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Motor cortical activity changes 
during neuroprosthetic-controlled 
object interaction
John E. Downey   1,2, Lucas Brane3, Robert A. Gaunt1,2,3,5, Elizabeth C. Tyler-Kabara1,3,4,5, 
Michael L. Boninger1,3,5,6 & Jennifer L. Collinger1,2,3,5,6

Brain-computer interface (BCI) controlled prosthetic arms are being developed to restore function 
to people with upper-limb paralysis. This work provides an opportunity to analyze human cortical 
activity during complex tasks. Previously we observed that BCI control became more difficult during 
interactions with objects, although we did not quantify the neural origins of this phenomena. Here, 
we investigated how motor cortical activity changed in the presence of an object independently of the 
kinematics that were being generated using intracortical recordings from two people with tetraplegia. 
After identifying a population-wide increase in neural firing rates that corresponded with the hand 
being near an object, we developed an online scaling feature in the BCI system that operated without 
knowledge of the task. Online scaling increased the ability of two subjects to control the robotic arm 
when reaching to grasp and transport objects. This work suggests that neural representations of the 
environment, in this case the presence of an object, are strongly and consistently represented in motor 
cortex but can be accounted for to improve BCI performance.

The capabilities of the human arm and hand allow us to interact with our environment in a multitude of ways that 
are crucial for activities of daily living. Our ability to reach out for a cup of coffee, grasp and turn a door knob, 
swing a hammer, or button a shirt, are all accomplished effortlessly with the same apparatus. The loss of arm and 
hand function therefore leads to a severe loss of independence. This sense of loss is reflected in studies of people 
with spinal cord injury who report that restoration of arm and hand function is a top priority1–3. For injuries like 
spinal cord injuries and amputation, assistive technology is required to replace the functions previously per-
formed by the arm and hand. To address this issue, brain-computer interfaces (BCI) that enable control of robotic 
arms are being developed4–8.

A great deal is known about how primary motor cortex (M1) encodes movement parameters during free 
reaching9–18, and BCI control of robotic devices in both animals19 and humans4–8,20 is based on this understand-
ing. We have previously shown that while using a BCI, a person can continuously and simultaneously control 
10 degrees of freedom of an anthropomorphic robotic arm including positioning and orienting the hand and 
wrist, as well as multiple grasp postures8. Although the BCI enabled consistent and skilled performance of move-
ments performed in open space, we noted difficulties when the subject tried to grasp objects8. This often mani-
fested as an unwanted movement away from the target object or the inability to execute a grasp around an object 
(Supplementary Video 1). If the object was removed from the workspace, the ability to accurately control the arm 
was restored.

Because BCI arm movement results from a defined transformation of the recorded neural firing rates, a reduc-
tion in performance implies that the M1 activity was different when an object was present in the workspace. This 
led us to modify our calibration paradigm to account for this8. Initially we had estimated the relationship between 
neural firing rates and kinematics while the subject attempted to move the robotic arm in open space8. To mitigate 
the challenges with object grasping, we began to calibrate in a virtual-reality environment where the participant 
could observe a virtual arm grasping and transporting virtual objects. Incorporating virtual objects into our 
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calibration paradigm helped to overcome the challenges with grasping simple objects and enabled the participant 
to complete functional assessments of performance that she had previously been unable to perform consistently8. 
However, there remained a gap in our understanding of how neural activity changes during object manipulation 
as compared to simple kinematic movements.

In order for a BCI-controlled robotic device to truly replace function, it must enable reliable and safe object 
manipulation across a variety of environmental conditions. However, the neural control of hand movements and 
object manipulation has been less studied than reaching9–18. Some studies in non-human primates have reported 
that M1 encodes information about the size and shape of the object that is being grasped21–23. However, other 
work indicates that motor cortex encodes information related to hand shaping rather than information about the 
object itself24–26. To expand on previous studies of free reaching, or reaching to grasp9–18,21–26, we sought to study 
the differences in M1 activity between reaches involving objects and those that do not involve objects.

In this study, we report findings in two human intracortical BCI users as they reach and grasp an object with 
a robotic arm or generate the same movement without an object in the workspace. We found that a large propor-
tion of M1 neurons increased their firing rate while the hand approached an object, but not while performing the 
same movement without an object in the workspace. Task performance suffered since this change in neural firing 
rates was unaccounted for in our BCI decoding algorithm. However, by implementing an online scaling method 
to account for object-related changes in M1 firing rates, we could restore the subjects’ ability to perform reaching 
and grasping tasks with the BCI.

