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propr: An R-package for Identifying 
Proportionally Abundant Features 
Using Compositional Data Analysis
Thomas P. Quinn   1,2, Mark F. Richardson   1,3, David Lovell4 & Tamsyn M. Crowley1,2

In the life sciences, many assays measure only the relative abundances of components in each sample. 
Such data, called compositional data, require special treatment to avoid misleading conclusions. 
Awareness of the need for caution in analyzing compositional data is growing, including the 
understanding that correlation is not appropriate for relative data. Recently, researchers have proposed 
proportionality as a valid alternative to correlation for calculating pairwise association in relative 
data. Although the question of how to best measure proportionality remains open, we present here a 
computationally efficient R package that implements three measures of proportionality. In an effort 
to advance the understanding and application of proportionality analysis, we review the mathematics 
behind proportionality, demonstrate its application to genomic data, and discuss some ongoing 
challenges in the analysis of relative abundance data.

Advances in the technology used to assay biological systems have led to a rapid increase in the amount of data 
generated. However, there has not yet emerged a clear consensus over the best method for analyzing these data. In 
fact, some of the most commonly used methods fundamentally ignore the underlying nature of the data studied. 
Count data, such as those produced by high-throughput sequencing, belong within the domain of relative data. 
Other examples of relative data include data generated by RNA-sequencing (RNA-Seq), chromatin immunopre-
cipitation sequencing (ChIP-Seq), Methyl-Capture sequencing, 16S amplicon-sequencing, and metabolomics. 
Methods that ignore the relative nature of these data yield erroneous results.

Compositional data have two key geometric properties. First, the total sum of all component values is an 
artifact of the sampling procedure1. Second, the distance between component values is only meaningful propor-
tionally (e.g., the difference between 100 and 200 counts carries the same information as the difference between 
1000 and 2000 counts)1. Biological count data (e.g., gene expression data from RNA-Seq), as relative data, also 
have these properties. Any number of factors, such as technical variability or differences in experiment-specific 
abundance, can impact the total number of counts (sometimes called the library size). Simply dividing count data 
by the library size does not address the systematic biases in RNA-Seq data. Although several normalization strat-
egies exist, the choice of method can drastically change the number and identity of genes reported as differentially 
expressed2. This sensitivity to normalization holds true for other modes of compositional data as well3. Moreover, 
some methods, such as trimmed mean of M (TMM) normalization, give different results depending on how lowly 
expressed genes get removed from the data2.

By ignoring the relative nature of biological count data, investigators implicitly assume that absolute dif-
ferences between counts have meaning4. That is, they assume the data exist in real Euclidean space1. This may 
explain why there has emerged a number of hyper-parameterized, assay-specific normalization methods used 
in the calculation of differential abundance that fail to generalize to data produced by other assays4. Meanwhile, 
methods that accommodate compositional data, such as the ALDEx2 package for R, aim to offer a unified way 
to compute differential abundance regardless of the data source4. However, the ALDEx2 package lacks a way to 
measure association in relative data.

Correlation has often been applied inappropriately to compositional data in the life sciences5. As Pearson 
warned in 1896, correlation gives spurious results when applied to relative data: i.e., given three statistically inde-
pendent variables, X, Y, and Z, the ratios X/Z and Y/Z will correlate with one another by virtue of their shared 
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denominator6. If we consider that Z may represent, for example, the library size, we see how two uncorrelated 
features, X and Y, may appear correlated even when they are not. Spurious correlation is not merely a statistical 
concern: when applied to real biological data, correlation can lead to wrong conclusions5,7. For example, one 
might incorrectly conclude that there exists a coordinated regulation among a module of transcriptionally inde-
pendent genes.

