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Integrating Clinical and Multiple 
Omics Data for Prognostic 
Assessment across Human Cancers
Bin Zhu1, Nan Song2, Ronglai Shen3, Arshi Arora3, Mitchell J. Machiela   1, Lei Song1, Maria 
Teresa Landi1, Debashis Ghosh4, Nilanjan Chatterjee5,6, Veera Baladandayuthapani7 & 
Hongyu Zhao8

Multiple omic profiles have been generated for many cancer types; however, comprehensive 
assessment of their prognostic values across cancers is limited. We conducted a pan-cancer prognostic 
assessment and presented a multi-omic kernel machine learning method to systematically quantify the 
prognostic values of high-throughput genomic, epigenomic, and transcriptomic profiles individually, 
integratively, and in combination with clinical factors for 3,382 samples across 14 cancer types. We 
found that the prognostic performance varied substantially across cancer types. mRNA and miRNA 
expression profile frequently performed the best, followed by DNA methylation profile. Germline 
susceptibility variants displayed low prognostic performance consistently across cancer types. The 
integration of omic profiles with clinical variables can lead to substantially improved prognostic 
performance over the use of clinical variables alone in half of cancer types examined. Moreover, we 
showed that the kernel machine learning method consistently outperformed existing prognostic 
signatures, suggesting that including a large number of omic biomarkers may provide substantial 
improvement in prognostic assessment. Our study provides a comprehensive portrait of omic 
architecture for tumor prognosis across cancers, and highlights the prognostic value of genome-wide 
omic biomarker aggregation, which may facilitate refined prognostic assessment in the era of precision 
oncology.

Developing models that accurately predict patient survival using prognostic and predictive biomarkers is 
increasingly important in clinical research and practice1,2. Advances in high-throughput genomic technologies 
and large-scale sequencing studies including The Cancer Genome Atlas (TCGA) and the International Cancer 
Genome Consortium (ICGC) project have generated a rich resource of multi-dimensional omics data. Building 
cancer prognostic models incorporating genomic data has the potential to improve the precision of predicting 
patient clinical outcomes, to help understand the mechanism of tumor progression, and to evaluate the clinical 
values of biomarkers in clinical trials. Meanwhile, the complexity of the tumor genome poses a great challenge 
for cancer prognostic assessment. Indeed, substantial omic heterogeneity has been revealed for histologically 
homogeneous tumors in terms of genomics3,4, epigenomics5, transcriptomics6–8, and proteomics9. Recognizing 
its importance and challenges, the Cancer Moonshot Blue Ribbon Panel has recently recommended prediction of 
patient outcomes as one research area poised for acceleration10.

Considerable effort has been devoted to incorporating omic profiles into prognostic assessments for various 
cancer types. The earlier analyses typically created prognostic indices consisting of a few dozen selected genes 
based on microarray gene expression11–13. More recent works investigated multiple omic profiles for predicting 
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survival in single cancer types14,15 and across few cancer types16. These studies focused on identifying a list of 
prognostic genes, molecules or signatures, excluded somatic mutations from analyses, and did not comprehen-
sively consider the combination of multiple omic profiles. There is a need to conduct a pan-cancer analysis of 
prognostic accuracy for multiple omic profiles on a genome-wide scale, and to understand the shared patterns for 
prognostic performance of omic profiles across cancer types.

We hypothesized that prognosis-relevant signals may come from multiple pathways and involve a large num-
ber of omic biomarkers, the effect of which may be visible only when aggregated. Indeed, the omic biomarkers 
with moderate or weak prognostic value likely failed to reach the genome-wide prognostic significance threshold 
and consequently were discarded from the model. Therefore, the potential prognostic value of omic biomarkers 
may be unfulfilled and the underlying assumption of omic architecture of tumor prognosis built upon sparsity (a 
small subset of omic biomarkers driving prognosis) needs to be reconsidered. In such situations, a viable hypoth-
esis is that a large number of omic biomarkers (with a continuum of effect size) are involved in prognosis. Hence, 
aggregating prognosis effects of all biomarkers (through a shrinkage model) may be more effective and stable, and 
provide improved assessments of prognostic performance of omic biomarkers.

To examine this hypothesis, we developed a multi-omic kernel machine learning method including all 
molecular markers of an omic profile simultaneously. The schematic analysis steps are illustrated in Fig. 1. We 
considered multiple omic profiles, including somatic mutations, DNA copy number, DNA methylation, mRNA 
expression, miRNA expression, and their combinations. In an effort to capture translational and post-translational 
regulations, functional protein analysis using reverse-phase protein arrays (RPPA) was added to the TCGA effort 
to integrate proteomic characterization of tumors with already available genomic, transcriptomic and clinical 
information9. Thus, we included analysis of the RPPA data set for prognostic assessment in the TCGA pan-cancer 
cohort.

The ability of each omic biomarker to predict overall survival was treated as a random variable and shrunken 
toward zero with a data-driven degree of shrinkage. In other words, omic architecture involving tumor prognosis 
was built upon all biomarkers, whose prognosis effects varied from very weak (for most biomarkers) to mod-
erate (for some biomarkers) to strong (for a few biomarkers) in a continuous spectrum. This approach was not 
intended to identify individual prognosis-related biomarkers in a particular omic profile, which likely requires 
thousands of samples17, but to aggregate the prognostic effects of all biomarkers across various omic profiles and 
to quantify the prognostic value of tumor molecular profiles, alone or combined with clinical factors across can-
cer types. The basic idea behind the proposed multi-omic kernel machine learning method is intuitively simple: 
a patient’s predicted outcome would be similar to that of other patients with similar clinical variables and omic 
profiles, i.e. “someone like you”, measured by omic similarity matrices.