Results
Two subjects with tetraplegia had intracortical microelectrode arrays (Blackrock Microsystems, Inc., Salt Lake 
City, Utah) implanted in motor cortex as part of a study covered by an Investigational Device Exemption (See 
Methods for details). This study consisted of two primary experiments: (1) Quantification of M1 activity during 
BCI-controlled reach and grasp movements with and without an object in the workspace and (2) Development 
and evaluation of an online scaling paradigm designed to account for changes in neural firing rate to improve the 
subjects’ ability to interact with objects.

Object presence impairs BCI control by increasing firing rates.  The ‘object interaction task’ was used 
to determine how the presence of an object modulates neural activity during reaching and grasping. Each subject 
completed two conditions: (1) Reaching to and grasping a cylindrical object (5 cm diameter, 14 cm height) and (2) 
Reaching to the same position in space and closing the hand in the absence of a physical object in the workspace. 
Both participants experienced a decrease in success rate on the object interaction task when an object was present 
in the workspace (Supplementary Video 2). Subject 1 successfully completed 82% of trials when no object was 
present (25/30 trials, across 6 days). In contrast, she only successfully completed the task 60% of the time if an 
object was present in the target region (18/30 trials, across 6 days). Subject 2 successfully completed 79% of trials 
when no object was present (55/70 trials, across 2 days), but the success rate decreased to 21% (15/70 trials, across 
2 days) when an object was present.

The decrease in task performance was accompanied by changes in population firing rate. Figure 1 shows that 
an increase in firing rate was measured on a majority of channels as the hand moves closer to the object (i.e., the 
end of the reach phase). Data are presented as a standardized firing rate where measured data is normalized to the 
mean and standard deviation of the firing rate recorded during calibration (See Methods for details). As would be 
expected during BCI control, Fig. 1 shows that on a representative day of testing, many of the channels measured 
an increase or decrease in firing rate as compared to baseline, which is to be expected because each unit has a dif-
ferent preferred direction and all reaches were to the left. The ‘Difference’ plot on the far right in Fig. 1 highlights 
the object-specific changes in firing rate that affected more than half of the recorded units. These units fired faster 
as the hand got closer to the object when compared to the firing rates that were measured during the same kine-
matic movement without an object in the workspace. Because the movement kinematics were the same whether 
or not an object was present, the difference plot shows no change in firing rate for units that are unaffected by 
object presence. During the 250 ms before the end of the reach phase 69.8% of Subject 1’s units and 68.4% of 
Subject 2’s units fired faster when an object was present across all test days (i.e. positive values at the right side of 
the difference plot in Fig. 1). To give a sense of the strength of this effect, we define units that are highly-sensitive 
to object presence as those that have a change in firing rate between the ‘object’ and ‘no object’ conditions that is 
greater than 1 standard deviation above or below the mean firing rate during decoder calibration. Subjects 1 and 
2 had 13.7% and 10.5% of their units respectively show a high sensitivity to the object that resulted in an increase 
in firing rate. Only 3.6% of Subject 1’s units and 1.7% of Subject 2’s units exhibited a high sensitivity to the object 
resulting in a decrease in firing rate.

The increase in standardized population firing rate was consistently observed in both participants across trials 
completed over multiple days as shown in Fig. 2. The population firing rate increased throughout the reach as the 
hand moved closer to the object. When no object was present, the standardized population firing rate remained 
nearly constant during the reach phase. In both participants, there was a significant difference between the stand-
ardized population firing rate during the reach phase, as measured during the last 250 ms of the reach phase, 
when an object was present compared to when the subject performed the same movement without an object in 
the workspace (p < 0.001, Wilcoxon Rank Sum). When reaching to an object, Subject 1’s median population fir-
ing rate during the last 250 ms of the reach phase across 30 reaches was 0.66 standard deviations higher than the 
mean firing rate measured during calibration in the VR environment, but only 0.34 standard deviations higher 
if no object was present. This is a difference equivalent to an increase in firing rate of 0.24 Hz in every unit in the 
population for Subject 1 when an object is present. Similarly, Subject 2’s median population firing rate across 70 
reaches was 0.48 standard deviations higher than baseline when an object was present, and only 0.27 standard 
deviations higher without an object. This is a difference equivalent to an increase in firing rate of 0.27 Hz in every 
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Figure 1.  Neural response to object interaction task. Standardized firing rates from Subject 1 (top row) and 
Subject 2 (bottom row) averaged across trials from a single day of testing are shown for each recording channel. 
The channels are sorted according to the difference in standardized firing over the last 250 ms of the reach phase 
between the object and no object conditions with the units showing the highest difference at the top of each 
plot. On the testing day that is shown, Subject 1 completed 5 trials per condition and Subject 2 completed 50 
trials per condition.