As an alternative to correlation, proportionality is a measure of association that is valid for compositional 
data5,8. Borrowing from compositional data analysis (CoDA) principals, this approach uses a log-ratio trans-
formation (*LR) of the original feature vectors in order to transpose the data from a simplex into real Euclidean 
space1,9. These transformed abundances then provide a substrate for calculating the log-ratio variance (VLR), 
defined as the variance of the ratio of two log transformed feature vectors (var*LR(X)/*LR(Y))9. Interestingly, 
the VLR is the same for relative values and their absolute equivalent. However, the VLR lacks a scale that would 
otherwise make it possible to compare dependency across multiple feature pairs. In essence, what we call propor-
tionality is a modification to the VLR that establishes scale.

The propr package, now available through the Comprehensive R Archive Network (CRAN), implements two 
measures of proportionality, φ5 and ρp

8 (defined formally in the next section). Like the Pearson correlation coef-
ficient, the metric ρp is naturally symmetric in its arguments. However, we can make φ naturally symmetric too 
by slightly altering its definition, as shown in the next section. Otherwise, ρp ranges from [−1, 1], reinforcing its 
analogy to correlation, while φ ranges from [0, ∞), reinforcing its analogy to dissimilarity. Yet, it is the conceptual 
and mathematical link between φ and ρp metrics that allows us to present the propr package as a single portal to 
proportionality analysis.

Methods
Consider a matrix of D features (as columns) measured across N samples (as rows) exposed to a binary or continu-
ous event. This event might involve case-control status, treatment status, treatment dose, or time. Proportionality, 
as analogous to, but distinct from, correlation, measures the association between two log-ratio transformed fea-
ture vectors. By default, this package uses the centered log-ratio transformation (clr); this transformation scales 
each subject vector by its geometric mean (indicated as g(x)). However, we also include an implementation of the 
additive log-ratio transformation (alr). These transformations get applied to each subject vector, x, according to 
the following definitions:
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Applying a log-ratio transformation to each sample results in a new matrix, A, containing N rows (as samples) 
and D columns (as features). The propr package implements three measures of proportionality in the R language, 
as defined for A. Note that although we calculated each row of A using Eq. 1 or Eq. 2, we use the columns of this 
matrix to calculate proportionality. Two principal functions, phit and perb, calculate the proportionality met-
rics φ (Eq. 3)5 and ρp (Eq. 4)8, respectively. The functions phit and perb return a matrix of D2 elements relating 
each combination of log-ratio transformed feature vectors, Ai and Aj (i, j ∈ D), according to the following 
definitions:
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In addition, we provide the phis function to calculate φs (Eq. 5), a naturally symmetric variant of φ. 
Interestingly, φs relates to ρp by a monotonic function8, meaning you can calculate one from the other. This meas-
ure of proportionality relates the variance of the log-ratio (VLR) to the variance of the log-product (VLP), accord-
ing to the following definition:
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We refer the reader to the supplemental appendix for a demonstration of how these measures of proportion-
ality relate to the slope, β, and the Pearson correlation coefficient, r, of pairwise log-ratio transformed data (S1 
Appendix). This appendix also illustrates how φ, φs, and ρp relate to one another.

In considering the two log-ratio transformations, alr uses a specified feature to transform the original subject 
vectors. When used in conjunction with an a priori known unchanged reference, alr effectively back-calculates 
the absolute counts from the relative components. By specifying, for example, a house-keeping gene or an exper-
imentally fixed variable, the investigator can achieve a more accurate measure of dependence than through clr8. 
The user can toggle alr transformation in lieu of the default clr transformation by supplying the name of the 
unchanged reference (or references) to the ivar argument of the phit, perb, or phis function. In either case, 
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we wish to alert the reader that log-ratio transformation, by its definition, require non-zero elements in the data 
matrix. As such, any log-ratio analysis must first address zeros. Yet, how best to do this remains an open question 
and a topic of active research10. For simplicity, propr automatically replaces all zero values with 1 prior to log-ratio 
transformation, corresponding to the multiplicative replacement strategy10.