Results
Omic similarity matrices.  For somatic mutation, DNA copy number, DNA methylation, mRNA and 
miRNA expression, an omic similarity matrix was computed for each omic data type using a linear kernel 
function that measures the similarity of omic profiles between subjects. Other kernel functions, including the 
Gaussian kernel, may be used, but at the cost of additional kernel parameters which may require a large sample for 

Figure 1.  Overview of methods, cancer types, and omic data types. CIN: chromosomal instability; MES: 
mesenchymal transition; LYM: lymphocyte-specific immune recruitment.
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model tuning. We aggregated all biomarkers from each individual omic profile to create the corresponding omic 
similarity matrix (Methods). Fig. 2a illustrates examples of omic similarity patterns among ten head and neck 
squamous cell carcinoma (HNSC) patients based on their mRNA, miRNA, DNA methylation, copy number, and 
somatic mutation profiles, respectively. The diagonal elements reflect the average absolute level of all biomarkers 
for a subject. For example, the diagonals of the somatic mutation omic similarity matrix correspond to the nor-
malized mutation burden for each subject. The off-diagonal elements evaluate the similarities and dissimilarities 
between paired subjects. The kernel regression method we propose leverages between-subject similarities for 
predicting patients’ survival outcome. We observed weak to moderate similarity in general between subjects for 
mRNA, miRNA, methylation and copy number profiles, while the somatic mutation profiles were almost unique 
with little similarity, if any, between subjects.

Kernel alignment assessment.  Next, we applied a kernel alignment approach18 to evaluate whether the 
omic similarity matrix defined by one omic profile (e.g., mRNA) aligned well with that defined by another (e.g., 
DNA methylation). The resulting profile alignment matrices measure the similarity between omic similarity 
matrices in each cancer type (Methods). Figure 2b shows the profile alignment matrices of HNSC, for which the 
highest alignments are between mRNA, DNA methylation and DNA copy number. In most of the cancer types 
we analyzed (Supplementary Figure 1), omic similarity matrices are positively aligned and mRNA aligns closely 
with miRNA, methylation and copy number, but weakly with somatic mutation. Interestingly, there exists a strong 
alignment between copy number and somatic mutation similarity matrices in kidney renal clear cell carcinoma 

Figure 2.  Omic similarity matrix and kernel alignment. (a) Illustration of the omic similarity matrix based on 
each individual data type including mRNA, miRNA, DNA methylation, copy number and somatic mutation in 
10 randomly selected head and neck squamous cell carcinoma (HNSC) tumor samples. The diagonal elements 
in each matrix correspond to the average absolute value in the corresponding data type (scaled to be between 
0 and 1) for a subject. For example, the dark blue circle in the lower right corner of the somatic mutation 
similarity matrix indicates high mutation burden for the corresponding patient sample compared to the 
others. The off-diagonal elements reflect the similarity between paired subjects. Each matrix was standardized 
to enhance contrast; (b) kernel alignment between different data types (averaged over all patient samples) in 
HNSC, BLCA, KIRC and GB as profile alignment matrices. They quantify the degree to which two subjects 
similar in one omic profile (e.g., gene expression) are also similar in another omic profile (e.g., methylation). 
Size of the circle and shade of the blue is proportional to the alignment value. Higher value indicates the better 
alignment between two omic profiles; (c) comparing profile alignment patterns across cancer types. Values close 
to one indicate similar alignment patterns between two cancer types.
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(KIRC) and glioblastoma (GB). In stomach adenocarcinoma (STAD) and urothelial bladder carcinoma (BLCA), 
strong alignment was observed between mRNA and methylation similarity matrices.

To identify if there are cross-cancer type similarities in profile alignment matrices, we performed cancer type 
alignment as illustrated in Fig. 2c. Notably, the profile alignment matrix of KIRC is positively aligned with that 
of GB, largely due to their strong alignment between copy number and somatic mutation. Interesting, the profile 
alignment matrix of HNSC is most similar to the profile alignment matrix of lower grade glioma (LGG) and 
uterine corpus endometrial carcinoma (UCEC), followed by these of colon adenocarcinoma (COAD) and BLCA. 
In short, by generating omic similarity matrices, profile alignment matrices, and cancer type alignment matrix 
sequentially, we revealed the similarities between subjects for each omic profile, similarities between omic profiles 
in each cancer type, and similarities between cancer types in a hierarchical fashion. Omic similarity matrices will 
be used in the proposed multi-omic kernel machine learning method.

Variation of prognostic performances across cancer types and their similarity within a cancer 
type.  We first applied the multi-omic kernel machine learning method to evaluate the prognostic performance 
of individual omic profile and clinical variables for 14 cancer types. The concordance index (C-index) was calcu-
lated to evaluate the concordance of the actual survival outcome and survival outcomes as predicted by either the 
kernel machine learning method based on the omic data or by a Cox proportional hazard model based on clinical 
variables. From a pan-cancer perspective, we observed that the prognostic power of clinical variables and some 
molecular profiles vary substantially across cancer types (Fig. 3a). For example, C-indices for clinical variables 
range from 0.572 in liver hepatocellular carcinoma (LIHC) (age, sex and tumor stage) to 0.819 in LGG (age, sex, 
tumor grade and histology) with standard deviation (SD) of 0.081. C-indices for mRNA range from 0.555 (LUSC) 
to 0.847 (LGG) with SD of 0.076. On the other hand, other omic profiles including DNA copy number (range: 
0.544 (STAD) −0.792 (LGG) and SD: 0.063) and somatic point mutation (range: 0.536 (lung adenocarcinoma, 
LUAD) −0.792 (LGG) and SD: 0.071), show relatively less prognostic power and vary to a lesser degree between 
cancer types. Germline polygenic risk scores (PRS) had the weakest prognostic power in general; the C-indices 
in 13 of 14 cancer types are less than 0.6, leading to a small SD (0.025). This is not surprising since PRS consist-
ing of common single nucleotide polymorphisms (SNPs) were identified in a genome-wide association study 
(GWAS)19,20 as being associated with cancer risk rather than prognosis.