Figure 2.  Population firing rate trajectories. The thin faded lines show the z-scored population firing rate for 
the 1.5 seconds before and after the hand reached the target (vertical dashed line) for every trial across all testing 
days (6 for Subject 1, and 2 for Subject 2). The bold line shows the average z-scored population firing rate for 
each condition. Both subjects showed increased population firing before object contact, while neither showed 
increasing firing rates while reaching towards the empty target region.



www.nature.com/scientificreports/

4SCieNtifiC REPOrTS | 7: 16947  | DOI:10.1038/s41598-017-17222-3

unit in the population for Subject 2. The population firing rate continues to increase for approximately 0.5 seconds 
after the cue to grasp. We also observed a slight increase in firing rate at approximately 0.75–1 seconds into the 
grasp phase, which is approximately when the hand would close although grasp timing relative to the onset cue 
was variable across trials (Fig. 2).

Additionally, we investigated whether the change in population firing rate was related to the subject’s plan to 
grasp the object, or simply due to the object being present. To do so, Subject 1 completed 30 trials, across 6 days, 
of an additional condition where she reached to position the hand at the target, but simply kept the hand in an 
open position. When the subject did not intend to grasp, there was still a significant difference in population-level 
firing rate between the object and no object trials during the last 250 ms of the reach phase (0.47 standard devia-
tions above baseline for trials with an object, vs. 0.34 for trials with no object, p = 0.02, Wilcoxon rank-sum test). 
We also confirmed that when no object was present in the workspace, population firing rate at the end of the 
reach was the same whether or not the subject intended to grasp or keep the hand open (0.34 standard deviations 
above baseline, p = 0.97, Wilcoxon rank-sum test).

Online population-level scaling improves BCI object grasping.  The large increase in firing rate that 
occurred when an object was present provides an explanation for the decrease in performance during reaches to 
objects as compared to movements performed in open space. This population-level increase in firing rate (shown 
in Fig. 2) violates the neural encoding model (See Equation 1 in Methods for additional detail) used to create the 
decoders used in this BCI system. In the encoding model, the firing rate for each channel is a linear function of 
the desired movement velocity, and it is assumed that the coefficients relating intended velocities to firing rate 
are independent8,16. Here we found that a large proportion of the recorded units had increased firing rates when 
an object was present. This indicates that the neurons are sensitive to a factor other than velocity, and that the 
response to this factor is not independent across the population.

To adjust for this population-level change in firing rates, we implemented a scaling factor that operated during 
BCI control without knowledge of the task being performed. The scaling factor was calculated by computing the 
average population firing rate over the most recent 300 ms and dividing that by the average population firing rate 
observed during decoder calibration (Equation 2 in Methods). Each channel’s firing rate was then divided by this 
scaling factor before being decoded. As with the changes in population firing rate shown in Fig. 2, the scaling 
factor increased as the hand approached the object. For trials with an object, the median scaling factor increased 
from 1.47 (1.29–1.62 IQR) 1.5 seconds before the end of the reach to 1.54 (1.43–1.71 IQR) at the end of the reach. 
For Subject 2 the median scaling factor started at 1.03 (0.98–1.07 IQR) and increased to 1.10 (1.06–1.15 IQR) at 
the end of the reach phase.

