others13. Next, for each gene, we built a separate phylogenetic tree based on each 
genomic region. We completely filtered out any region that contained undefined nucleotides (‘N’ in sequence) 
since these introduce artifacts into phylogenetic analysis. To account for general inter-species genomic distances, 
each phylogenetic gene tree was normalized by the global genomic tree (% difference, Fig. S2). The normalizing 
tree was downloaded from http://www.gate.net/~rwms/primegendist.html#Msp where the distances between the 
nodes were calculated by the PAUP*4.0 software. Because different organisms and tissues have different expres-
sion distributions, all expression data were quantile-normalized14 (see Methods and Fig. S1). This procedure 
produces comparable expression distributions of identical statistical properties (Fig. S3).

Several tissues are represented in the NHPRTR database for non-human primates, but not for humans. Data 
for corresponding tissues from humans were hence downloaded from the GTEx database. To verify that the 
GTEx and NHPRTR databases are comparable, we analyzed four transcriptomes of human tissues that existed 
in both databases. We observed extremely high expression correlations for each of the four examined tissues 
(Fig. 2A). The total number of genes identified in all examined primates RNA expression data was 26,204. Based 
on the quantile normalized expression values, we separately built Euclidean distance trees for each gene in each 
tissue across organisms. In these expression-based trees the distance between any given pair of species equals the 
delta between their quantile-normalized expression (see Methods). Previous studies showed shorter expression 
distance between primates based on brain transcriptome compared to non-neuronal tissues7,8. Calculating the 
total expression-based tree across organisms for each tissue, we recapitulated this result (Fig. S4A). For orthol-
ogous genes, we used Ensemble annotation of ‘one-2-one’ orthology between primates. The number of orthol-
ogous protein coding genes without ‘N’ in their genomic sequence in any of the primate genomes was 4812 for 
up-stream of promoter region, 4866 for promoter region, 6931 for 5′UTR, 6604 for CDS and 6873 for 3′UTR.

Our hypothesis suggests that beneficial phenotypes that depend on gene expression patterns were consoli-
dated and represented by changes in genomic shaping around these genes. In order for an expression change to be 
passed to the offspring it is likely to be manifested as a genomic change. The alternative that changes in expression 

Figure 1.  Comparing genomic sequence changes with tissue expression changes. (A) Genomic distance-
based and expression distance-based trees were built for each genomic region and each tissue. Tree correlation 
was evaluated with the pair-wise Pearson correlation coefficient. At the tissue level, the distribution of the 
correlation coefficients for all tissue enriched genes was evaluated. A shift towards high values of correlation 
coefficient suggests that the tissue’s expression is associated with genomic sequence evolution.  
(B) Sequence based trees were built for six primate species (as noted above) and separately for four genomic 
regions. The genomic regions are 1.5 Kbp upstream of gene’s TSS, 5′UTR, CDS and 3′UTR. The upstream region 
was further fragmented to three equal size regions. Expression-based trees were built for the same species for 
eight tissues and compared against the genomic sequence trees.
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pattern could be due to epigenetic alteration (i.e., transgenerational epigenetic inheritance)15 is not addressed in 
this paper. Therefore, regions or genes that were important for evolutionary genomic sequence consolidation in 
the organism would have similar expression-based and genomic-based trees. We searched for trees similarity by 
calculating the Pearson correlation coefficient, pair-wise, between expression-based and genomic-based trees (see 
comment in Methods about additional ways to compare trees). Genes with low trees similarity would have low 
correlation coefficient while genes with high trees similarity would have high correlation coefficient (Fig. 1A). To 
assess the contribution of a tissue to genomic sequence consolidation, we examined the shape of the distribution 
for the calculated correlation coefficient for tissue-enriched genes (see definition below). Our hypothesis predicts 
that tissues that have a weak influence on genomic sequence consolidation would have a correlation coefficient 
distribution concentrated around zero (solid line in Fig. 1A). On the other hand, tissues that have strong influ-
ence on genomic sequence consolidation would have distributions shifted towards positive values (dashed line 
in Fig. 1A).

To examine this hypothesis on a tissue by tissue level, we first defined enriched gene sets for each tissue. Tissue 
enriched gene sets were defined as genes expressed in a particular tissue at least five times higher than the average 
across all other tissues. Among the 15 examined tissues, only eight tissues showed more than 100 tissue enriched 
genes, which was set as the lower threshold for the number of genes. Setting a threshold on the number of tissue 
expressed genes is critical for assessing tissue effects instead of effects driven by only few genes. This threshold 
yielded between 232 and 665 genes for the eight tissues that passed the threshold. For each genomic region, we 
calculated and plotted the distribution of correlation coefficients between its sequence-based trees and tissue 
expression trees for the corresponding tissue enriched genes (Fig. 2B–D). Since there were six genomic regions 
and eight tissues in total, a total of 48 distributions were calculated. Because of the different number of genes in 
each distribution, and in order for them to be comparable these distributions were normalized by their total area 
underneath the curve.

