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Investigating disordered many-
body system with entanglement in 
momentum space
Bing-Tian Ye1, Zhao-Yu Han1, Liang-Zhu Mu1 & Heng Fan2,3,4

We study the entanglement in momentum space of the ground state of a disordered one-dimensional 
fermion lattice model with attractive interaction. We observe two components in the entanglement 
spectrum, one of which is related to paired-fermion entanglement and contributes to the long-range 
correlation in position space. The vanishing point of it indicates the localization phenomenon in the 
ground state of this model. Additionally, by method of entanglement spectrum, we provide a new 
evidence to show the transition of two phases induced by interaction, and find that this phase transition 
is not influenced by the disorder. Our result show key characteristics in entanglement for different 
phases in the system, and provide a novel perspective to understand localization phenomena.

It is known that a vanishing density of states at fermi level leads to an insulator in band theory of condensed 
matter physics. However, the well-known Anderson localization induced by disorder for noninteracting particles 
shows a different mechanism of insulation1,2. Recently, there is a revived interest in localization due to disorder in 
the presence of interaction, known as many-body localization (MBL)3–6. The MBL may protect a closed quantum 
many-body system from thermalization which questions our fundamental assumption in statistical physics, sug-
gesting some emergent conservation laws for those localized systems7. The localized phase can be closely related 
with concepts like eigenstate thermalization hypothesis8,9, the area-law of entanglement entropy10–13. The systems 
showing MBL phenomenon may have a transition between localized and delocalized phases depending on disor-
der strength in the Hamiltonian14,15, and many breakthroughs have been made16–18.

Quantum entanglement, a unique feature in quantum physics, has been shown to be a powerful tool in illus-
trating the quantum characteristics of many-body systems. For a pure bipartite state, entanglement spectrum (ES) 
contains more information of the quantum entanglement than the entanglement entropy which is another meas-
ure of entanglement19. The ES is defined as the logarithm of eigenvalues of reduced density matrix of a subsystem 
for a many-body quantum state partitioned into two parts. By investigating the ES in position space, the method 
has been successfully applied to investigate fractional quantum Hall states19,20, complex paired superfluids21, and 
spin-orbit coupled superconductors22, etc. Also, ES in momentum space23–29 and angular momentum space30 can 
help to explore new phases of quantum matters of many-body systems such as Chern insulators. In these cases, only 
the ES of ground states is studied, which still indicates the property of excitations in the system. Closely related with 
ES, the entanglement can also be quantified by the Rényi entropy of the reduced density matrix, which can charac-
terize the local convertibility of the bipartite quantum states and can be used to study quantum phase transition31.

Some previous work investigated the Anderson localization from the view of the entanglement in the ground 
states. They concluded that the ES and entanglement entropy in the momentum space can characterize the local-
ized and delocalized phases in Anderson localization transitions25,26. In this paper, we focus on a fermion lattice 
model with nearest-neighbor interaction and on-site disorder. This system is known to have MBL phase and some 
other quantum phases32–35. The entanglement in position space has been investigated in spin-1/2 Heisenberg 
model, which is equivalent to a special case of this fermion model, and shows a phase transition from delocalized 
to localized phases36,37. Different phases come up depending on strength of interaction and disorder. However, 
there is uncertainty in the phase transition critical point, and further charaterization is necessary. Here, our work 
will concentrate on the entanglement in momentum space to analyze the ground state of this fermion model. 
When investigating the entanglement between particles with positive and negative momentum, we depict the 
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features and intuitive picture of two components of it: one component related to the entanglement between parti-
cles with opposite momentum would be destroyed by the other component as the strength of disorder grows. This 
indicates localizations in the low-lying states, which could also herald the higher-energy MBL phenomenon38. 
When investigating the entanglement between particles with small and large momentum, we confirm a phase 
transition that is not related to localization and originates from the Hamiltonian without disorder. We also show 
that the behavior of this transition is robust in the presence of on-site disorder.