After implementing online scaling, Subject 2’s success rate on the object interaction task increased from 21% 
to 56% when an object was in the target region (p = 0.0012, Wilcoxon rank-sum, Supplementary Video 3). He 
was successful on 77% of trials with scaling and 79% of trials without scaling when no object was present, show-
ing that scaling did not impair performance (p = 0.94, Wilcoxon rank-sum). Subject 1 had a success rate of 57% 
without scaling and 63% with scaling when a cylinder was in the target region. While not significantly different 
(p = 0.77, Wilcoxon rank-sum), this may be because her performance with objects was better than Subject 2 to 
begin with. She had been practicing functional tasks involving objects for months without scaling prior to this 
experiment and may have learned to modulate her neural activity to overcome any object-related changes in 
firing rate. She was successful on 93% of trials with scaling and 63% of trials without scaling when no object was 
present (p = 0.18, Wilcoxon rank-sum).

Upon examination of the reach kinematics, we found that subjects had an improved ability to stabilize the 
hand near the object. We quantified the movement of the arm for the 1.5 seconds after the hand reached the target 
and the subject was cued to grasp. In a perfect case, no translation of the arm (measured at the endpoint near 
the palm) would be observed as the subject closed the hand to a grasped position. Both participants showed a 
significant decrease in the amount of arm translation when scaling was implemented (both p < 0.005, Wilcoxon 
rank-sum). Figure 3a illustrates the arm endpoint position for reaches to an object and for movements without 
an object in the workspace for trials performed by Subject 2 with and without scaling. When Subject 2 per-
formed reaches with an object present, the arm had a median trajectory length of 0.16 meters in the 1.5 seconds 
after the cue to grasp without scaling, but only 0.13 meters with scaling (p = 1.2 × 10−4, Wilcoxon rank-sum). 
Similarly, Subject 1 had a median trajectory length of 0.12 meters without scaling and 0.08 meters with scaling 
(p = 1.3 × 10−5, Wilcoxon rank-sum) when reaching towards an object. When no object was present, Subject 
2 had a median trajectory of 0.13 meters without scaling and 0.12 meters with scaling (p = 0.068, Wilcoxon 
rank-sum). Subject 1 had a median trajectory length of 0.09 meters without scaling and 0.08 meters with scaling 
(p = 0.015, Wilcoxon rank-sum). Again, these results show an improvement in performance with scaling when 
an object is present, but no detriment to performance in the absence of an object.

Finally, the subjects performed an object transport task to provide a more functional assessment of the effect 
of scaling in a task related to activities of daily living. The goal of the task was to pick up a cylindrical object 
(15.5 cm tall, 4.5 cm diameter, with a weighted base) on one side of a table, transport it across a 20 cm wide zone 
on the table, and place it on the other side. An experimenter immediately picked up the object and placed it back 
in the starting position. The subject had to transport the object as many times as possible in 2 minutes. Subject 1 
showed a significant improvement in performance when scaling was used, increasing her object transfer rate over 
three-fold (p = 0.0273, Wilcoxon rank-sum, Table 1, Supplementary Video 4). Subject 2 also showed significant 
improvement when scaling was used, increasing his object transfer rate by 14% (p = 0.043, Wilcoxon rank-sum, 
Table 1, Supplementary Video 5).
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Discussion
Grasping is a complex task that engages multiple brain areas27,28. Here we observed that neurons in M1 react to 
the presence of an object. We implemented a simple method to recognize and account for the changes in popula-
tion firing rate during BCI control without knowledge of the task or environment. This method of online scaling 
increased BCI performance during robotic arm control during reaches to objects while not impairing movements 
without an object in the workspace, essentially improving the reliability and generalizability of the BCI.

We first noticed difficulties with grasping objects under BCI-control during the early arm control experi-
ments, but they became particularly problematic during higher degree-of-freedom control experiments8. The 
nature of the problematic movements would differ from day to day, but were typically consistent across trials 
using the same decoder. When decoders were calibrated without objects in the workspace, our first participant 

Figure 3.  Movement trajectories near the target across all testing days. (a) The endpoint position of the arm is 
shown for the 1.5 seconds before (faded color) and after (saturated color) Subject 2 guided the hand to the target 
region. The left column shows reaches without scaling. The right column shows reaches with scaling. With 
scaling, the reach movement is much more consistent and there is less movement once the hand reaches the 
target. (b) The cumulative distribution of the path length in the 1.5 seconds after the hand reached the target and 
the subject was cued to grasp. Once the hand reaches the target no more arm movement is necessary, so longer 
paths (conditions that are further right in the plot) demonstrate less ability to stabilize the hand.