In order to calculate statistical significance effects between tissues in each genomic region, we took 
a bootstrap approach. In the bootstrap analysis we permuted across gene trees for each tissue such that 
expression-based and genomic-based trees were randomly paired and a correlation coefficient was calculated. 
This permutation was repeated for 1000 iterations and averaged across the iterations. The outcome of this boot-
strap strategy is a null distribution of correlation coefficients per genomic region, per tissue. Because tissues 

Figure 2.  High correlations between promoter region evolution and brain expression. (A) High correlation 
between NHPRTR and GTEx expression data. Scatter plot comparing between quantile normalized expression 
values for the same human tissue for liver, kidney, skeletal muscle and lung, from the NHPRTR database 
(X axis; log2 transformed) and the GTEx database (Y axis; log2 transformed). Pearson correlation r > 0.987 
in all four comparisons. (B) Transcriptome tissue color codes are shown in Fig. 1B. Correlation coefficient 
distributions for three consecutive 500 bp windows in the promoter region show significant shifts towards 
high values in cerebellum and frontal cortex. Kolmogorov Smirnov P of individual distributions versus the 
bootstrap distributions (shown as inset) = 2*10–4, P = 4*10–7 and P = 6*10–6 for left, middle and right windows, 
correspondingly, for frontal cortex and P = 3*10–3, P = 3*10–6 and P = 5*10–6 for left, middle and right 
windows, correspondingly, for cerebellum. P > 0.05 for or all other comparisons. (C) Transcriptome tissue color 
codes are shown in Fig. 1B. Correlation coefficient distributions for 3 Kbp to 1.5 Kbp upstream of transcription 
start site did not show any shift compared with the bootstrap distribution. P > 0.05 for all comparisons. (D-F) 
Transcriptome tissue color codes are shown in Fig. 1B. Correlation coefficient distributions for 5′UTR (D), 
CDS (E) and 3′UTR (F) did not show any shift compared with the bootstrap distribution. P > 0.05 for all 
comparisons. P values are Bonferroni corrected.
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showed almost identical null distributions we averaged them together. Next, the actual distribution of a tissue 
and genomic region was compared with the bootstrap distribution by two statistical tests for comparing distri-
butions (Kolmogorov Smirnov and Kruskal Wallis tests). P values were corrected with Bonferroni for multiple 
comparisons. Among all examined genomic regions and tissues only promoter regions in cerebellum and fron-
tal cortex showed significant shifts towards positive correlation coefficients (Fig. 2B). This effect was significant 
in all three sub-regions (windows of 0.5 Kbp upstream of TSS) of the promoter region but was most pronounced 
in the middle window (1 Kbp to 0.5 Kbp upstream of TSS, Fig. 2B). Supplementary Tables 1 and 2 show the top 
50 genomic signature genes based on cerebellum and frontal cortex expression, correspondingly. None of the 
other genomic regions showed any such effect for any of the examined tissues, including cerebellum and frontal 
cortex (Fig. 2C-F).

Discussion
The similarity between expression-based and genomic-based trees in cerebellum and frontal cortex was higher 
than among all other examined tissues and higher than that predicted by chance. These results point at a detect-
able signature of RNA expression change in brain tissues on primates‘ genomic evolution. To the best of our 
knowledge, these results are the first molecular level, transcriptome-wide supportive evidence for a significant 
impact of the brain on genomic sequence consolidation during primate evolution.

It was previously proposed that regulatory elements, other than the promoter region, played a role in genomic 
shaping as well16. Some of these regulatory elements are 3′UTR and 5′UTR, which we have examined in our 
study. Our results do not contradict this hypothesis; rather, they show that the association between genomic 
changes and tissue expression changes is most robust and widespread around promoter regions and for brain 
tissues. It is possible that a similar effect acted on 3′UTRs and 5′UTRs during evolution but was too subtle to 
leave a detectable signature in living primates in present time. In addition, previous studies showed a pivotal role 
in tissue-specific gene expression for predicted enhancer regions during development in mice17,18. At present, no 
corresponding data are available to predict enhancers for the non-human primates in the tissues examined here. 
Therefore, these important genomic regions could not be analyzed in the same manner as the regions in our study. 
However, it is possible that comparisons of genomic- and transcriptomic-based trees across genomic enhancers 
would show a stronger signal than the reported one for promoter regions.