The noticeable correlations of C-indices between molecular profiles and with clinical variables imply that the 
prognostic performance of molecular profiles and clinical variables largely depends on the cancer type, which is 
consistent with a previous report16. To systematically understand the variations in C-indices, we applied a linear 
mixed effects model to quantify the contribution of cancer type to the variation of the C-index for various omic 
profiles and clinical factors across cancer types, treating C-indices generated by individual molecular profiles and 
clinical variables as repeated prognosis evaluations for a given cancer type. The model suggested that the cancer 
type itself explained 74.7% of variation (see Methods) in prognostic performance while the remaining 25.3% of 
variation is due to clinical variables, molecular profiles, and other unidentified factors (Fig. 3b).

Within a given cancer type, the prognostic powers of molecular profiles are similar to each other, most notice-
ably for BLCA, LUSC and LGG (Fig. 3a) with some exceptions detailed later. Indeed, the correlation of C-indices 
between mRNA and copy number (spearman correlation rho = 0.824, Fig. 3c) across cancer types is most appar-
ent, followed by copy number and somatic mutation (rho = 0.719), while the correlation of C-indices between 
miRNA and somatic mutation (rho = −0.103) is low. As for the group of clinical variables, its C-index is most 
highly correlated with C-indices of methylation and mRNA (rho = 0.648 and 0.495 respectively, Supplementary 
Figure 2). C-indices of germline PRS showed an inverse correlation with C-indices of miRNA (rho = −0.467) 
and weak correlations with other omic profiles. In subsequent sections, germline PRS was excluded because of its 
weak prognostic powers and correlations.

Figure 3.  Patterns of variation in concordance index (C-index) across omic platforms and cancer types. 
(a) Scatterplot of the cross-validated C-index across cancer types and omic platforms; (b) proportions of 
variation explained by cancer type, clinical factors, and omic platforms respectively; (c) the pairwise Spearman 
correlation pattern in C-index between omic platforms.
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Comparison of prognostic performance of omic profiles and clinical variables.  We compared the 
individual molecular profiles with clinical variables in terms of prognostic performance measured by the C-index. 
Among the molecular profiles, mRNA, miRNA, and methylation frequently show the highest C-indices among all 
platforms (Fig. 4a). Although the prognostic powers of copy number and somatic mutations are relatively weak, 
combining them with other omic profiles can lead to increased prognostic power in particular cancer types (e.g. 
combining copy number with mRNA in KIRC, Supplementary Figure 3 radar plot).

Although the prognostic powers of omic profiles alone are on average weaker than the prognostic power 
of clinical variables by 0.051 (P = 1.05*10−5 based on Wald statistic; details in Methods), there were a num-
ber of notable exceptions in specific cancer types (Fig. 4d). In endocervical adenocarcinoma (CESC), mRNA 
and miRNA perform significantly better (C-indices: 0.653 and 0.672 respectively) than tumor stage and age 
(C-index: 0.585). In HNSC, miRNA (C-index: 0.635) outperforms clinical variables including age, stage and 
grade (C-index: 0.605). This may be due to the fact that HPV infection status was a missing data point for most 
HNSC cases and thus excluded from the analysis as a clinical variable. On the other hand, it suggests that incor-
porating omic profiles is able to complement the absence of known or unknown prognosis-related clinical factors 
for prognostic assessment. In LGG, mRNA and methylation (C-indices: 0.847 and 0.838) outperform clinical 
variables including age, gender, tumor grade and histological subtypes (astrocytoma, oligodendroglioma and 
oligo-astrocytoma histologies, C-index: 0.819). In ovarian serous cystadenocarcinoma (OV), C-indices for 
mRNA and methylation (0.611 and 0.611, respectively) are higher than that for age, stage, grade and residual 
disease (0.595). Finally, we observed better prognostic performance for mRNA in LIHC (C-index: 0.618) and 
miRNA in STAD (C-index: 0.604) than that of the corresponding clinical factors (C-indices: 0.572 and 0.588 
respectively). Note that C-indices are very low for both clinical variables and omic profiles in LUSC and BLCA, 
reflecting the difficulty of prognostic prediction for these cancer types.

Figure 4a shows that mRNA and miRNA, followed by DNA methylation, are consistently the top perform-
ers across cancer types. To further quantify this rank, we explicitly modeled and compared the contribution of 
individual omic profiles to prognostic prediction across cancer types (Methods). This comparison showed that 
the C-index of mRNA is above the average prognostic power of omic profiles by 0.025 (P = 7.47*10−8), the best 
performance among the five omic profiles we analyzed. The second best omic profile is miRNA with a C-index 

Figure 4.  Prognostic performance of omic platforms across cancer types. (a) C-indices of individual omic 
platform for each cancer type (row). A C-index of 0.5 indicates random prediction, and values close to 1.0 
correspond to the perfect prediction of survival outcome. The colors represent rankings of C-indices for a 
cancer type (the darker color corresponding the higher rank). (b) The most significant improvement in C-index 
by combining the omic profile with clinical variables among five omic profiles for each cancer type (e.g., an 
increase of 0.066 in C-index, representing 10.8% improvement, was observed in HNSC). Positive values indicate 
additional gains by combining molecular and clinical predictors over using clinical factors alone. (c) Validation 
of the lung adenocarcinoma mRNA kernel machine learning model developed in the TCGA data and validated 
in a National Cancer Institute (NCI) study cohort. (d) Radar plots of C-index for individual and combinations 
of omic platforms in four cancer types. Blue dotted line benchmarks the performance of the clinical variables.
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above the average by 0.020 (P = 4.08*10−5), followed by DNA methylation with an elevated C-index above the 
average by 0.008 (P = 0.09). By contrast, the C-indices of copy number and somatic mutation are below the aver-
age prognostic power by 0.005 and 0.002 respectively. The differences, however, are not statistically significant 
(P = 0.219 and 0.618 respectively).

We next investigated whether combining multiple molecular profiles would further improve prognostic power 
in comparison with the individual molecular profiles. Although the molecular profile combination would lead to 
the strongest prognostic power in a few cancer types, such as HNSC and OV, the increment from the best individ-
ual omic profile is often minimal. Compared to the single molecular profiles, the combination of two molecular 
profiles would improve C-index by 0.008 (P = 0.04) on average. This may reflect the similarity between omic 
profiles both in terms of omic similarity matrices and C-indices by individual omic profiles.