The R language, despite its widespread popularity, suffers from poor performance when scaling to big data. 
Its “copy-on-modify” behavior, whereby each modification of an object creates a duplication of that object, along 
with slow for-loops, makes it an imperfect choice for computationally expensive tasks such as the one here. 
Therefore, in order to speed up the run time and reduce RAM overhead, we harness the Rcpp package to draft the 
computationally expensive portions of this tool in C++11.

This package also offers a number of wrapper functions to visualize proportionality when working with 
high-dimensional data. We provide extensive documentation for these plotting methods in the package vignette, 
“Understanding RNA-Seq Data through Proportionality Analysis”, hosted with the package on CRAN. Among 
these tools are those used to generate the figures included in the next section.

Results
Application of proportionality.  As a use case, we re-analyze the raw RNA-Seq counts from an already 
published study on cane toad (Rhinella marina) evolution and adaptation12. Sugar cane farmers introduced cane 
toads to Australia in 1935 as a cane beetle pest control measure, but these toads quickly became invasive. This 
event now serves as a notable example of failed biological control. Initially introduced into northeastern Australia 
(Queensland, QLD), cane toads have since spread westwards across the continent to Western Australia (WA)12. 
This dataset contains muscle tissue RNA transcript counts for 20 toads sampled from two regions (10 per region) 
in the wild. The two regions sampled, which we will treat as the experimental groups, include the long colonized 
site of introduction in QLD and the front of the range expansion in WA12. In this analysis, we want to understand 
the differences in gene expression between the established and expanding populations. By demonstrating propr 
on public data, we provide a reproducible example of how proportionality analysis can converge on an established 
biological narrative. The reader can find these data bundled with the release of the package on CRAN.

We begin by constructing the proportionality matrix using all 57,580 transcript counts, yielding an N2 matrix 
24.7 Gb in size. To minimize the number of lowly expressed transcripts included in the final result, we subset the 
matrix to include only those transcripts with at least 10 counts in at least 10 samples. By removing the features at 
this stage, we can exploit a computational trick to calculate proportionality and filter simultaneously, reducing 
the required RAM to only 5 Gb without altering the resultant matrix. Next, in the absence of a hypothesis testing 
framework, we arbitrarily select those “highly proportional” transcripts with ρp > 0.95. We refer the reader to 
the supplementary vignette for a justification of this cutoff (S1 Appendix). When plotting the pairwise log-ratio 

Figure 1.  Smear plot. This figure shows the log-ratio abundance for each feature belonging to pairs index as 
highly proportional (ρp > 0.95). A smear of straight diagonal lines confirms that the feature pairs indexed as 
proportional actually show proportional abundance. In other words, large deviations from y = x indicate small 
values of |ρp|. Figure produced using the smear function in propr.
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transformed abundances for these “highly proportional” transcript pairs, a smear of straight diagonal lines con-
firms that the feature pairs indexed as proportional actually show proportional abundance (Fig. 1).

The procedure used to parse through the proportionality matrix now depends on the experimental question. 
Here, we wish to identify a highly proportional transcript module that happens to show differential abundance 
across the experimental groups. In this example, we take an unsupervised approach by hierarchically clustering 
the highly proportional feature pairs based on the matrix 1−|ρp|. We note here that one could instead cluster 
using φs directly. When clustering, we call two features co-clustered if they belong to the cluster after cutting the 
dendrogram. Then, we project the pairs across two axes of variance, the variance of the log-ratio (VLR) and vari-
ance of the log sums (VLS) such that ρ= −1VLR

VLS p. In this formula, we see that as VLR approaches 0, ρp 
approaches 1. Meanwhile, the VLS, the sum of the individual variances of two features in that pair, adjusts the rate 
of this limit. Since we would expect a differentially expressed module to have a low VLR and a high VLS, we pri-
oritize pairs in co-cluster 1 for subsequent analysis (Fig. 2).