Results
The Model.  We consider a spinless one-dimensional fermion model with attractive nearest-neighbor interac-
tion and on-site random disorder. The Hamiltonian of the system is written as,
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in which L is the number of sites in the chain, the †ci  and ci are the creation and annihilation operators on site i, 
U < 0 represents attractive interaction, and hi randomly but uniformly distributed in [−W/2, W/2] represents 
on-site disorder. We let t = 1 to set the energy scale. We remark that when U = −1, the model is equivalent to spin-
1/2 isotropic Heisenberg model by applying Jordan-Wigner transformation39. Moreover, at any value of U, the 
model is equivalent to XXZ model.

We choose the periodic boundary condition, and transform the Hamiltonian into particle number representa-
tion in momentum space. The Hamiltonian in momentum space, up to a constant, is written as,
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in which gp is Fourier transform of hi, †ap is creation operator of fermion with pseudo-momentum 2πp/L, and the 
summation is performed in the first Brillouin zone.

To obtain the ES, we can calculate the reduced density matrix of the subsystem, i.e. ρA = trBρAB, and the eigen-
values of the reduced density matrix are {λi}. In this paper, we use two ways to divide the system into two subsys-
tems in the reciprocal lattice and study the corresponding ES: to investigate the entanglement between particles 
with positive and negative momentum we divide the lattice into left and right parts, and to study the entangle-
ment between small and large momentum we divide the reciprocal lattice into inner and outer parts.

Since the total particle number operator commutes with the Hamiltonian, we can focus on the ground state in 
the subspace of certain particle number N. We remark that N should be an odd number to avoid having a degen-
erate Fermi sea in calculation24 (in the sense of average when there is disorder). Furthermore, when we divide the 
system, the reduced density matrix of its subsystem must be in block-diagonal form, and every block corresponds 
to a number n representing the amount of remaining particles in the subsystem (see Methods). Thus, we can use 
n as a parameter to mark each spectral line in ES.

Entanglement of positive-negative momentum.  We first investigate the ES by dividing the system 
into positive and negative momentum parts. We primarily concentrate on the ES in the sector corresponding 
to one where the remaining particles in positive momentum parts equals to a half of total particles (except 
the zero-momentum particle). For a fixed U, the ES at different disorder strengths, W’s, are shown in Fig. 1a. 
Apart from the lowest one spectral line corresponding to the ground state without interaction or disorder, two 
components can be seen in ES. Based on the fact that the states corresponding to the spectral lines have differ-
ent coherence for different component, it helps us distinguish the two components to map the colors of each 
line from relative entropy of coherence, which can quantify coherence of the states40. One component, named 
paired-particle component, is the main ES when W is small. As W increases, the other component, named chaotic 
component, goes lower, showing that it becomes more important. The descending chaotic component crosses 
with the original second lowest spectral line at the point marked by an arrow in Fig. 1a, showing that the chaotic 
component completely destroys the paired-particle component.

We also study the Rényi entanglement entropy (REE) in the same sector. It is defined as λ= ∑α α
α

−
S log i i

1
1

, in 
which α is a positive parameter and λi are the eigenvalues of the reduced density matrix. As shown in Fig. 2a, the 
REE reaches a minimum for all α, which indicates the relative importance of different entanglement components 
changes. To better illustrate this picture, we investigate the sign of ∂WSα, which shows how the strength of entangle-
ment varies as W changes, as shown in Fig. 2c. When fixing W to be smaller than a certain value, the change of the 
signs of ∂WSα for different α’s shows there is no global shift of all Sα. Since different α’s in Rényi entropy represents 
different scales to measure entanglement, two directions of shift in Sα with different α’s mean there are two compo-
nents of entanglement and they change in different ways as W increases. Therefore, considering that the chaotic 
component becomes more important as W increases, only when all ∂WSα have the same sign at a certain W, 
paired-particle component is completely destroyed. This value of W, which will be identified later, indicates the 
critical point of a phase transition31, the other aspects of which have been manifested in some previous works32,34,35.
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We now show that the paired-particle component indeed originates from entanglement between particle pairs 
with opposite momentum, and is related with long-range correlation. It is known that the attractive interaction 
may cause fermions to pair, and the interaction terms relating fermions with opposite momentum plays a central 
role in this system. Similar to BCS theory of superconductivity, if we only keep those terms relating particles with 
exact opposite momentum and drop other scattering terms, then perform Bogoliubov transformation, we can 
acquire a set of newly defined quasi-particles which can be seen as the linear combination of the original fermions 
with opposite momentum41,42. Hence the eigenstate of the system can be solved in the single-particle picture of 
these quasi-particles. The ground state, as well as excited states, is exactly a basis of particle number representa-
tion of quasi-particles. These pairs represent the entanglement between particles with opposite momentum, 
which induces long-range correlation. Also, the pairs, which could not be destroyed when adding disorder (only 
with exactly opposite momentum scattering terms), would contribute to p-wave superconductivity35,43.