Prognostic powers of mRNA-based signatures.  A number of mRNA-based prognostic signatures 
have been proposed and adapted for prognostic assessment. Prognostic signatures commonly consist of either 
pre-selected mRNA transcripts (based on previous studies capturing well-characterized biological processes such 
as immune infiltration8 and chromosomal instability15), or agnostically selected mRNA transcripts (determined 
using penalized Cox regression, random survival forests, or other statistical and machine learning methods16). 
The underlying assumption of these studies is that tumor prognosis is driven by a relatively small number of 
mRNA transcripts, commonly less than one hundred. As will be illustrated shortly, a much larger number of 
mRNA transcripts, likely thousands of them, each with a weak prognostic effect individually, may be involved in 
the tumor prognosis for highly heterogeneous tumor types. Therefore, we systematically compared various estab-
lished signatures with the kernel machine learning method we developed that aggregates prognostic effect across 
all transcripts of annotated genes from the mRNA profile.

Specifically, we compared the prognostic powers of (a) the kernel machine learning method for genome-wide 
aggregation of mRNA transcripts; (b) pre-specified prognostic signatures, including the metagene signatures15 
and the ESTIMATE immune signatures6 developed across multiple cancer types; (c) the PAM50 breast cancer 
classifier21 or the MammaPrint signature22 that predicts distant metastasis for early stage breast cancer; (d) LGG 
subtypes defined by IDH1 mutation and co-deletion of chromosome 1p/19q; and (e) algorithmically selecting 
mRNA transcripts by L1 penalized Cox regression (LASSO)16.

We found that the kernel machine learning method outperforms the metagene and immune signatures in 
7 cancer types (Fig. 5a). On average, the kernel method improves C-index over the metagene and immune sig-
natures by 0.018 and 0.052 (P = 0.14 and 1.62*10−4) respectively, across cancer types. For KIRC, the metagene 
and immune signatures lead to significantly lower C-indices (0.618 and 0.546) as compared to the kernel 
method (0.707). There are a few exceptions in which the metagene and immune signatures perform slightly 
better than the kernel method, including the metagene signature in UCEC (C-index = 0.728 v.s 0.667 by the 
kernel machine learning method), in LUAD (C-index = 0.626 v.s 0.606), in COAD (C-index = 0.604 v.s 0.583), 
and in GB (C-index = 0.585 v.s 0.572), as well as the immune signature in STAD (0.594 v.s 0.571) and in GB 
(C-index = 0.594 v.s 0.572). This implies that these two biological signatures may be relevant to the prognosis in 
particular cancer types but not universally.

In LGG, the metagene and lasso signatures achieve slightly higher C-indices than the LGG subtypes (Fig. 5b) 
and the kernel machine learning method achieves the highest C-index. In breast cancer (BRCA), the kernel 
machine learning method also outperforms the PAM50 subtype classification (luminal A, luminal B, HER2, 
Basal-like, Normal-like) and the MammaPrint signature (Fig. 5c).

The model including only agnostically selected mRNA transcripts by LASSO performs worse in prognostic 
prediction than the kernel machine learning method (on average by 0.025 across cancer types, P = 0.04) among 
11 of 14 cancer types, most notably in OV (LASSO C-index = 0.551, vs 0.611 for the kernel machine learning 
method). In the remaining three cancer types (GB, LUSC and COAD), C-indices of agnostically selected mRNA 
transcripts by LASSO (C-index = 0.572, 0.556 and 0.584) and aggregated mRNA transcripts combined via the 
kernel machine learning method (C-index = 0.572, 0.555 and 0.583) are very close, suggesting that either the 
prognostic power of mRNA is generally weak or the number of prognosis-related mRNA transcripts is limited in 
these cancer types.

Taken together, these results suggest that traditional prognosis methods relying on a small number of molecu-
lar biomarkers, such as Lasso-derived genomic signatures, may not be sufficient to achieve the optimal prognostic 
performance in some cancer types. The kernel machine learning method provides more refined prognostic pre-
diction by aggregating a large number of molecular features in the half of the cancer types we analyzed.

Enhancing prognostic powers by integrating clinical variables with molecular profiles.  
Combining clinical variables with molecular profiles shows increased C-indices (up to 10.8% in HNSC for 
miRNA) compared to using clinical variables alone in 7 of 14 cancer types (by at least 0.01, Fig. 4b). In particular, 
integrating clinical variables with miRNA or mRNA profiles improves C-index by 0.012 and 0.010 respectively 
(P = 0.03 and 0.06) on average across cancer types, but this is not the case with methylation, copy number, and 
somatic point mutation (P = 0.50, 0.68, and 0.93 respectively). The improvement of prognostic power by inte-
grating clinical variables with molecular profiles for CESC, HNSC, LIHC, LGG, and OV is not surprising, since 
the prognostic power of mRNA and/or miRNA is greater for those cancers than that of clinical variables alone; 
consequently, the integration of clinical variables with molecular profiles yields enhanced prognostic power over 
clinical variables alone, to various degrees. Notably, for HNSC and OV the prognostic power obtained by com-
bining clinical variables with molecular profiles is stronger than that yielded using either molecular profiles or 
clinical variables alone (e.g. C-indices for clinical variables 0.605, mRNA 0.607, clinical variables + mRNA 0.640 
in HNSC; C-indices for clinical variables 0.595, mRNA 0.611, clinical variables + mRNA 0.635 in OV). Although 
not so pronounced as in HNSC and OV, the improved prognostic prediction realized by integrating clinical 
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variables and molecular profiles is also observed in BRCA and KIRC. In the remaining 7 cancer types, the com-
bination of clinical variables and molecular profiles had similar prognostic power of clinical variables alone. 
For example, the incorporation of mRNA profile in LUAD did not improve the prognostic power of the clini-
cal variables (age, gender, and tumor stage). We confirmed these results in the National Cancer Institute (NCI) 
whole-exome sequencing study of LUAD (Fig. 4c)23.