Transfers Per Minute

With Scaling Without Scaling

Subject 1 1.09 (1.09) 0.35 (0.66)

Subject 2 5.28 (1.21) 4.65 (1.27)

Table 1.  Average number object transfers per minute with and without scaling. The mean number of transfers 
per minute (and standard deviation) was computed from 17 two-minute object transfer trials across 6 days for 
Subject 1. Subject 2 completed 20 trials across 3 days.
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consistently had difficulty interacting with objects. When virtual objects were introduced into the calibration 
process the subject appeared to overcome this difficulty and completed functional reaching and grasping tasks 
reliably during eleven testing sessions across more than a month8. As experiments continued more than a year 
after the introduction of virtual objects, we again began to observe unintentional movements while interacting 
with objects, even with decoders calibrated with virtual objects. Complications with object interaction within 
the realm of BCI-controlled prosthetics have not been widely reported or well characterized. Only a few studies 
have attempted tasks involving object grasping5,6. However these have typically been limited to simple tasks that 
are the same as the calibration procedure or tasks with fewer degrees of freedom, which may be less susceptible 
to population-level changes in firing rate due to the redundancy of the recorded population relative to the task 
kinematics.

In this study, we explored a solution for dealing with changes in firing patterns seen with a BCI-controlled 
robotic arm during object manipulation. This approach involves scaling the firing rates before decoding them to 
generate movement commands. This scaling removed the correlated increase in firing rates across the recorded 
population, and improved the ability of the subjects to interact with objects. This population-wide approach 
had the benefit of being immediately generalizable between days, not requiring calibration each day like a 
unit-specific method would. Others have attempted to address recording nonstationarities29–32, which can be 
defined as unexpected changes that occur in the statistical characteristics of neural signals. However, these studies 
largely explore issues with reliability in control over minutes to hours, rather than the object-related phenomena 
observed here, which occurs on a time scale of hundreds of milliseconds. Methods related to recording nonsta-
tionarities primarily seek to compensate for changes in the identity of the recorded neurons, because the loss of 
a recorded neuron can greatly disrupt the decoding model. In contrast, our work seeks to temporarily adjust for 
an expected change during a common type of activity. Online scaling may also prove useful in other conditions 
where population-level firing rate is modulated by a factor other than object presence, for instance attentiveness33.

Many questions remain around the neurological origin of the apparent object-sensitivity observed in M1. 
While not tested here, we speculate that the changes in firing rate reflect preparation for object contact, grasp and 
manipulation, which requires that the hand and arm be prepared to deal with unexpected sensory input or per-
turbations. As an example, people often exhibit increased muscle co-contraction when preparing to lift an object 
with unknown characteristics, such as weight34. Future studies should manipulate object properties and task 
requirements (such as level of precision) in order to better understand whether the observed firing rate changes 
are modulated by the task.

At a systems level, we suspect that inputs arising from other areas in the visuomotor pathway contribute to the 
changes in population firing rate in M1 during BCI control. Studies of anterior intraparietal cortex (AIP), ventral 
premotor cortex (PMv), and M1 have shown that explicit object information is represented in AIP during move-
ment planning and PMv during planning and execution25,26,35–37. These studies did not observe explicit object 
information in M1, but that may be because they did not compare activity to recordings during identical move-
ments without an object in the workspace. Other studies that have shown that M1 contains information about 
objects such as size and shape, however these differences could also be due to the fact that different hand kine-
matics are used for each object21–23. Further research into the visuomotor pathway, and the computations within 
and between the cortical areas, will improve our understanding of the interaction of objects and motor control.

An emerging understanding of population dynamics in M1 may also help to explain this firing rate behavior 
that deviates from the expectations of our linear model for firing rates38,39. A dynamic network model for decod-
ing40 may naturally avoid the problems that a generalized increase in population firing rate causes for decoders 
that enforce a linear relationship between firing rates and kinematics like the one used in this work.