According to the above consideration, the kept interaction term could be written as,
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Since ES can reflect entanglement in detail, the ES of the ground state of the Hamiltonian with this interaction 
can be used as a signature of the long-range correlation. We investigate this ES as shown in Fig. 1b. The absence of 
turning point in the second lowest spectral line in Fig. 1b suggests that no chaotic component destroy the original 
component in ES relating to pair-particle entanglement. Furthermore, the absence of the chaotic component 
in this case demonstrates that it is generated by the scattering term between particles with inexactly opposite 
momentum. Also, REE reflects the same picture. As shown in Fig. 2b, Sα monotonically increases for all α, which 
indicates that there is only paired-particle component of entanglement when only reserving interaction term 
between opposite momentum.

Thus, the physical picture is clear. When disorder is weak, the paired-particle component plays the main 
role, suggesting that the system is delocalized. As the disorder becomes stronger, although the disorder does not 
destroy paired-particle component directly, it makes the chaotic component more important and decisive, which 
means the long-range correlation is destroyed and the system becomes localized. We have already seen in Fig. 1a 
that as the chaotic component goes lower, the position of the second lowest line would meet a turning point when 
the paired-particle component loses its leading role. This point, along with the vanishing of blue region in c which 
occurs slightly earlier than this point due to the effect of the lowest spectral line, indicates the transition from 
delocalized to localized phase. Since this picture is based on the modes of quasi-particle which are particle pairs, 
and does not depend on whether these modes are excited, we hope that it could also apply to the first few excited 
states of the system and thus could provide evidences for the interpretation of the higher-energy MBL phenome-
non. As is analyzed above, by calculating the ES according to different W, we can find the turning point of second 
lowest spectral line and use it to mark the critical point. At U = −1, we did the statistics of 30 samples for this 
point and found that this transition occurs averagely at Wc = 3.2 and the standard deviation is 0.5. We also inves-
tigated the finite size scaling behavior of the critical point. As shown in Fig. 3a, we see the critical point indeed 
converges at large chain length, to a value of approximately 3.1. This result is consistent with previous study on the 
MBL edge38, slightly smaller than the MBL transition point36,44. When U ∈ [−1, −2), we find the same picture still 
applies, so we investigated 15 samples and acquire the phase diagram of this region as shown in Fig. 3b.

Entanglement of small-large momentum.  In this case, we first investigate ES of the system without 
disorder. We divide system into small and large momentum parts along the fermi level of non-interacting case. 
When adding interaction, the particles would be scattered to above the fermi level, leaving holes below. Thus, the 
entanglement between these two parts can be seen as entanglement between particles and holes. As is shown in 

Figure 1.  ES between the positive and negative momentum parts of the system with one disorder realization, 
of which the remaining particle number n = 5. The interaction U = 1 and the disorder W is the horizontal 
axis, with the chain length L = 22 and the total particle number N = 11. (a) Keep all scattering terms in the 
Hamiltonian of Eq. 2, which originate from nearest-neighbor interaction, the color is mapped from relative 
entropy of coherence, which helps to distinguish paired-particle and chaotic component, and the arrow marks 
the the point when the chaotic component completely destroys the paired-particle component and thus the 
critical point; (b) only keep scattering terms originating from interaction between particles with exactly 
opposite momentum, which are shown in Eq. 3, the spectral lines are colored uniformly red.
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Fig. 4, in each sector of which remaining particle number n equals to total particle number N minus an even num-
ber, there is a gap between the lowest spectral line and upper parts. As |U| increases, the gap increases to reach a 
sharp maximum when U = −2, and then decreases. Since the apparent entanglement between different sectors is 
due to that the particle number is a good quantum number and thus does not fundamentally reflects the entan-
glement between particles and holes, the only one spectral line in every individual sector shows the vanishing of 
their entanglement, which suggests a transition from one structure of entanglement to another and thus resulting 
in a probable phase transition. This is consistent with the conclusion achieved by typical other methods45,46.