Validation in NCI LUAD RNA-seq study.  We further validated the proposed kernel machine learning 
method in the NCI RNA-seq study of 101 lung adenocarcinoma samples, which have been processed with the 
same bioinformatics pipelines as samples from TCGA. The details of sample collection and study population have 
been reported previously23. We used samples from the TCGA LUAD study as the training samples, applied the 
kernel machine learning method and validated the fitted model in the NCI LUAD study. This external validation 
resulted in a C-index of 0.584 for mRNA, slightly lower than the figure that cross-validation in TCGA LUAD 
study produced, 0.606 (3.63% reduction, Fig. 4c). In contrast, external validation of clinical variables resulted in a 
C-index decrease from 0.703 (in TCGA LUAD) to 0.621 (in the NCI study), an overall reduction of 11.66%, which 
may reflect the discrepancy between the study populations (the NCI study included early stage patients) or the 
evaluation criteria of clinical variables between the two studies. The combination of mRNA and clinical variables 
led to a lower C-index as well (0.591 in the NCI study and 0.698 in TCGA LUAD). This suggests that the trained 
kernel machine learning model based on mRNA may be more reliably applied to other studies than using clinical 
variables in certain conditions.

Prognostic powers of protein expression.  To investigate the prognostic value of protein expression, 
we analyzed the datasets based on Proteomics Reverse Phase Protein Array (RPPA) platform. Since the number 
of subjects available in a given cancer type is much smaller than those for other omic platforms, we examined 

Figure 5.  Comparing kernel prediction with the established prognostic signatures. (a) Bar plots of C-index 
for the kernel machine learning method, an immune infiltration signature, a Metagene signature (capturing 
chromosome instability, mesenchymal transition, and lymphocyte immune recruitment), and data-driven 
selection of mRNA transcripts using Lasso-regression across cancer types. (b) Extended analysis of low grade 
glioma (LGG) including the IDH1, chromosome 1p/19q co-deletion prognostic subtypes. (c) Extended analysis 
of BRCA including the PAM50 classification and the MammaPrint signature.
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the RPPA data separately. First, we investigated whether aggregating protein levels by kernel machine learning 
method would improve prognostic prediction, compared with selecting protein biomarkers by penalized regres-
sion (Lasso) methods, across cancer types. Consistent with other omic profiles, the C-indices by kernel machine 
learning method were significantly higher that the C-indices based on the Lasso model (Supplementary Figure 4), 
either including protein levels only (P = 0.025 by one-sided paired Wilcoxon signed rank test with continuity 
correction) or combining protein levels with clinical variables (P = 0.012). This indicates that prognosis effects of 
protein biomarker likely follow a continuous spectrum (similar to those observed for other platforms) and that 
aggregating prognosis effects of all protein biomarkers may be more effective. Then, we compared the prognostic 
value of protein levels by kernel machine learning method with that by mRNA across cancer types. As expected, 
they are highly correlated for omic profile only (spearman correlation rho = 0.62, P = 0.024) and for the combi-
nation with clinical variable (rho = 0.94, P < 0.001). Indeed, C-indices by mRNA and by protein levels were very 
similar (Supplementary Figure 5) both for omic profile only (P = 0.576 by two-sided paired Wilcoxon signed rank 
test with continuity correction) and for combining protein levels with clinical variables (P = 1.000). It suggests 
similar prognostic values of mRNA and protein profiles.

Impact of the number of subjects or genes.  The performance of prognostic prediction depends on 
the study sample size and the number of biomarkers involved. The proposed kernel machine learning method is 
no exception. We chose the BRCA mRNA-seq data set (which had the largest sample size of the 14 TCGA can-
cer types we analyzed) as a working example to examine how the C-index varies depending on the sample size 
and the number of mRNA transcripts used to build the kernel method through down-sampling analysis, which 
repeatedly samples part of subjects or genes with gradually reducing size and evaluates the prognostic perfor-
mance (Methods).

We observed that the C-index steadily increases with increasing sample size and did not plateau even with 
over nine hundred subjects (Fig. 6a). This suggests that the current sample sizes are insufficient to fully achieve the 
optimal prognosis power of molecular data for BRCA and other cancer types, and an expanded patient cohort is 
needed for the kernel machine learning method and other statistical learning strategies to reach their full poten-
tial. Figure 6b shows the C-indices for various numbers of mRNA transcripts. Going from 1000 to 5000 markers 
improves the C-index substantially; a plateau is reached at around 5000 markers. Our down-sampling analysis 
implies that a large number of mRNA expression markers may contribute to refining the prognostic prediction.

Discussion
Accurate prognostic assessment of cancer is of great value for patients, oncologists, and cancer researchers. Yet it 
remains challenging due to inter-tumor heterogeneity. The increasing popularity of multi-omic profiling of tum-
ors raises the hope of improving prognostic prediction through the integration of clinical and omic biomarkers. 
We systematically evaluated the integration of clinical variables and omic profiles for survival prediction using a 
novel kernel machine learning method, which we applied to over three thousand tumor samples across fourteen 
cancer types from the TCGA. The kernel machine learning method built upon omic similarity matrices provides 
a comprehensive framework to incorporate multiple clinical variables and omic platforms simultaneously, yet it is 
intuitively simple and interpretable in which subjects with similar clinical variables and omic profiles have similar 
prognostic outcomes.

Genomic similarity matrices have been extensively used in genetic epidemiology studies24,25, but little has 
been explored in the context of survival prediction using high-dimensional genomic markers. Our study provides 
several unique contributions. First, most existing studies focus on genomic similarity matrices defined by SNPs 

Figure 6.  The dependence of prognostic assessment on the sample size and the number of biomarkers using a 
sub-sampling analysis of the BRCA mRNA-seq data set. (a) Scatter plot of C-indices by the increasing sample 
size. (b) Scatter plot of C-indices by the increasing number of mRNA transcripts.
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only. In contrast, the proposed approach exploits information from multiple omic profiles. Secondly, the existing 
kernel methods have mostly been applied to study heritability of traits or disease risk26,27 and to analyze associa-
tions between a genetic similarity matrix and trait information in linear28 or logistic regression29–32 frameworks. 
In this study, we proposed a new kernel based prediction method for cancer prognosis. This framework allows us 
to incorporate clinical information and multiple omic profiles for the systematic assessment of prognostic perfor-
mance across multiple cancer types in thousands of tumor samples.