Co-clusters containing feature pairs with a low VLR and a high VLS have the potential to explain differences 
between the experimental groups. However, the high VLS may not necessarily have anything to do with the 
experimental condition. For example, this co-cluster might instead include highly proportional features that show 
wide individual feature variance due to batch effects. For the cane toad data, however, the experimental condition 
does indeed seem to drive the high individual feature variances in the module, as evidenced by the near perfect 
group separation when visualizing the first two components of a principal components analysis (PCA) (Fig. 3). 
Note that this plot calculates PCA using the log-ratio transformed data, making it a statistically valid choice for 
compositional data13. The separation between groups achieved here compares to that reported in the original 
publication, which used features selected by the edgeR package12. In addition, gene set enrichment analysis of 
the gene ontology terms for co-cluster 1 (S1 Table) shows an enrichment for similar molecular functions as those 
enriched among the transcripts selected by edgeR (S2 Table), as well as those highlighted in the original publica-
tion12. This is particularly impressive considering that we have no reason to expect most differentially expressed 
transcripts would appear in differentially expressed modules too.

Although the exact gene ontology terms differ by method, our approach yields a constellation of macromo-
lecular metabolic terms that suggests a common story: “metabolic enzymes are overwhelmingly upregulated at 
the invasion front”12, interpreted this to mean that WA cane toads may experience more environmental stress 
than those from QLD12. Yet, while agreeing here, proportionality analysis offers an additional benefit in that 
it provides a layer of information on pairwise associations, all without requiring any kind of normalization. 
Nevertheless, we believe there exists added value in integrating the results of propr and conventional differential 
expression analysis, best visualized as a network graph (Fig. 4).

Evaluation of proportionality.  Above, we show how we can use proportionality to understand RNA-Seq 
data. Here, we move on to evaluate how well each of the three measures of proportionality performs as compared 
to the Pearson’s correlation coefficient of the absolute data (referred to as absolute correlation). For this, we need 

Figure 2.  Prism plot. This figure shows the distribution of feature pairs according to the variance of the log-
ratio (VLR) and the variance of the log sums (VLS) for all pairs in which at least one of the features participates 
in at least one highly proportional (ρp > 0.95) pair. If both features in a pair belong to the same cluster, they 
receive a non-zero color code. Clusters created hierarchically based on the matrix ρ− | |1 p . Figure produced 
using the prism function in propr.
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Figure 3.  PCA plot. This figure shows all samples projected across the first two components of a principal 
components analysis (PCA), calculated using the log-ratio transformed data. This plot colors samples based on 
the experimental group. Figure produced using the pca function in propr.

Figure 4.  Network plot. This figure shows a 3D projection of all feature pairs indexed as highly proportional 
(ρp > 0.95) within co-cluster 1. Red nodes indicate transcripts with increased expression according to edgeR. 
Blue nodes indicate transcripts with decreased expression according to edgeR. White nodes indicate transcripts 
included in co-cluster 1, but not selected by edgeR. Importantly, we see here several highly proportional up-
regulated and down-regulated modules. Figure produced using the cytescape function in propr.



www.nature.com/scientificreports/

6SCIEnTIfIC REPOrTs | 7: 16252 | DOI:10.1038/s41598-017-16520-0

a dataset for which we know already the absolute abundances exactly. Since this is unknown in the cane toad 
data, we use two other datasets: (a) a simulated dataset with 1,000 random features (i.e., following a negative 
binomial distribution) and an additional non-random feature, and (b) a time series of yeast mRNA abundance 
after removal of a key nutrient14. Knowing the absolute abundances, we can make a corresponding relative data-
set by dividing the counts (as rows) by the per-sample sum (i.e., the library size). Since the library size changes 
non-randomly across samples, this operation constrains the data in a way that introduces spurious correlations.