It is also worth investigating whether this sensitivity to objects is only present during neuroprosthetic arm use, 
perhaps due to a lack of proprioceptive or tactile feedback, or whether it is present during native arm movements 
as well. Ongoing studies of BCI-controlled functional electrical stimulation41–43 provide a unique opportunity 
to study in humans whether the object-sensitivity of M1 units is specific to robotic-arm control or whether it is 
a natural response to the task environment. While future work is needed to investigate the mechanisms leading 
to the observed changes in M1 firing, we have presented a simple method for enabling more generalizable BCI 
control that accounts for object-related challenges.

Methods
This study was conducted under Investigational Device Exemptions from the U.S. Food and Drug Administration 
for the study of intracortical BCI (NCT01364480 and NCT01894802). The studies were approved by the 
Institutional Review Boards at the University of Pittsburgh and the Space and Naval Warfare System Center 
Pacific. All procedures were conducted in accordance with the policies and guidelines associated with these 
approvals.

Study participants.  Two participants completed this study to investigate how M1 activity was impacted 
by the presence of an object during reaching and grasping movements. Informed consent was obtained from 
both participants prior to completion of any study-related procedures. Subject 1 was a 52-year-old (at time of 
implant) woman with spinocerebellar degeneration resulting in motor complete tetraplegia at the C4 level with 
some preserved sensation44. Two 96-channel intracortical microelectrode arrays were implanted in the hand and 
arm region of her primary motor (M1) cortex. She participated in 9 sessions, occurring between 795 and 850 days 
after implantation. Subject 2 was a 28-year-old (at time of implant) male with tetraplegia due to a C5 motor/C6 
sensory ASIA B spinal cord injury45. Subject 2 had two 88-channel intracortical microelectrode arrays implanted 
in the hand and arm region of M1. He also had intracortical microelectrode arrays implanted in finger-related 
areas of somatosensory cortex, though they were not used in this experiment. Results related to intracortical 
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microstimulation through the electrodes in somatosensory cortex are presented elsewhere46. Data was collected 
over 3 testing days between days 661 and 673 after implantation.

Neural recording and BCI decoder calibration.  Neural recording was completed using a Neuroport 
Neural Signal Processor (Blackrock Microsystems, Inc., Salt Lake City, Utah). Signals were band pass filtered 
from 250–7500 Hz and digitized. Spikes (i.e. action potentials) were identified using a negative threshold of 4.5 
root mean squared (RMS) voltage. All threshold crossings from a single electrode were considered to be a ‘neural 
unit’ and this may have included both single and multi-neuron recordings. Spike counts on each recording chan-
nel were binned in 30 ms bins (33 Hz update rate) for Subject 1 and 20 ms bins (50 Hz update rate) for Subject 2. 
Binned spike counts were smoothed with an exponential filter with a 450 ms window size for Subject 1 and 440 ms 
window size for Subject 2. Finally, the firing rates were square root transformed before being used for decoding 
or data analysis.

As with our previous studies4,8, the BCI decoder was trained by having the subject attempt to move a real 
or virtual robotic arm to a series of position, orientation, and grasp targets. The subjects typically controlled 5 
degrees of freedom (DoF) during the experiments described in this protocol. Decoders were trained in virtual 
reality (VR)8 using a two-step calibration method as reported previously4,8. The subject attempted to move the 
VR arm to a presented target location, orient the wrist in accordance with a computerized verbal instruction, and 
then grasp or release the hand according to a verbal target.

During the first step of calibration, called observation, the subject observed and attempted to execute the arm 
and hand movements in VR while the computer controlled the actual movements. After completing 27 trials 
(approximately 6 minutes) of the observation step, an OLE decoder was derived using an encoding model relating 
the neural firing rates to the arm kinematics. The encoding model is:

= + + + + +f b b v b v b v b v b v (1)x x y y z z r r g g0

where f is the square-root transformed firing rate of a unit, v is a kinematic velocity, and b is a regression coef-
ficient for a given velocity dimension. The dimensions shown here are x, y, and z translation, wrist roll (r), and 
grasp aperture (g). The b coefficients were calculated using linear regression with ridge regression. Decoder 
weights were then calculated using indirect optimal linear estimation4.