The pan-cancer prognostic assessment confirmed that the difficulty of prognostic prediction varies consid-
erably across cancer types, and that the utilities of prognostic profiles are unequal. Some cancer types, like LGG, 
demonstrate superior prognostic accuracy than others, based on clinical variables or molecular markers. Indeed, 
cancer type itself explains more than two thirds of C-index variability across cancer types. Among the different 
omics data types, mRNA expression most frequently provides the highest C-index for predicting patients’ sur-
vival outcome compared to the other molecular profiles in our analysis, suggesting that the resulting expression 
of mutated genes may be more important for patients’ survival than the underlying mutational patterns. DNA 
methylation and miRNA expression data also provide good prognostic values in several cancer types.

Cancer is extremely heterogeneous. We hypothesized that a small number of omic biomarkers would be 
unlikely to provide sufficient prognostic power. Instead, we proposed to aggregate numerous omic-wide prognos-
tic biomarkers, using a genome-scale kernel machine learning method. Our approach consistently outperformed 
“condensed” signatures including the metagene signatures, immune signature, and lasso-regression derived prog-
nostic signatures that rely only on the top-performing genes in the transcriptome. In addition, down-sampling 
of mRNA transcripts of BRCA suggested that thousands of transcripts are likely associated with prognosis. These 
observations were consistent with our hypothesis that a large number of biomarkers are involved in tumor prog-
nosis in highly heterogeneous tumor types, and that each of the omic biomarkers has a small to moderate prog-
nosis effect size following a distribution with long tail, and do not necessarily pass a genome-wide significance 
threshold. The omics-wide architecture of tumor prognosis we observed is different from the ones focusing on a 
relatively small number of omic biomarkers with relatively larger prognosis effect.

The long-tailed distribution of effect size we proposed for tumor prognosis is not unique but has been also 
observed in other biomedical research areas. For risk prediction in GWAS33,34, it has been reported that hundreds 
of variants with gradually decreased effect sizes are associated with complex polygenic traits, such as height35,36. In 
discovery and saturate analysis of cancer genes, it suggested that in addition to over two hundred known cancer 
genes, larger sample size will discover many more with lower mutation frequency37. Such a long-tailed distribu-
tion possibly reflects the complex mechanisms underlying the tumor prognosis, genetic architecture of complex 
traits, and nature selection of somatic mutation respectively.

A number of limitations of our prognosis analysis based on TCGA data warrant more discussion. First, the 
samples and clinical records of TCGA were collected retrospectively, and tended to over represent cases with 
fresh-frozen specimens of high quality, and large tumor size in late-stage patients. Hence, the kernel machine 
learning model trained on the TCGA samples may not be directly applicable to the general population. Second, 
the sample size of a given cancer type is limited, which may lead to unsaturated prognostic power and overfitting. 
Further studies with larger size, patients more representative of the general population, and with improved clin-
ical records are necessary to further delineate the omic architecture of prognosis and achieve the full prognostic 
power of the kernel machine learning method, which should be evaluated in completely independent studies 
before being applied to clinical practice. Third, the clinical follow up is insufficient in the TCGA study cohorts 
for some cancer types, including for BRCA and prostate adenocarcinoma (PRAD). Combined with small sample 
size, this may contribute to the lack of significant increase in prediction performance for the integrated analy-
sis. Fourth, most of subjects in TCGA received the standard treatment, such as surgery, chemotherapy and/or 
radiation therapy. New studies to evaluate the prognostic utility of omic profiling for newly developed targeted 
therapies and immunotherapies would be desireable. Finally, although six omic profiles have been examined, 
additional data types could further improve the precision of predicting clinical outcomes, including measures of 
intra-tumor heterogeneity, imaging, proteomics, and immunological factors. Our framework can be extended to 
accommodate these additional data types.

In conclusion, our work evaluates the prognostic value of multi-omic profiling integrated with clinical factors 
in thousands of samples across fourteen cancer types and proposes an omics-wide architecture of tumor prog-
nosis. If confirmed in future studies, it suggests that genome-scale profiling platforms, instead of gene panels, 
should be preferred for future prognostic assessment and that the research focus should be shifted from molecular 
biomarker selection to large scale omic biomarker aggregation in the era of precision oncology.

Methods
Overview of the multi-omic kernel machine learning method and alternative approaches.  We 
evaluated the prognostic value of six omic profiles and their combinations across cancer types by a multi-omic 
kernel machine learning method, which includes creating omic similarity matrices using kernels, kernel inte-
gration and survival prediction using a Cox kernel machine regression framework, and prognostic performance 
evaluation.

In addition to the multi-omic kernel machine learning method, we also considered several alternative 
approaches, including a conventional method considering clinical variables only, a sparse model involving var-
iable selection16, and knowledge-driven models based on pre-defined metagenes15 or immune cell infiltration 
score6, both of which have demonstrated strong prognostic associations in several cancer types. For BRCA, we 
also applied the Cox model using the PAM5021 classification and the MammaPrint gene signature22. To obtain 
unbiased performance evaluation, we used cross-validation, fitting model in training datasets and evaluating the 
prognostic performance in validation datasets using the C-index38. The C-index, as a generalization of area under 
the receiver operating characteristics curve, is a widely used measure for model assessment in survival analysis 
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that evaluates the proportion of subjects with both longer observed survival time and higher predicted probability 
of survival (i.e. the proportion of subjects correctly ranked for overall survival). The larger the C-index, the better 
the prognostic performance is, with a value of one indicating a perfect prognosis prediction and a value of 0.5 
indicating a random prediction.