When there is disorder but not too large, the gap in the ES as a function of U is shown in Fig. 5. Although 
the entanglement between particles and holes does not completely vanish, it gets to be the weakest and thus the 
gap still reaches the maximum near U = −2, which shows that the critical point is insensitive to the disorder33,35.

Discussion
By partitioning the reciprocal lattice into two subsystems in different ways, we investigate the entanglement in 
momentum space of a fermion lattice model with interaction and disorder. When partitioning particles with pos-
itive and negative momentum, we find that the ES consists of two components. Comparing with the ES of system 
possessing interaction only between particles with opposite momentum, we show that one of the component 
originates from paired-particle entanglement, i.e. the entanglement between particles with opposite momentum, 
and this entanglement represents long-range correlation in position space. However, the other component, cha-
otic entanglement, may destroy the paired-particle entanglement and induce a localization phenomenon in the 
ground state. Based on this picture, we obtain the critical point between the delocalized phase and localized phase 
of this model, and found it close to the critical point given by previous studies. When dividing the momentum 
space into small and large momentum parts, we observe that the behavior of the gap in ES can be used to identify 
a phase transition in this system, and can show that this transition is insensitive to the disorder.

Figure 2.  The behavior of REE between the positive and negative momentum parts of the system (with the 
same disorder realization as in Fig. 1), of which the remaining particle number n = 5. The interaction U = 1 and 
the disorder W is the horizontal axis, with the chain length L = 22 and the total particle number N = 11. Renyi 
entropy for different α when (a) Keeping all scattering terms in the Hamiltonian of Eq. 2, which originate from 
nearest-neighbor interaction, (b) only keeping scattering terms originating from interaction between particles 
with exactly opposite momentum, which are shown in Eq. 3. (c) The sign distribution of ∂WSα on the 1/α − W 
plane. ∂WSα is positive in cyan (light gray) regions and negative in the blue (dark gray) regions. When the 
sign takes on both positive and negative at certain W, paired-particle component of entanglement still exists. 
Otherwise, it is completely destroyed.

Figure 3.  (a) The fitting relation between 1/L2 and the critical Wc. Every data point is based on results on 15 
disorder realizations at each chain length. (b) The phase diagram when the interaction |U| ∈ [1, 2) with the chain 
length L = 20 and the total particle number N = 10. The cyan (light gray) region is the localized phase; the blue 
(dark gray) region is the delocalized phase. The uncertainty due to finite size with random disorder is estimated 
by the standard deviation on the results of 15 disorder realizations and shown by gradient colors.
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Our work provides a clear picture in understanding the characteristic of disordered fermion lattice models 
and the nature of related localization transitions from a novel perspective - by investigating entanglement in 
momentum space. The methods including entanglement entropy, entanglement spectrum, Rényi entanglement 
entropy and its derivative can also be applied to other systems in studying similar phenomena.

Methods
As for the ground state of the system, the wave function can then be Schmidt decomposed in the form 

λΨ = ∑ A Bi i i i
47,48, where {|Ai〉} and {|Bi〉} are two sets of orthonormal basis vectors of two subsystems A 

and B respectively, and {−ln λi} are the so-called ES.
Considering the long-range interaction in the reciprocal lattice, the DMRG method may not be suitable for 

solving the ground state of this model in particle number representation of momentum space49, so we use Arnoldi 
method to acquire it50,51. To obtain the ES, we can calculate the reduced density matrix of the subsystem, i.e. 
ρA = trBρAB, and find the eigenvalues of the reduced density matrix, which are {λi}. We will also remark that since 
the reduced density matrix of the subsystem is in block-diagonal form corresponding to different remaining par-
ticle numbers n in the subsystem, the diagonalizing processes can be restricted in each block.