Methods
Analyzed data.  In this study we analyzed genomes and transcriptomes from six species. For each spe-
cies, following are the organism specific name/taxon ID/Ensembl assemblies. Human, Homo sapiens/9606/
GRCh38.p7. Chimpanzee, Pan troglodytes/9598/CHIMP2.1.4. Macaque, Macaca mulatta/9544/Mmul_8.0.1. 
Olive baboon, Papio Anubis/9555/PapAnu2.0. Marmoset, Callithrix jacchus/9483/C_jacchus3.2.1. Mouse 
Lemur, Microcebus murinus/30608/Mmur_2.0. The Nonhuman Primate Reference Transcriptome Resource 
(NHPRTR) contains RNAseq analysis of tissue pools for individual NHP species and its full data are available 
on http://nhprtr.org/. The Genotype-Tissue Expression (GTEx) project collects genomic variation and tissue 
expression data in human population. In this study we utilized only expression data from the GTEx resource. 
Data available on the GTEx Portal (http://www.gtexportal.org/home/). Data from all resources were down-
loaded during March 2017.

Genomic regions.  We have used Ensembl annotation to define start and end sites of distinct genomic 
regions. The examined genomic regions were promoter region, 5′ untranslated region (5′UTR), coding sequence 
region (CDS) and 3′ untranslated region (3′UTR). 5′UTR was defined as the region between transcription start 
site to translation start site and 3′UTR was defined as the region between translation end site to transcription end 
site. CDS was the collection of gene’s exons. Genomic regions were collected for all existing variants per gene. For 
genes with multiple variants we unified regions of the same type. We followed a previous study in defining the 
limit for promoter region8. Promoter region upstream limit was set to 1.5 Kbp upstream of transcription start site. 
Because of the somewhat arbitrary nature of this limit we further fragmented it to three consecutive widows of 
500 bp each and analyzed the sequences for each sub-region separately.

Tree building.  Genomic trees. For each gene, in each species pair, and based on each genomic region sep-
arately, a sequence distance was calculated as the proportion of sites at which two sequences are different; p. 
p is close to 1 for poorly related sequences and close to 0 for similar sequences. Next, p was transformed to 
Jukes-Cantor Maximum likelihood estimate of the number of substitutions between two sequences, d, as shown 
in equation (1).

= −


 −



⁎d p3

4
log 1 4

3 (1)

Trees were built based on d, such that the distance in the tree between any pair of species would be d.
Expression trees. For each gene, in each species pair, and based on expression of each tissue separately, we 

calculated the difference (delta) between their quantile normalized expression. Trees were built based on delta, 
such that the distance in the tree between any pair of species would be delta.

Tree comparison.  The similarity between sequence- and expression-based trees was evaluated by the 
Pearson correlation coefficient in a species pairwise manner. Evaluating trees‘ similarity with Pearson correlation 
coefficient is based on the fact that for similar trees, if the relative distance between a pair of species is high in 
one tree it is expected to be high in the other and vice versa. This pattern is accurately captured by the Pearson 
correlation coefficient and so pairwise correlation indicates similar tree structure. An alternative way to compare 
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phylogenetic trees is the phylo-comparison algorithm19 which compares species partitioning between trees. This 
method is not sensitive for the relative distances between species inside a tree but only to species grouping on 
tree branches. We have not used this method due to the relatively low number of analyzed organisms. In this 
algorithm, low number of analyzed organisms causes the possible output scores to be restricted to just a few val-
ues. This quantized nature of the outcome makes it impossible to identify a distribution shift. For that reason we 
worked with the pairwise correlation between normalized trees.

Bootstrap.  In order to calculate statistical significance for the observed distribution shifts we took a bootstrap 
approach. We permuted across genes so that the calculated correlation coefficients were between sequence tree of 
one gene and expression tree of another. This gene permutation was performed for each tissue separately, to build 
the tissue null distribution. Because different tissues showed almost identical null distributions we averaged these 
distributions. This gave rise to the bootstrap null distribution, averaged across tissues, for each genomic region 
separately (shown as insets in Fig. 2B–F). Lastly, the correlation coefficient distribution for each tissue and each 
genomic region was compared to the bootstrap null distribution with statistical tests for distribution comparison, 
namely, Kolmogorov Smirnov and Kruskal Wallis tests, and P values were corrected for multiple comparisons 
with the Bonferroni correction.

Data availability.  NHPRTR full data are available at http://nhprtr.org/. GTEx full data are available at http://
www.gtexportal.org/home/.
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