Description of the datasets.  We analyzed 3,382 samples across 14 TCGA cancer types. Rare cancer types 
were not included due to sample size limitations. Cancer types (e.g., prostate cancer) with very few events (death) 
were also excluded. Six different molecular profiles were used, including germline variants (SNP6.0 array), 
somatic point mutation (whole-exome sequencing), DNA copy number (SNP6.0 array), DNA methylation 
(Illumina Human Methylation 450 K array), mRNA expression (mRNA sequencing), and miRNA expression 
(miRNA sequencing, not included for four cancer types with very limited data on miRNA). Patient samples with 
all data types available were included in the analysis. Principal component analysis was used to examine and 
visualize potential batch effects. Batch effects were identified in four methylation data sets (BRCA, LUSC, UCEC, 
and KIRC). The ComBat algorithm39 implemented in the SVA package40 was used to adjust for batch effects. The 
TCGA datasets were obtained from the TCGA data portal (now the Genomic Data Commons) and the Broad 
Institute’s Firehose pipeline. Sample size, patient demographics, distribution of tumor stage and overall survival 
statistics are summarized in Supplementary Table 1. The clinical variables for each cancer type include age, stage, 
and additional well-known prognostic factors, such as Lauren classification in STAD. The number of biomarkers 
for each platform is listed in Supplementary Table 2.

TCGA dataset compilation.  Each individual data type was pre-processed using the following procedure. 
Copy number alteration data were derived from the segmented data using the Circular Binary Segmentation 
algorithm41, and further reduced to a set of non-redundant regions as described in Mo et al.42. For the methyla-
tion data (Illumina Infinium 450k arrays), a beta-mixture quantile normalization43 was applied to normalize the 
beta-value. Methylation probes with >20% or more missing data and those corresponding to SNP and autosomal 
chromosomes were removed. RNAseq version 2 was used. MapSplice44 was used for sequence alignment and 
RSEM13 for the quantitation of gene expression. For mRNA and miRNA sequence data, lowly-expressed genes 
were excluded based on median-normalized counts.

Omic similarity matrix as kernel.  Assuming there are M kinds of omic profiles. For the m th omic profile, 
we collected pm omic biomarkers for n subjects which were organized into an n × pm matrix Zm. Denote Z′m as the 
transpose of Zm and Zmj as its jth column. For mRNA, miRNA, methylation, and copy number profiles, Zmj is in 
the continuous scale and normalized with mean zero and variance one; for somatic mutation, Zmj was recorded as 
binary values with zero for observing no somatic mutation at the j th gene and one otherwise. The corresponding 
linear kernel, an n × n matrix, was defined as

=
′

.K Z Z
p

( )
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m

m m

m

Kernel alignment18 measures the similarity between two kernels, namely K1 and K2, defined as
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1 2 ( , 1) 1 2  is the inner product and K i j( , )1  is the matrix entry at the ith row and 
jth column. If K i j( , )1  and K i j( , )2  are identical, i.e. K i j( , )1  = K i j( , )2 , then =A k k( , ) 11 2 ; if K i j( , )1  = −K i j( , )2 , then 

= −A k k( , ) 11 2 ; and =A k k( , ) 01 2 , if < > =K K, 01 2 .
An omic similarity matrix could also be derived from the omic prognostic score, which is the weighted sum of 

all biomarkers in an omic profile with weights (alternatively called prognosis coefficients) following a univariate 
normal distribution with mean zero and a constant variance. Unlike the other prognosis indices commonly used 
with a handful of biomarkers, the omic prognostic score involves tens of thousands of biomarkers whose prog-
nosis coefficients are treated as random and concentrate around zero. It can be easily shown that omic prognostic 
indices follow a multivariate normal distribution with mean zeros and covariate matrix proportional to the cor-
responding omic similarity matrix (details in the later section).

Multi-omic kernel learning method for prognostic prediction.  We propose a kernel-fusion Cox 
model as the multi-omic kernel learning method. Specifically, consider the Cox proportional hazards model,

λ λ η=t t( ) ( )exp( ), (3)i i0

η = + = b g i I, 1, 2, (4)i i i

where λ (t)i  is the hazard function for the i th subject, λ (t)0  the baseline hazard function, and ηi the overall prog-
nostic score. The prognostic score ηi in turn is the sum of the clinical prognostic score bi and the omic prognostic 
score gi. We specify = ∑ βb Xi

j

n

j ij for n fixed-effect Xij’s with fixed effect coefficient βj’s. Denote η = η η η ′( , , )1 2 I , 

= ′b (b , b , b )1 2 I , and = ′g (g , g , g )1 2 I  as the vectors of overall prognostic score, clinical prognostic score 
and omic prognostic score respectively. We assume g follows a multivariate normal distribution ~g N(0, K) with 
mean zero and variance-covariance matrix K as a fused kernel. Indeed, K =∑ σ= Km 1

M
m
2

m, a linear combination or 
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fusion of multiple Omic similarity matrices Km’s, corresponding to somatic mutation, mRNA, miRNA, methyla-
tion and copy number profiles. For germline variants, we focused on SNPs which were significant in the 
genome-wide association studies and created the PRS based on reported odds ratios. PRS was regarded as a fixed 
effect in the Cox model.

From the random effects perspective, we can show that g  aggregates numerous omic biomarkers whose effects 
are treated as random effects coefficients shrunk toward zero. Indeed, we represent

∑ ∑ ∑η α= + = + = +
= = ∈

b g b g b Z ,
(5)m

M

m
m

M

j R
mjmj

1 1 m

for which gm is the vector of omic prognostic score for the m th omic profile and the linear combination of omic 
biomarkers Zmj  with the random effects coefficient αmj . We assume αmj  follow normal distribution 
α σ

~ N(0, )mj p
m

m

2
, it is straightforward to show that σ~g N K(0, )m m m

2  and ~g KN(0, ).