As below we prove that the reduced density matrix of the subsystem in this case must be in block-diagonal 
form, and every block corresponds to a number n representing the amount of remaining particles in the 
subsystem. This result can also be generalized in the cases when the systems have any local conserved quan-
tities. We fist choose two sets of basis {|An,i〉} and {|Bn′,j〉}, in which n and n′ represent the particle numbers in 
subsystem A and B respectively, and i, j are some other quantum numbers. Then the state of the system can 
be written as

∑ψ λ= .
′ ′

′ ′ ′ ′A B
(4)n n i i

n n i i n i n i
, , ,
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Figure 4.  ES between small and large momentum parts of the system, when there is no disorder. The chain 
length L = 22 and total particle number N = 11. The blue (dark gray) lines represent the lowest spectrum, and 
the orange (light gray) lines represent the upper parts. The strength of interaction U equals to (a) 1.97, (b) 1.99, 
(c) 2.00, (d) 2.01, (e) 2.03.

Figure 5.  The gap in the ES, of which the remaining particle number n = 9. The chain length L = 22 and the 
total particle number N = 11. We use the same disorder realization as in Fig. 1. Different colors (gray levels) 
represent different disorder strength W.



www.nature.com/scientificreports/

6Scientific ReporTs | 7: 16668  | DOI:10.1038/s41598-017-16889-y

Since |ψ〉 is the eigenstate of the total particle number with the eigenvalue of N, we have n + n′ = N for all 
λn,n′,i,i′ ≠ 0. Thus, the reduced density matrix ρA of subsystem A is

∑

∑

∑
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which is a block-diagonal matrix, and n can be used to distinguish different blocks.

References
	 1.	 Anderson, P. W. Local moments and localized states. Rev. Mod. Phys. 50, 191–201, https://doi.org/10.1103/RevModPhys.50.191 

(1978).
	 2.	 Evers, F. & Mirlin, A. D. Anderson transitions. Rev. Mod. Phys. 80, 1355–1417, https://doi.org/10.1103/RevModPhys.80.1355 (2008).
	 3.	 Fleishman, L. & Anderson, P. W. Interactions and the Anderson transition. Phys. Rev. B 21, 2366–2377, https://doi.org/10.1103/

PhysRevB.21.2366 (1980).
	 4.	 Altshuler, B. L., Gefen, Y., Kamenev, A. & Levitov, L. S. Quasiparticle Lifetime in a Finite System: A Nonperturbative Approach. Phys. 

Rev. Lett. 78, 2803–2806, https://doi.org/10.1103/PhysRevLett.78.2803 (1997).
	 5.	 Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111, https://doi.

org/10.1103/PhysRevB.75.155111 (2007).
	 6.	 Basko, D., Aleiner, I. & Altshuler, B. Metal–insulator transition in a weakly interacting many-electron system with localized single-

particle states. Annals Phys. 321, 1126–1205, https://doi.org/10.1016/j.aop.2005.11.014 (2006).
	 7.	 Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130, https://doi.

org/10.1038/nphys3215 (2015).
	 8.	 Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049, https://doi.org/10.1103/

PhysRevA.43.2046 (1991).
	 9.	 Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888–901, https://doi.org/10.1103/PhysRevE.50.888 (1994).
	10.	 Plenio, M. B., Eisert, J., Dreissig, J. & Cramer, M. Entropy, Entanglement, and Area: Analytical Results for Harmonic Lattice Systems. 

Phys. Rev. Lett. 94, 60503, https://doi.org/10.1103/PhysRevLett.94.060503 (2005).
	11.	 Hamma, A., Ionicioiu, R. & Zanardi, P. Bipartite entanglement and entropic boundary law in lattice spin systems. Phys. Rev. A 71, 

22315, https://doi.org/10.1103/PhysRevA.71.022315 (2005).
	12.	 Eisert, J., Cramer, M. & Plenio, M. B. Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306, https://doi.

org/10.1103/RevModPhys.82.277 (2010).
	13.	 Devakul, T. & Singh, R. R. P. Early Breakdown of Area-Law Entanglement at the Many-Body Delocalization Transition. Phys. Rev. 