Once this decoder was trained, the subject was given control of the virtual arm for the second step of calibra-
tion. During this step, the subject performed the task with the BCI but shared mode control was applied in order 
to project the decoded command signals onto an idealized path as demonstrated by Velliste et al.19 to prevent the 
need for error correction. After completing 27 trials (approximately 6 minutes) of the shared mode control step of 
training a new decoder was computed. This new decoder was then used, without any form of computer assistance, 
to complete the tasks described here. For all of the tasks, the subjects controlled 5 dimensions of the modular 
prosthetic limb (MPL, Johns Hopkins University Applied Physics Laboratory)47. This included 3-dimensional 
endpoint velocity that allowed them to position and move the hand anywhere in the workspace of the robot 
as well as 1-dimensional rotation of the wrist and closing or opening velocity of hand aperture at all times. The 
thumb and fingers were linked together into a single dimension of grasp.

Investigation of cortical activity related to object presence.  The ‘Object interaction task’ was used 
to determine how the presence of an object impacted neural activity during reaching and grasping. Each subject 
completed two conditions: (1) Reaching to and grasping a cylindrical object (5 cm diameter, 14 cm height) and 
(2) Reaching to the same position in space and closing the hand in the absence of a physical object in the work-
space (Fig. 4a). The robotic arm started at the right side of the workspace for each trial, which was divided into 
two phases, reach and grasp. An audio cue indicated the start of the trial and the subjects used the BCI to move 
the robotic arm to within 5 cm of the target that was 35 cm to the left of the starting position. The same position 
target was used to judge the success of the reach phase regardless of whether an object was in the workspace. The 
subject had 20 seconds to reach to the target. Once the hand was within the target area, the grasp phase began as 
a chime prompted the subject to close the fingers to a grasped position while remaining within 5 cm of the arm 
position target. The grasp had to be held for 2 continuous seconds within 5 seconds of the chime for the trial to be 
successful. Data was collected in blocks of 5 trials, where the presence or absence of the object was randomized 
between blocks. Subject 1 also performed a version of this task where the hand had to be held in an open posture 
(i.e. finger extended) instead of grasping the fingers closed. Trial completion success rates were compared as a 
functional measure of the difficulty of object interaction.

For offline analysis, the binned, filtered and square root transformed spike counts (see “Neural recording”) 
were converted to z-scores on a per channel basis using the means and standard deviations of firing rates observed 
during calibration. Data was z-scored in order to compare changes in activity between units with different base-
line firing rates. Neural data was aligned to the end of the reach phase, which occurred when the position target at 
the left side of the workspace was achieved. We used the last 1.5 seconds of the reach phase, just before the hand 
reached the target position, and the first 1.5 seconds of the grasp phase, which occurred after the hand reached 
target position but before the 2 second hold time could elapse. We tested for differences in the firing rates of the 
recorded population in the two different test conditions.

Implementation and evaluation of online firing rate scaling.  Since we had previously observed dif-
ferences in BCI performance when an object was in the workspace8, we implemented a method for accounting for 
observed changes in firing rate. These firing rate changes, as described in more detail in the Results, were broadly 
distributed across the neural population so an online population-level scaling factor was implemented. The scal-
ing factor was calculated by dividing the average population firing rate during the previous 300 ms by the average 
population firing rate during decoder calibration as shown below:
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=Scaling Factor Average Population Firing Rate Over Previous ms
Average Population Firing Rate During Decoder Calibration

300
(2)

The firing rate of each channel was then divided by this scaling factor before being decoded to generate kine-
matic commands.

The subject repeated the object interaction task with online scaling to evaluate whether BCI performance 
improved with objects in the workspace. The decoder remained constant, but scaling was turned on and off pseu-
dorandomly between blocks of 5 trials. We also evaluated the subjects’ ability to perform a BCI-controlled object 
transport task with and without the online scaling feature. The goal of the task was to pick up a cylindrical object 
(15.5 cm tall, 4.5 cm diameter, with a weighted base) on one side of a table, transport it across a 20 cm wide taped 
off zone on the table, and place it on the other side (Fig. 4b). An experimenter immediately picked up the object 
and placed it back in the starting position. The subject had to transport the object as many times as possible in 
2 minutes. Performance was quantified as the average number of transfers per minute. This task was modeled after 
the Box and Block48 task, but uses just a single, larger object. For both tasks, the subjects were not told whether 
scaling was on or off for a given block of trials. Subject 1 completed the task 17 times over 6 days of testing. Subject 
2 completed the task 20 times over 3 days of testing.

Deidentified datasets generated during the current study are available from the corresponding author on rea-
sonable request.
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