Model building, evaluation and comparison.  We considered, evaluated, and compared several progno-
sis prediction methods through the Monte Carlo cross-validation. Given the method and cancer type, we ran-
domly selected 80% of subjects as the training dataset and the remaining 20% of subjects as the validation dataset. 
For each training dataset, we fit (a) the Cox model with clinical variables only using R package “Survival”; (b) the 
kernel-fusion Cox models for one omic profile at a time and their pairwise combinations using R package 
“coxme”; (c) the kernel-fusion Cox models considering both clinical variables and omic profiles. To calculate the 
omic prognostic scores gV for the subjects in the validation dataset, we first recorded subjects in the training data-
set together and segmented K  as

=
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where KVV  is the variance matrix for the validation dataset, KVT is the covariance matrix between the validation 
dataset and the training dataset, and KTT is the variance matrix for the validation dataset. We obtained the best 
linear unbiased predictor of omic prognostic scores ĝT and restricted maximum likelihood estimators of σ̂m

2  from 
the fitted kernel-fusion Cox models, and the predicted omic prognostic scores was given as = −ˆ ˆg K K gV VT TT T

1 . 
Similarly, the predicted clinical prognostic scores were calculated as β= ∑ˆ ˆb XV j

n
j Vj, for which β̂j is the maximum 

likelihood estimator of βj for the fit the Cox model or the kernel-fusion Cox models and XVj is the vector of jth 
clinical variable for subjects in the validation dataset. Finally, the predicted overall prognostic scores are given as 
η = +ˆ ˆ ˆb gV V V . Comparing the order of predicted overall prognostic scores with the order of death events time 
for all subject pairs in the training dataset, we could calculate a C-index using the R package ‘Coxph’ for one 
Monte Carlo cross-validation, which then was repeated 100 times and the average C-index was calculated and 
reported.

For mRNA profiles, we further considered (a) a Cox model with LASSO for the omic biomarker selection, the 
details of which was given by Yuan et al.16; (b) a Cox model with predefined prognosis signatures: immune and 
metagenes. The calculated immune signatures as the immune cell immune infiltration scores were downloaded 
from http://bioinformatics.mdanderson.org/estimate/. The metagene signatures included CIN, MES and LYM 
attractor metagenes, whose levels were calculated as the average of the mRNA expression levels of ten top-ranked 
genes15. For breast cancer, we also applied the Cox model using PAM5021 and mammaPrint gene list22.

Linear mixed model for comparing prognostic powers across cancer types.  The prognostic pow-
ers of omic profiles, measured by C-indices, for a given cancer type were related. This relation was not surprising. 
The clinical variables and omic profiles were measured on the same subjects, and we have shown that the omic 
similarity matrices were well aligned. Hence, we applied linear mixed models to quantify and compare the con-
tribution of clinical variables and omic profiles to prognostic powers across cancer types, while considering their 
between-cancer correlation. The linear mixed models were fit by the R package “lme4” and P-values were given 
by R package “lmerTest”.

We first quantified the contribution of cancer type itself to the variation of C-indices for clinical variables and 
omic profiles. Denote yij as the C-index of the jth omic profile or clinical variables in the ith cancer type, the fol-
lowing model assumed that the variation of yij originated from two resources, the cancer type itself and anything 
else, including clinical variables and omic profiles we chosen and unknown factors. Specifically,

β δ= + + = = y i I j n, 1, 2, , 1, 2, , (7)ij i ij i0 

where β0 is the average C-index, δi measures the contribution of cancer type and ij  anything else. We assumed δi and 
ij  followed normal distributions as δ σ~ N(0, )i b

2  and  σε~ N(0, )ij
2 . The total variation of C-indices was σ σ+ εb

2 2 
and the proportion of total variation due to the cancer type was = σ

σ σ+ ε
S b

b

2

2 2
. We named it inter-profile heterogeneity. 

An inter-profile heterogeneity of one meant that C-indices by multiple clinical variables and omic profiles for a given 
cancer type were all the same and there was no inter-profile heterogeneity of C-indices. On the other extreme, an 
inter-profile heterogeneity of zero implied the C-idexes by multiple clinical variables and omic profiles for a given 
cancer type were unrelated, and that cancer type contributes none to the C-index. The inter-profile heterogeneity 
observed in real studies likely lies in between these two extremes.

http://bioinformatics.mdanderson.org/estimate/
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A number of modified linear mixed models were applied to compare between clinical variables and omic profiles, 
and between omic profiles themselves. For example, we used linear mixed model β β δ= + + +y xij ij i ij0 1  to com-
pare the prognostic powers of clinical variables and omic profiles, for which xij is an binary indicator, equaling to one if 
yij was obtained based on clinical variables and zero otherwise; linear mixed model β β δ= + ∑ + +=y xij k

M
k kij i ij0 1  

to compare the prognostic powers between somatic mutation, mRNA, miRNA, copy number, and methylation profiles, 
each of which were indicated by the corresponding binary indicator xkij, one as using the kth profiles and zero other-
wise; linear mixed model β β δ= + + +y zij ij i ij0 1   to compare C-indices by two profiles versus by one profile; linear 
mixed model β β δ= + ∑ + +=y wij k k kij i ij0 1

3   to compare C-indices by Lasso selection, metagene, or immune sig-
natures, indicated by wkij, with C-indices using all mRNA by kernel learning method.

Down-sampling of subjects or genes.  Among 16,598 mRNA transcripts, we randomly selected a subset 
of transcripts, built kernel, ran fivefold cross-validation for the kernel learning method, and calculated C-indices. 
The procedure was essentially the same as the one for the complete set of transcripts with one key difference: 
down-sampling of transcripts. The number of transcripts was gradually reduced until reaching one hundred. 
For a given number of transcripts, the down-sampling was conducted fifty times and the average C-index was 
calculated. Similarly, we carried out down-sampling of subjects, i.e. selecting a subset of subjects which gradually 
reduced until reaching two hundred. For selected subjects, we used all mRNA transcripts to build the kernel, car-
ried out fivefold cross-validation for the kernel learning method, and obtained the C-index. This procedure was 
repeated fifty times for a given reduced sample size and the average C-index was reported.

Data availability of data and materials.  The TCGA datasets were obtained from the TCGA data portal 
(now the Genomic Data Commons) and the Broad Institute’s Firehose pipeline.
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