Lett. 115, 187201, https://doi.org/10.1103/PhysRevLett.115.187201 (2015).
	14.	 Imbrie, J. Z. On Many-Body Localization for Quantum Spin Chains. J. Stat. Phys. 163, 998–1048, https://doi.org/10.1007/s10955-

016-1508-x (2016).
	15.	 Nandkishore, R. & Huse, D. A. Many-Body Localization and Thermalization in Quantum Statistical Mechanics. Annu. Rev. Condens. 

Matter Phys. 6, 15–38, https://doi.org/10.1146/annurev-conmatphys-031214-014726 (2015).
	16.	 Aleiner, I. L., Altshuler, B. L. & Shlyapnikov, G. V. A finite-temperature phase transition for disordered weakly interacting bosons in 

one dimension. Nat. Phys. 6, 900–904, https://doi.org/10.1038/nphys1758 (2010).
	17.	 Vosk, R. & Altman, E. Many-Body Localization in One Dimension as a Dynamical Renormalization Group Fixed Point. Phys. Rev. 

Lett. 110, 67204, https://doi.org/10.1103/PhysRevLett.110.067204 (2013).
	18.	 Serbyn, M., Papić, Z. & Abanin, D. A. Universal Slow Growth of Entanglement in Interacting Strongly Disordered Systems. Phys. 

Rev. Lett. 110, 260601, https://doi.org/10.1103/PhysRevLett.110.260601 (2013).
	19.	 Li, H. & Haldane, F. D. M. Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological 

Order in Non-Abelian Fractional Quantum Hall Effect States. Phys. Rev. Lett. 101, 10504, https://doi.org/10.1103/
PhysRevLett.101.010504 (2008).

	20.	 Rodríguez, Iván D., Simon, Steven H. & Slingerland, J. K. Evaluation of Ranks of Real Space and Particle Entanglement Spectra for 
Large Systems. Phys. Rev. Lett. 108, 256806, https://doi.org/10.1103/PhysRevLett.108.256806 (2012).

	21.	 Dubail, J. & Read, N. Entanglement Spectra of Complex Paired Superfluids. Phys. Rev. Lett. 107, 157001, https://doi.org/10.1103/
PhysRevLett.107.157001 (2011).

	22.	 Borchmann, J., Farrell, A., Matsuura, S. & Pereg-Barnea, T. Entanglement spectrum as a probe for the topology of a spin-orbit-
coupled superconductor. Phys. Rev. B 90, 235150, https://doi.org/10.1103/PhysRevB.90.235150 (2014).

	23.	 Thomale, R., Arovas, D. P. & Bernevig, B. A. Nonlocal Order in Gapless Systems: Entanglement Spectrum in Spin Chains. Phys. Rev. 
Lett. 105, 116805, https://doi.org/10.1103/PhysRevLett.105.116805 (2010).

	24.	 Lundgren, R. et al. Momentum-Space Entanglement Spectrum of Bosons and Fermions with Interactions. Phys. Rev. Lett. 113, 
256404, https://doi.org/10.1103/PhysRevLett.113.256404 (2014).

	25.	 Mondragon-Shem, I., Khan, M. & Hughes, T. L. Characterizing Disordered Fermion Systems Using the Momentum-Space 
Entanglement Spectrum. Phys. Rev. Lett. 110, 046806, https://doi.org/10.1103/PhysRevLett.110.046806 (2013).

	26.	 Andrade, E. C., Steudtner, M. & Vojta, M. Anderson localization and momentum-space entanglement. J. Stat. Mech-theory. E. 2014, 
P07022, https://doi.org/10.1088/1742-5468/2014/07/P07022 (2014).

	27.	 Liu, Z., Bergholtz, E. J., Fan, H. & Läuchli, A. M. Fractional Chern Insulators in Topological Flat Bands with Higher Chern Number. 
Phys. Rev. Lett. 109, 186805, https://doi.org/10.1103/PhysRevLett.109.186805 (2012).

	28.	 Wang, D., Liu, Z., Cao, J. & Fan, H. Tunable Band Topology Reflected by Fractional Quantum Hall States in Two-Dimensional 
Lattices. Phys. Rev. Lett. 111, 186804, https://doi.org/10.1103/PhysRevLett.111.186804 (2013).