For each dataset, we plot a scatter of 10,000 randomly sampled absolute correlations plotted against five other 
measures of dependence: (1) the correlation of relative data, (2) the correlation of clr-transformed data, (3) ρp, (4) 
φ, and (5) φs. Note that, since φ and φs range from [0. ∞), we have transformed these measures to make them 
comparable with correlation directly. For this, we use the function = −f x x( ) 1 2 logistic(log( )), such that 
ρ φ= f ( )p s . Figure 5, built from the simulated data, shows the presence of many spurious correlations (Fig. 5: panel 
“Correlation (Absolute)” vs. “Correlation (Relative)”). Yet, these spurious correlations disappear when measuring 
proportionality (Fig. 5: panel “Correlation (Absolute)” vs. “Proportionality (perb)”). Notably, the spurious corre-
lations from these data also disappear when measuring the correlation of clr-transformed data (Fig. 5: panel 
“Correlation (Absolute)” vs. “Correlation (clr-based)”).

Likewise, Fig. 6 uses the yeast data to extend an analysis provided in the supplemental materials of Lovell 
et al.5. As with the simulated data, we see here a number of spurious correlations (Fig. 6: panel “Correlation 
(Absolute)” vs. “Correlation (Relative)”). However, unlike with the simulated data, proportionality does not per-
fectly approximate the absolute correlation coefficients; still, proportionality does mitigate the presence and extent 

Figure 5.  Evaluation of proportionality using simulated data. Using a simulated dataset with 1,000 random 
features and an additional non-random feature, this figure shows a scatter of 10,000 randomly sampled absolute 
correlations plotted against five other measures of dependence: (1) the correlation of relative data, (2) the 
correlation of clr-transformed data, (3) ρp, (4) φ, and (5) φs. To make the measures of φ and φs comparable, 
we transformed these from a range of [0, ∞) to [−1, 1]. From here, we can visually assess how well any two 
measures of dependence agree with one another.



www.nature.com/scientificreports/

7SCIEnTIfIC REPOrTs | 7: 16252 | DOI:10.1038/s41598-017-16520-0

of the spurious events (as evidenced by the tapering of the scatter plot) (Fig. 6: panel “Correlation (Absolute)” vs. 
“Proportionality (perb)”). In other words, pairs that exhibit high proportionality (i.e., large ρp or, equivalently, 
small φ and φs) also exhibit high absolute correlation, making proportionality a precise predictor of absolute 
correlation. Interestingly, unlike with the simulated data, clr-based correlation appears to produce more spurious 
events (Fig. 6: panel “Correlation (Absolute)” vs. “Correlation (clr-based)”) than proportionality, suggesting that 
proportionality may have some inherent advantage when applied to compositional data.

To quantify what we see visually, we compare each measure to the absolute correlation by tabulating the mean 
squared error (MSE), the number of spurious events, and the MSE of those spurious events (S3 Table). This con-
firms that, at least for the yeast data, proportionality results in fewer and less extreme spurious events. Note that, 
for both datasets, ρp and φs perform equally well because φs is a transformed variant of φs

8. Although φ produces 
even fewer spurious results than the other proportionality measures, this comes at the cost of greater total MSE. 
We refer the reader to the supplementary materials for a script that contains everything required to reproduce all 
analyses presented here.

Discussion
The propr package for R, now available on CRAN, provides a fast implementation of three measures of propor-
tionality, previously shown to rectify the issue of spurious correlation in the setting of compositional data5,8. 
These implementations offer a valid alternative to correlation that can accurately identify associated features in 
relative data8. By using the Rcpp package to draft the computationally expensive code in C++, the propr package 

Figure 6.  Evaluation of proportionality using yeast data. Using a time series of yeast mRNA abundance 
after removal of a key nutrient, this figure shows a scatter of 10,000 randomly sampled absolute correlations 
plotted against five other measures of dependence: (1) the correlation of relative data, (2) the correlation of clr-
transformed data, (3) ρp, (4) φ, and (5) φs. To make the measures of φ and φs comparable, we transformed these 
from a range of [0, ∞) to [−1, 1]. From here, we can visually assess how well any two measures of dependence 
agree with one another.
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achieves greater performance than possible in the native R environment without altering the front-end user expe-
rience11. In this way, proportionality analysis executes nearly as fast as base R correlation while retaining a simple 
programming interface. Yet, proportionality analysis is not without limitations.