	29.	 Liu, Z., Kovrizhin, D. L. & Bergholtz, E. J. Bulk-edge correspondence in fractional Chern insulators. Physical Review B 88, 081106, 
https://doi.org/10.1103/PhysRevB.88.081106 (2013).

	30.	 Sterdyniak, A., Regnault, N. & Bernevig, B. A. Extracting Excitations from Model State Entanglement. Phys. Rev. Lett. 106, 100405, 
https://doi.org/10.1103/PhysRevLett.106.100405 (2011).

	31.	 Cui, J. et al. Quantum phases with differing computational power. Nat. Commun. 3, 812, https://doi.org/10.1038/ncomms1809 
(2012).

	32.	 Schmitteckert, P., Schulze, T., Schuster, C., Schwab, P. & Eckern, U. Anderson Localization versus Delocalization of Interacting 
Fermions in One Dimension. Phys. Rev. Lett. 80, 560–563, https://doi.org/10.1103/PhysRevLett.80.560 (1998).

	33.	 Schmitteckert, P., Jalabert, R. A., Weinmann, D. & Pichard, J.-L. From the Fermi Glass towards the Mott Insulator in One Dimension: 
Delocalization and Strongly Enhanced Persistent Currents. Phys. Rev. Lett. 81, 2308–2311, https://doi.org/10.1103/
PhysRevLett.81.2308 (1998).

http://dx.doi.org/10.1103/RevModPhys.50.191
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/PhysRevB.21.2366
http://dx.doi.org/10.1103/PhysRevB.21.2366
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1038/nphys3215
http://dx.doi.org/10.1038/nphys3215
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevLett.94.060503
http://dx.doi.org/10.1103/PhysRevA.71.022315
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/PhysRevLett.115.187201
http://dx.doi.org/10.1007/s10955-016-1508-x
http://dx.doi.org/10.1007/s10955-016-1508-x
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1038/nphys1758
http://dx.doi.org/10.1103/PhysRevLett.110.067204
http://dx.doi.org/10.1103/PhysRevLett.110.260601
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.108.256806
http://dx.doi.org/10.1103/PhysRevLett.107.157001
http://dx.doi.org/10.1103/PhysRevLett.107.157001
http://dx.doi.org/10.1103/PhysRevB.90.235150
http://dx.doi.org/10.1103/PhysRevLett.105.116805
http://dx.doi.org/10.1103/PhysRevLett.113.256404
http://dx.doi.org/10.1103/PhysRevLett.110.046806
http://dx.doi.org/10.1088/1742-5468/2014/07/P07022
http://dx.doi.org/10.1103/PhysRevLett.109.186805
http://dx.doi.org/10.1103/PhysRevLett.111.186804
http://dx.doi.org/10.1103/PhysRevB.88.081106
http://dx.doi.org/10.1103/PhysRevLett.106.100405
http://dx.doi.org/10.1038/ncomms1809
http://dx.doi.org/10.1103/PhysRevLett.80.560
http://dx.doi.org/10.1103/PhysRevLett.81.2308
http://dx.doi.org/10.1103/PhysRevLett.81.2308


www.nature.com/scientificreports/

7Scientific ReporTs | 7: 16668  | DOI:10.1038/s41598-017-16889-y

	34.	 Zhao, A., Chu, R.-L. & Shen, S.-Q. Finite-size scaling of entanglement entropy at the Anderson transition with interactions. Phys. 
Rev. B 87, 205140, https://doi.org/10.1103/PhysRevB.87.205140 (2013).

	35.	 Berkovits, R. Entanglement Properties and Quantum Phases for a Fermionic Disordered One-Dimensional Wire with Attractive 
Interactions. Phys. Rev. Lett. 115, 206401, https://doi.org/10.1103/PhysRevLett.115.206401 (2015).

	36.	 Yang, Z.-C., Chamon, C., Hamma, A. & Mucciolo, E. R. Two-Component Structure in the Entanglement Spectrum of Highly 
Excited States. Phys. Rev. Lett. 115, 267206, https://doi.org/10.1103/PhysRevLett.115.267206 (2015).

	37.	 Geraedts, S. D., Nandkishore, R. & Regnault, N. Many-body localization and thermalization: Insights from the entanglement 
spectrum. Phys. Rev. B 93, 174202, https://doi.org/10.1103/PhysRevB.93.174202 (2016).

	38.	 Luitz, D. J., Laflorencie, N. & Alet, F. Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 91, 81103, 
https://doi.org/10.1103/PhysRevB.91.081103 (2015).

	39.	 Jordan, P. & Wigner, E. Über das Paulische Äquivalenzverbot. Z. Phys. 47, 631–651, https://doi.org/10.1007/BF01331938 (1928).
	40.	 Baumgratz, T., Cramer, M. & Plenio, M. B. Quantifying Coherence. Phys. Rev. Lett. 113, 140401, https://doi.org/10.1103/

PhysRevLett.113.140401 (2014).
	41.	 Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of Superconductivity. Phys. Rev. 108, 1175–1204, https://doi.org/10.1103/

PhysRev.108.1175 (1957).
	42.	 Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Physics-Uspekhi 44, 131 (2001).
	43.	 Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Reports on Prog. Phys. 75, 76501 (2012).
	44.	 Pal, A. & Huse, D. A. Many-body localization phase transition. Phys. Rev. B 82, 174411, https://doi.org/10.1103/PhysRevB.82.174411 

(2010).
	45.	 Yang, C. N. & Yang, C. P. One-Dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe’s Hypothesis for ground 

state in a finite system. Phys. Rev. 150, 150–156, https://doi.org/10.1103/PhysRev.150.321 (1966).
	46.	 Yang, C. N. & Yang, C. P. One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy 

Per Lattice Site for an Infinite System. Phys. Rev. 150, 327–339, https://doi.org/10.1103/PhysRev.150.327 (1966).
	47.	 Schmidt, E. Zur Theorie der linearen und nichtlinearen Integralgleichungen. III. Teil. Math. Ann. 65, 370–399 (1908).
	48.	 Nielsen, M. A. & Chuang, I. L. Quantum computation and quantum information (Cambridge university press, 2010).
	49.	 Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315, https://doi.org/10.1103/RevModPhys.77.259 

(2005).
	50.	 Arnoldi, W. E. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. applied mathematics 9, 

17–29 (1951).
	51.	 Saad, Y. Numerical methods for large eigenvalue problems (SIAM, 1992).

Acknowledgements
This work is supported by NSFC (91536108, 11774406), CAS(XDPB-0803), MOST of China (2016YFA0302104, 
2016YFA0300600), NFFTBS (J1030310, J1103205), the Strategic Priority Research Program of the Chinese 
Academy of Sciences (XDB01010000, XDB21030300), the Young Elite Program for Faculty of Universities in 
Beijing, and Training Program of Innovation for Undergraduates of Beijing.

Author Contributions
B.T.Y. and Z.Y.H. conceived the idea, developed the software, analyzed the results and drafted the manuscript. 
All authors revised the final manuscript. L.Z.M. and F.H. gave constructional advice and supervised this work.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1103/PhysRevB.87.205140
http://dx.doi.org/10.1103/PhysRevLett.115.206401
http://dx.doi.org/10.1103/PhysRevLett.115.267206
http://dx.doi.org/10.1103/PhysRevB.93.174202
http://dx.doi.org/10.1103/PhysRevB.91.081103
http://dx.doi.org/10.1007/BF01331938
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRevB.82.174411
http://dx.doi.org/10.1103/PhysRev.150.321
http://dx.doi.org/10.1103/PhysRev.150.327
http://dx.doi.org/10.1103/RevModPhys.77.259
http://creativecommons.org/licenses/by/4.0/

	Investigating disordered many-body system with entanglement in momentum space

	Results

	The Model. 
	Entanglement of positive-negative momentum. 
	Entanglement of small-large momentum. 

	Discussion

	Methods

	Acknowledgements

	Figure 1 ES between the positive and negative momentum parts of the system with one disorder realization, of which the remaining particle number n = 5.
	Figure 2 The behavior of REE between the positive and negative momentum parts of the system (with the same disorder realization as in Fig.
	Figure 3 (a) The fitting relation between 1/L2 and the critical Wc.
	Figure 4 ES between small and large momentum parts of the system, when there is no disorder.
	Figure 5 The gap in the ES, of which the remaining particle number n = 9.