First, unlike the log-ratio variance (VLR), the values of φ and ρp will change in the setting of missing fea-
ture data. Since biological assays rarely, if ever, capture all possible feature information, this property makes the 
centered log-ratio transformation (clr) a sub-optimal choice. The additive log-ratio transformation (alr), which 
allows the user to scale their data by a feature with an a priori known fixed abundance, such as a house-keeping 
gene or an experimentally fixed variable (e.g., a ThermoFisher ERCC synthetic RNA “spike-in”15), may provide 
a superior alternative. In contrast to clr, proportionality calculated with alr does not change with missing fea-
ture data because it effectively back-calculates the absolute feature abundance. Still, clr is probably sufficient 
when most features remain unchanged across samples, an assumption also built into the trimmed mean of M 
(TMM) normalization used in the analysis of RNA-Seq data8,16. Moreover, errors associated with clr transforma-
tion consist almost entirely of false negatives, rather than false positives, making it suitable for many scientific 
applications8.

Second, proportionality analysis, by nature of the log-ratio transformation, fails in the presence of zero values. 
As such, proportionality analysis inherits the zero replacement controversy prominent in the compositional data 
analysis literature. By default, propr replaces all zero values with 1. If analysts wish to explore other approaches 
to zero replacement–including conducting analyses of the sensitivity of results to zero imputation–they can so by 
manipulating the data prior to running routines in propr. We stress that, depending on the number of zero values 
in the data, replacement of zeros can have a major impact on the conclusions drawn from any log-ratio based 
analysis. Analysts should carefully examine their results to understand the extent to which they depend on the 
zero replacement strategy chosen.

Third, biological count data do not exist as true compositional data, but rather as a kind of 
“count-compositional” data, whereby small non-zero counts pose a unique challenge to analysis. This follows 
from how the log-ratio methods of compositional data analysis assume data to consist of D positive, real-valued 
components (i.e., a sample space of +

D). Instead, count-compositional data consist of D non-negative, 
integer-valued components (i.e., a sample space of  +

D
0 ). The smaller the counts, the more noticeable the discreti-

zation of the count-compositional data becomes. Likewise, with smaller counts, the impact of sampling variation 
becomes more noticeable: additive variation affects the relative abundance of small counts more than large 
counts. Put succinctly, the difference between 1 count and 2 counts does not carry the exact same information as 
the difference between 1000 counts and 2000 counts. In practice, this means that a minor variation in small 
counts can have a major impact on the conclusions drawn from any log-ratio based analysis. Like with zero 
replacement, analysts should carefully examine their results to understand this sensitivity. We note that prior 
work has found substantial differences in how test statistics handle low-count genes in RNA-Seq17. For the pur-
poses of demonstrating propr, we avoid this issue partly by removing from analysis any component with a pre-
dominance of low counts.

Finally, proportionality analysis currently lacks a hypothesis testing framework. Its distribution of heterosce-
dastic variance makes it unsuited for the z-transformation used to calculate the variance of the correlation statis-
tic. Although more work is needed to create a rigorous framework for applying statistical tests to proportionality 
analysis, we include a supplementary vignette that offers a practical guide to choosing a proportionality cutoff 
(S1 Appendix). Nevertheless, we believe the propr package comes a long way in improving the accessibility of 
proportionality analysis to researchers. We hope many biological investigations can benefit from this alternative 
to correlation.

Data availability.  All data generated or analyzed during this study are included in this published article (and 
its Supplementary Information files).
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